How To Avoid
Obfuscation Using
Withess PRFs

Mark Zhandry — Stanford University

-
What is Obfuscation?

“Scramble” a program:
- Maintain functionality
- Hide internal details

Typical crypto application: hide embedded secrets

- Example: symmetric key to public key encryption
m m

R |

k>Enc| = O | = Enc,

= i)

C C

-
The Field of Obfuscation

- [Hada’00, BGIRSVY’01] Investigation, definitions, impossibilities
- [GK'05, GR’07] Further investigation
- [GGHRSW’13] First candidate obfuscator

- Functional encryption

- [BR'13, BGKPS'13, ...] Additional constructions
- [SW'13, GGHR'13, BZ'13, ABGSZ’13, ...] Uses

- Public key encryption, signatures, deniable encryption, multiparty key
exchange, MPC, ...

- [BCPR'13, BCP'13, KMNPRY’14 ...] Further Investigation

Good news: Obf is solving everyone’s open problems!
Bad news: Obf is far from practical

How Obfuscation (Currently) Works

[GGHRSW'13, BR'13, BGKPS’13, PST'13, AGIS'14]

——

Obfuscating Formulas Obfuscating Circuits
I FHE decrypt + I
; Matrix | FHE Eval*
 Formula mm) Branching | []
’ Proiram 0
Multilinear __ g
Map 5

* verification of

Caveat:

« For some schemes, obfuscating formulas enough

« However, many times requires obfuscating lattice primitives
= still obfuscating large program

-
Outline of Talk

- Motivating example:
Non-interactive multiparty key exchange w/o setup

- Obfuscation-based solution [B7’14]

- New primitive: Witness PRF

- Abstracts features needed from obfuscation

- Construction from multilinear maps
- Comparable efficiency to witness encryption

MULTIPARTY KEY
EXCHANGE

Multiparty (Non Interactive) Key Exchange

w? i Publlc bulletln board
J L

J

KABCD l(ABCD KABCD

e
History

2 parties: Diffie Hellman Protocol [DH’76]
3 parties: Bilinear maps [Joux’2000]

n>3 parties:
Multilinear maps [BS’'03,GGH’13,CLT’13]
Requires trusted setup phase
Obfuscation [BZ’14]
No setup at all

Map-based constructions for n»3

First achieved using multilinear maps [GGH'13,CLT’13]

- These constructions all require trusted setup before
protocol is run

- Trusted authority can also learn group key

params

.

A 2 {/\
(i e)
K hao . _0d \ @

I’
"~

A
C

OBFUSCATION-BASED
SOLUTION

Starting Point

Building blocks:
- One-way function G:S 2> X
- Pseudorandom function (PRF) F

Shared key: F(x;, X,, X3, X,) < how to compute securely?

Introduce Trusted Authority (for now)

k [P(Yy o Yo s i) 4
If G(s) # vy, output L

Otherwise, output F.(y,, .., ¥,)

;

First attempt

Kaseo = Po(X1, Xz X3, Xy

Problems:
- k not guaranteed to be hidden using iO
- Still have trusted authority

Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated
independently of publishing step

k P(Y, i Y S i) 4

If G(s) # y, output L - -
Otherwise, output F.(y,, .., ¥,) O PO

;

Untrusted setup: designate user 1 as “master party”
- generates P, sends with x,

I
Hiding k

Enhance primitives:
- OWF =2 PRG

- PRF = “puncturable PRF” (e.g. [GGM’'84])

.
THM([BZ'14]):
IO + PRG + puncturable PRF = multiparty NIKE

J

Multiparty Key Exchange Without Trusted Setup

WITNESS PRFs

Are we working too hard?

Don’t need full power of obfuscation for key exchange
- Don’t care if computation leaked, except for PRF step

Obfuscation as access control:
- Can only learn output if given token for input

Inpqt Tgken Validation
|

2
k p(Yir ver YnelSs l p { / //
If G(s) # y, output L

Otherwise, output [F.(y,, -, ¥,)

Secret output

-
New Abstraction: Withess PRFs

NP Language L

0" Instance: xEL

< Withess: w

ek

(fk,ek) € Gen(L) Eval(ek,x,w) = F(fk,x)
fk defines a PRF: F(fk,*) if w is witness that xEL
domain = instances

