Adaptive Security in SNARGs via iO and Lossy Functions

Brent Waters
NTT Research,
UT Austin

Mark Zhandry
NTT Research

What Are SNARGs?

(Succinct Non-interactive Arguments)

$$\mathcal{X}$$

Succinctness: $|\pi| \ll |x|, |w|$

What Are SNARGs?

(Succinct Non-interactive Arguments)

Selective Soundness for SNARGs

Adaptive Soundness For SNARGs

Theorem [Waters-Wu'24]: There exists an adaptively sound SNARG for NP, assuming all of the following:

- Subexponentially secure Indistinguishability Obfuscation
- Subexponentially secure One-Way Functions (OWF)
- Polynomially secure perfectly re-randomizeable OWFs

Known from discrete logs, factoring, or perfect group actions. **Not** known from LWE

Theorem [THIS WORK]: There exists an adaptively sound SNARG for NP, assuming all of the following:

- Subexponentially secure Indistinguishability Obfuscation
- Subexponentially secure One-Way Functions
- Polynomially secure "Very" Lossy Functions

Theorem [THIS WORK]: LWE → "Very" Lossy Functions

Existing LWE-based lossy functions not very lossy (e.g. [Peikert-Waters'08, Alwen-Krenn-

Pietrzak-Wichs'13, Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19, Hofheinz-Hostáková-Kastner-Klein-Ünal'24]

Subsequent Work

Theorem [Waters-Wu'24b]: There exists an adaptively sound SNARG for NP, assuming all of the following:

- Subexponentially secure Indistinguishability Obfuscation
- Subexponentially secure One-Way Functions (OWF)
- Polynomially secure perfectly re-randomizeable OWFs

On Complexity Leveraging

Assume sub-exponential selective soundness + set security parameter >> |x| \rightarrow even exponentially small success probabilities impossible

Problem: parameters grow with $|x| \rightarrow$ not succinct!

On Complexity Leveraging

Complexity-leveraging is OK for SNARGs, but...

- Any security parameter that appears in π can only absorb losses independent of |x| (though still potentially exponential)
- But can have separate security parameters affecting only the CRS which can absorb losses depending on |x|

Waters-Wu First Step: Many OWF Instances

Waters-Wu First Step: Many OWF Instances

- CRS contains obfuscated programs → large CRS
- Only OWF challenges in π , OWF not used yet \rightarrow small π

"Very" Lossy Functions

Strengthening of [Peikert-Waters'08]

Lossy mode

"Very" Lossy: lossy range size = $2^{\text{poly}(\lambda)}$, independent of domain size

Our Idea: Use Lossiness to Complete Proof

Our Idea: Use Lossiness to Complete Proof

Now guess OWF instance (not statement)

- Reduction loss = #(instances)
- Can set $\lambda_{OWF} = \text{polylog}(\#(\text{instances}))$
 - Succinctness if #(instances) is small exponential, but independent of #(statements)

Follows exactly from "very" lossy

Constructing Lossy Functions from LWE

[Alwen-Krenn-Pietrzak-Wichs'13]

Injective mode: A full rank

Lossy Mode

Problem: Rounding Boundaries

Only true far from rounding boundaries. Near rounding boundaries, output may statistically reveal $\,\mathscr{X}\,$

Still lossy, but not very lossy

Our Solution: Stay Away From Rounding Boundaries

Whp, $\forall x$ there will exist some i Only blow up image size by polynomial factor

for smallest i s.t. $\mathcal{A}_i \cdot x$ is far from rounding boundary

$$\#(\mathrm{images}) \le 2^{\mathsf{poly}(\lambda_{\mathrm{LWE}})}$$

Thanks!