How to Record Quantum Queries and Applications to Quantum Indifferentiability

Mark Zhandry

Princeton University & NTT Research

Typical ROM Proof: On-the-fly Simulation

Typical ROM Proof: On-the-fly Simulation

Allows us to:

- Know the inputs adversary cares about
- Know the corresponding outputs
- (Adaptively) program the outputs
- Easy analysis of bad events (e.g. collisions) 🗸

Problem with Classical Proofs in QROM

How do we record the **x** values?

Problem with Classical Proofs in QROM

Observer Effect:

Learning anything about quantum system disturbs it

Typical QROM Proof

H fixed once and for all at beginning

Limitations

Allows us to:

- Know the inputs adversary cares about?
- Know the corresponding outputs?
- (Adaptively) program the outputs?
- Easy analysis of bad events (e.g. collisions)?

Limitations

Allows us to:

• Know the inputs adversary cares about? X

• Know the corresponding outputs? X

• (Adaptively) program the outputs?

Easy analysis of bad events (e.g. collisions)? X

Limitations

Good News: Numerous positive results (30+ papers)

Bad News: Still some major holdouts

Indifferentiable domain extension

Fiat-Shamir

Luby-Rackoff

 $\mathsf{ROM} \rightarrow \mathsf{ICM}$

Example: Domain Extension for Random Oracles

Q: Does Merkle-Damgård preserve random oracle-ness?

Example: Domain Extension for Random Oracles

A: Yes(ish) [Coron-Dodis-Malinaud-Puniya'05] How? *Indifferentiability* [Maurer-Renner-Holenstein'04]

Quantum Indifferentiability? Concurrently considered by [Carstens-Ebrahimi-Tabia-Unruh'18]

Quantum Indifferentiability?

This Work: On-the-fly simulation of quantum random oracles (aka Compressed Oracles)

Step 1: Quantum-ify (aka Purify)

Quantum-ifying (aka purifying) random oracle:

Reminiscent of old impossibilities for unconditional quantum protocols [Lo'97,Lo-Chau'97,Mayers'97,Nayak'99]

Step 1: Superposition of Oracles

Step 2: Look at Fourier Domain

Step 2: Look at Fourier Domain

Step 3: Compress

Observation: After **q** queries, $\hat{\mathbf{H}}$ is non-zero on at most **q** points

Step 3: Compress

Initial oracle state: {} Query(x, y, \hat{D}): (1) If $\exists (x,y') \in \hat{D}$: $\hat{D} = \hat{D}+(x,0)$ (2) Replace **(x,y') €D** with (x,y'⊕y) (3) If **(x,0)**∈**D**: remove it

Step 4: Revert back to Primal Domain

Step 4: Revert back to Primal Domain

Points adversary cares about

≈Corresponding outputs

Compressed Oracles

Allows us to:

- Know the inputs adversary cares about?
- Know the corresponding outputs?
- (Adaptively) program the outputs? **X** Fixed by [Don-Fehr-Majenz-Schaffner'19,Liu-Z'19], later this session!
- Easy analysis of bad events (e.g. collisions)? 🗸

So, what happened?

Recall...

Observer Effect:

Learning anything about quantum system disturbs it

Compressed oracles decode such disturbance

Caveats

Outputs in database **#0** in Fourier domain **y** values aren't exactly query outputs

Examining **x**,**y** values perturbs state Still must be careful about how we use them

But, still good enough for many applications...

Applications In This Work

Quantum Indiff. of Merkle-Damgård

Easily re-prove quantum lower bounds: $\Omega(N^{1/2})$ queries needed for Grover search $\Omega(N^{1/3})$ queries needed for collision finding $\Omega(N^{1/(k+1)})$ queries needed for k-SUM

> CCA-security of plain Fujisaki-Okamoto

Further Applications

[Alagic-Majenz-Russell-Song'18]: Quantum-secure signature separation

[Liu-Z'19a]: Tight bounds for multi-collision problem

[Liu-Z'19b]: Fiat-Shamir

([Don-Fehr-Majenz-Schaffner'19]: direct proof)

[Czajkowski-Majenz-Schaffner-Zur'19]: Indifferentiability of Sponge

> [Hosoyamada-Iwata'19]: 4-round Luby-Rackoff

[Chiesa-Manohar-Spooner'19]: zk-SNARKs

> [Bindel-Hamburg-Hülsing-Persichetti'19]: Tighter CCA security proofs

Lessons Learned

Always purify your oracles!