On Quantum Money and Evasive Obfuscation

Mark Zhandry (NTT Research)

The Double-Spend Problem with Digital Currency

The Double-Spend Problem with Digital Currency

Any classical solution needs some coordination between Alice and Bob (possibly involving third party)

Enter quantum...

Quantum no-cloning [Park'70, Wooters-Zurek'82, Dieks'82]

Secret key Quantum Money

[Wiesner'70]

$$=|\psi\rangle$$

Unfortunately, mint required to verify money, so still need coordination

PK Quantum money is a central object in the study of quantum protocols

PK Quantum Money is Notoriously Difficult!

[Aaronson'09]: random stabilizer states

X [Lutomirski-Aaronson-Farhi-Gosset-Hassidim-Kelner-Shor'10] [Aaronson-Christiano'12]: polynomials hiding subspaces

X [Pena-Faugère-Perret'14, Christiano-Sattath'16]

[Farhi-Gosset-Hassidim-Lutomirski-Shor'10]: knots

[Kane'18, Kane-Sharif-Silverberg'21]: quaternion algebras

[Z'19]: quadratic systems of equations

X [Roberts'21] [X'19]: indistinguishability obfuscation

X [Roberts'21] [Khesin-Lu-Shor'22]: lattices

[Liu-Montgomery-Z'23]: Walkable invariants

[Z'24]: abelian group actions

[Bostanci-Nehoran-Z'24]: non-abelian group actions

PK Quantum Money is Notoriously Difficult!

Only scheme with provable security under assumptions studied by wider crypto community. But use of iO is undesirable

12]: polynomials hiding subspaces re-Perret'14, Christiano-Sattath'16]

[Z'19]: quadratic systems of equations X [Roberts'21]

[Liu-Montgomery-<mark>Z</mark>'23]: Walkable invariants

[Z'19]: indistinguishability obfuscation

[Khesin-Lu-Shor'22]: lattices

X [Liu-Montgomery-Z'23]

Bostanci-Nehoran-Z'24]: non-abelian group actions

Can Evasive Obfuscation Suffice?

Evasive obfuscation = Secure as long as adversary can't find accepting input

Thm [Goyal-Koppula-Waters'17, Wichs-Zirdelis'17]: LWE → obfuscation for certain evasive functions

In classical world, a number of results showing how to base iO applications on milder tools, especially LWE. Often (perhaps implicitly) go through route of obfuscating evasive functions

Can Evasive Obfuscation Suffice?

[Z'19] is almost evasive

(building on [Aaronson-Christiano'12, Ben-David-Sattath'16])

Obfuscate random subspace S, S^{\perp}

On their own, evasive except for un-interesting point at origin

But...

allows adversary to find one input in either S or S^{\perp}

Our Result

Thm [this work]: PK Qua

box based on evasive obfuscation,

Rough dual to [Ananth-Hu-Yuen'23], who prove impossibility when the *verifier* makes classical queries

Very natural restrictions that capture essentially all known applications of obfuscation to quantum protocols

al obfuscation queries cation queries (but possibly ion queries)

Cor [this work] (informal): PK Quantum Money cannot be black-box based on one-way functions, supposing the mint only makes classical queries to the OWF and the verifier is "natural"

Step 1: Oracles for evasive obfuscation

maps circuits Ensures obfuscation is totally broken if any accepting input is known

$$E(O(C), x) = \begin{cases} \widecheck{C} & \text{if } C(x) = 1\\ \bot & \text{if } C(x) = 0 \end{cases}$$

Ignore computation, only count queries

Lem [this work] (informal): Any reasonable notion of evasive obfuscation is captured by this oracle

Observation: If adversary can compute all C_i , scheme broken

The attack idea:

Assume for now a single C_i

Case 1: Measuring query gives C_i with non-negl prob.

scheme broken

Case 2: Measuring query gives \perp with overwhelming prob.

lacksquare Can answer E queries for ourselves (just output $oldsymbol{\perp}$)

Oracle useless, so scheme broken

The attack idea (many C_i):

Hope: eventually pick up all C_i or queries useless

Measurement Principle: measuring a quantum state changes it

State Repair Theorem [Chiesa-Ma-Spooner-Z'21]: Under some conditions, can "repair" post-measurement quantum states

Main open question: separate PK quantum money from OWFs without any restrictions

We need classical mint queries for two reasons:

- 1. If learn all queries, can clone money
- 2. Poly-many obfuscated programs \rightarrow poly-many measurement outcomes \rightarrow employ state repair

[Ananth-Hu-Yuen'23] need classical verifier queries so that they can look at the queries without perturbing the state