Security: if x¢L, F(fk,x) pseudorandom given ek
« Even if x chosen by adv.
« Even if adv. has F(fk,*) oracle

Similar to smooth projective hash functions (SPHFs)

Relation to Withess Encryption [cgesw13]

(witness key encapsulation)

NP Language L

0" Instance: xEL

< Withess: w

(c,k) € Enc(L,x) Dec(c,w) = k
if wis witness that xEL

Security: if x¢L, K pseudorandom given ¢

Main difference:

« Witness encryption: Alice needs x during setup
« Witness PRF: Alice does not need x

Witness PRFs - Multiparty Key Exchange

KABCD - F(fk,Z) Where zz(xl,X2,X3,X4)

Language L?
* Need all parties to have witness for z (so z€L)
« Eavesdropper can’t compute witness (can’t even tell if z€L)

Witness PRFs - Multiparty Key Exchange

KABCD - F(fk,Z) Where zz(xl,X2,X3,X4)

L = §{ z=(x,,X,,X3,X,) : X; = G(s) for somes,i }
Alice’s witness: (s,;,1), Bob’s witness: (s,,2), ...
Alice’s computation: K,g.p = Eval(ek,z,(s;,1))

Security Proof (2 users)

L ={ (x,.x5) 1 % =
G(s) for some (s,i) }
l S/S\S
2
Gen() ¢1 1
fi I &] 6
v v
Adversary’s goal:

Learn F(fk,(x,, x,))

e
Security Proof

L = { (xpuxp) @ x; =
G(s) for some (s,i) }

| S,
Gen() S iz

§ 6] (6

-
Step 1: Replace x;

Real World Alternate World
L ={ (x.%,) : % = L = { (x.X,) @ %, =
G(s) for some (s,i) } G(s) for some (s,i) }
| S |
Gen() il iz Gen() x
1 [s] [s 1/
v v J &

Security of G = worlds indistinguishable

-
Step 1: Replace x;

Alternate World
Observation:
Since IX| »> |Sl,
w.h.p. no s,i s.t. G(s)=x; L = { (xux,) @ X, =

G(s) for some (s,i) }

!

Gen() X

1P/
v \
X, X,

ek

Step 2: Apply witness PRF
Alternate World
(x,, x,) €L
l L ={ (x,%,): %, =
G(s) for some (s,i) }
F(fk, (x,, x,)) indist.
from random l
l Gen() X
Secure in alternate world l / \
| I\
Secure in real world / ek X4 X2

-
What can WPRFs be used for?

- CCA Secure PKE [iO: SW13]

- (Reusable) witness encryption [iIO: GGHRSW'13]

- (Reusable) secret sharing for monotone NP [WE: KNY’14]

- Multiparty key exchange w/o trusted setup [iO: BZ'14]

- Poly-many hardcore bits for any one-way function [diO: BST 14]*

- Fully distributed broadcast encryption with small parameters™®

e = new in this work * = needs extractability notion

CONSTRUCTING
WITNESS PRFs

.
Starting point: WE for Subset Sum

SubSums(A € Zz")= {Ax: x € {0,1}"}
(i.e. subset-sums of elements of A)

Subset-sum problem: given (A € Z", t€ Z), determine
if t € SubSums(A)

Tool: Multilinear Maps

Groups:
G_ G G, G,
M *)\‘24// prime order: p
ap:
v

G

Multilinearity: e(gla'gzb’m’gnz) = gTab...z

Hopefully hard: anything but group operations, map
- Ex: undo exponentiation (DLOG), CDH, MDDH, etc.

-
WE for Subset Sum

Key observation: ¢ independent of t

Enc (A, t): a €2z, V =g
c = {Vi} K = QTO[Jr

DeC({Vi},W):LefWi=ViiFWi=l, giiFwizo

W1AL+...4WnAn A-w
k - e(Wl' ooy Wn) - gTa - g-l-a

Can prove security” in generic multilinear map model
(i.e. need new assumptions on maps)

*not quite secure: e.g. t = p-1

-
Witness PRF for L = SubSums(A)

Gen (A): a €2z, V,=g"
ek = {V|} fk =

F(a,t) =g

Eval ({V}, w):LetW,=V,ifw =1 g ifw=0
Output: e(Wy, .., W,) = g;@"1M-+¥nfn _ g oW ‘/

