Tracing Quantum State Distinguishers via Backtracking

Mark Zhandry

NTT Research

Background

Traitor Tracing [Chor-Fiat-Naor-Pinkas'94]

Traitor Tracing [Chor-Fiat-Naor-Pinkas'94]

Traitor Tracing [Chor-Fiat-Naor-Pinkas'94]

$$\mathcal{D}=\{D_q\}_{q\in[0,N]}=$$
 Family of ciphertext distributions $D_N=$ Distribution of honest ciphertexts $p_q=$ Success probability on D_q

$$\mathcal{D}=\{D_q\}_{q\in[0,N]}=$$
 Family of ciphertext distributions $D_N=$ Distribution of honest ciphertexts $p_q=$ Success probability on D_q

Guarantees:

- $p_N \gg 0$ by assumption that decoder works
- $p_0 \approx 0$
- $p_0 pprox 0$ $p_q pprox p_r$ if all users in [r+1,q] honest

Enforced cryptographically

$$\mathcal{D}=\{D_q\}_{q\in[0,N]}=$$
 Family of ciphertext distributions $D_N=$ Distribution of honest ciphertexts $p_q=$ Success probability on D_q

Guarantees:

- $p_N \gg 0$ by assumption that decoder works
- $p_0 \approx 0$

• $p_0 \approx 0$ • $p_q \approx p_r$ if all users in [r+1,q] honest \int

Enforced cryptographically

More general structures also used

 $N = \mathsf{poly}: \mathsf{Linear}\,\mathsf{scan}$

 ${\cal N}={\it superpoly}: {\it Variant of binary search}$

[Boyle-Chung-Pass'14, Nishimaki-Wichs-Z'16]

Why super-poly domains?

1) Can embed arbitrary info into key [Nishimaki-Wichs-Z'16]

2) Needed for other tracing structures (e.g. fingerprinting codes)

3) iO ⇒ diO for poly-many differing inputs [Boyle-Chung-Pass'14] (algorithm inspiration for [Nishimaki-Wichs-Z'16])

Quantum Traitor Tracing [Z'20]

Program contains quantum state

Problem: quantum states disturbed by observations

1

 p_q changes during tracing

How [Z'20] Works

$$\mathcal{D}=\{D_q\}_{q\in[0,N]}=$$
 Family of ciphertext distributions $D_N=$ Distribution of honest ciphertexts

How [Z'20] Works

$$\mathcal{D}=\{D_q\}_{q\in[0,N]}=$$
 Family of ciphertext distributions $D_N=$ Distribution of honest ciphertexts $q_0,q_1,q_2,\cdots=$ Tracer query sequence $p_{q_0},p_{q_1},p_{q_2},\cdots=$ Observed success probabilities

How [Z'20] Works

$$\mathcal{D}=\{D_q\}_{q\in[0,N]}=$$
 Family of ciphertext distributions $D_N=$ Distribution of honest ciphertexts $q_0,q_1,q_2,\cdots=$ Tracer query sequence $p_{q_0},p_{q_1},p_{q_2},\cdots=$ Observed success probabilities

Guarantees:

- $p_{q_0}\gg 0$ if $q_0=N$ (no guarantees for p_N after first query)
- $p_0 pprox 0$ always
- $p_{q_i} pprox p_{q_{i-1}}$ if only honest users between q_i, q_{i-1}

Local consistency

[Z'20]:

- Local consistency good enough for linear scan / $N=\mathsf{poly}$
- Fails for binary search / $N={
 m superpoly}$

Always valid outcome with just local consistency:

$$p_{q_0}, p_{q_1}, p_{q_2}, \cdots = 1, 1, 1, 0, 0, 0, \cdots$$
 Only log bits of info

[Z'20]:

- Good enough for linear scan / $N=\mathsf{poly}$
- Fails for binary search / $N={\sf superpoly}$

[Kitagawa-Nishimaki'22]: global consistency, but only when no collusions

This Work

This Work

Guarantees:

- $p_{q_0}\gg 0$ if $q_0=N$
- $p_0 pprox 0$ always
- $p_{q_i} pprox p_{q_{i-1}}$ if only honest users between q_i, q_{i-1}
- $\bullet \boxed{p_{q_i} \approx p_{q_{i-2}} \text{ if } q_i = q_{i-2}}_{\bullet}$

NEW: single-step rewinding

Enforced using quantum state repair [Chiesa-Ma-Spooner-Z'21]

Note: No guarantees for $q_i = q_{i-k}$, $k \ge 3$ Case k = 1 Implied by local consistency

"Hesitant" Algorithms

Idea: always make sure one of last two queries has large \mathcal{p}_{q_i}

 \Rightarrow if ever get small p_{q_i} , immediately backtrack with $q_{i+1}=q_{i-1}$

Otherwise, all future p_{q_i} may be small

must contain malicious user

may contain honest user

may contain honest user

must contain malicious user
may contain honest user

My not find jump in $\left[\frac{N}{2}, \frac{3N}{4}\right]$

Recurse on entire interval to left of query

Thm: Alg finds malicious user in $O(k \log^2 N)$ steps k = upper bound on #(malicious users)

Compare to classical binary search: $O(k \log N)$ [Boyle-Chung-Pass'14, Nishimaki-Wichs-Z'16]

Results

Embedded identity collusion-resistant traitor tracing against quantum decoders

- $iO \Rightarrow optimal params$
- $PKE \Rightarrow |params| = poly(\#(users))$

Results

Embedded identity collusion-resistant traitor tracing against quantum decoders

- iO \Longrightarrow optimal params
- $PKE \Rightarrow |params| = poly(\#(users))$

iO ⇒ diO w/ quantum auxiliary input for poly-many differing inputs

Results

Embedded identity collusion-resistant traitor tracing against quantum decoders

- iO \Longrightarrow optimal params
- PKE \Rightarrow |params| = poly(#(users))

iO ⇒ diO w/ quantum auxiliary input for poly-many differing inputs

PKE \Longrightarrow col-res. TT against quantum decoders, |ctxt| = O(1), |pk| = |sk| = poly(#(users))

 $PKE \Rightarrow bounded collusion TT against quantum decoders, |params| = poly(collusion bound)$

Develop hesitant algorithms for fingerprinting code-based traitor tracing [Chor-Fiat-Naor-Pinkas'94,Boneh-Naor'08,Sirvent'08, Billet-Phan'08]

Thanks!