Can prove security” in generic multilinear map model
(i.e. need new assumptions on maps)

-
Final Step: Reduce NP to SubSums(A)

Need reduction from any language LENP to SubsetSum
where:

- A only depends language (not instance)
- t depends on language and instance
- Few extra minor requirements (to block trivial attacks)

We give solution:

- n linear in relation size
- Similar to [GOS'06] ZK proofs of knowledge for Circuit SAT

Proving Computation as Subset-Sum

Let C: {0,1}" &> {0,1}™ be a circuit

Goal: derive matrix V and target b such that:

- If C(x)=y, then is possible to compute a proof m€ 40,1}k

where: PR
X

V[T =b
Y

- If C(x)#y, then no such proof exists

Proving Computation as Subset-Sum
Simple case: C(x) = =x
v=(11) b=(1)

(No proof)

X

V-[y]=b S X+y=l & y=ax

Proving Computation as Subset-Sum

Simple case: C(x,,x,) = x; A X,
v=(11 -1 -2) b=(0)
On input x,,X,, prove thaty = x; A X, = X;X,:

IT=X1€BX2=X1-I-X2-2X1X2

- Xl-l-Xz-(XI-I-XZ-ZXIXZ)-ZXIXZ =0

Proving Computation as Subset-Sum

Simple case: C(x,,x,) = x; A X,
v=(11 -1 -2) b=(0)

On input X;,X,, ¥ = =(X; A X,) = 1-x,X,,
prove that y = x; A Xx,?

Xy
V' :2 = XI-I-XZ-IT-Z(I-XIXZ)
Yy - -2+4X1X2+(X1@X2)-ﬂ # O

Proving Computation as Subset-Sum

For general circuits, verify gate-by-gate
- Each gate gets two columns: value and proof
- Each gate gets one row: verification matrix

%

Ex: C(x,,X5,X3) =

Proving Computation as Subset-Sum

11 0-1-20000 0
10000110000 | po
001010-1-200

(\V)

00 ~=0O

.0 000O01O01-1-2)

X, X X3 W 2, z, W3 Z3 W, Z,

Proving Computation as Subset-Sum

1 -1 -2 h 0

X, X m zZ

Proving Computation as Subset-Sum

Zz='lzl

Z z,

Proving Computation as Subset-Sum

Z3=Zl/\X3
Zl=X1/\X2
X3
4)
v:- b:
1 1 -1-2 O
- _/

X3 Z, M3 Z;

Proving Computation as Subset-Sum

Zz='lzl QZ3=ZIAX3

_ 1 1-1-2) [0

Reduction

Given NP relation R:{0,1}" x {0,1}» = {0,1}, construct V,b:

3 s.t. V| _[=b & R(x,w)=1

-3 $ X

Reduction
Write a N
V=| B/ C||D| E
- /

e

w
Al ;|=Bx+Cw+D'm+E = Db

1

Cw+Dm b-E-B-Xx

Reduction

Define

A=/ C| D

\- J

Oninputx,lett =b - E - B*x

t €SubSums(A) < 3Iw s.t. R(x,w)=1

Cw+Dm b-E-B-Xx

*Not quite there: A consists of vectors, but scalars. Multiple ways to fix

-
Witness PRFs vs Obfuscation

Witness PRF steps: Obfuscation steps:
- Build witness PRF for circuit - Step 1: Build obfuscator for
relations directly formulas
. NP reduction to subset-sum - Transform formula into branching
program

- Place subset-sum “in the

exponent” of multilinear map - Put branching program “in the

exponent” of multilinear map

- Step 2: Boost to general circuits

« Efficiency depends on reduction
 Comparable to WE

- Universal circuits + proof of FHE
eval + FHE decryption

- Obfuscate it all

Main inefficiency of withess PRFs: multilinear maps
 Lots of research = likely to improve in near future

Witness PRFs vs Obfuscation

Withess PRF advantages

Obfuscation advantages

 More efficient
« Simpler construction

« Simpler assumptions
on multilinear maps

 More versatile
 Intermediate computations
hidden

 Hide more general secrets

 More applications
« Short signatures
* Functional encryption
* Deniable encryption

Conclusion

For many obfuscation applications, use witness PRFs instead

Open questions:
- From standard assumptions on multilinear maps?
- From LWE?

- Stronger notions with similar efficiency?

Thanks!

