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What is Obfuscation? 
“Scramble” a program: 
• Maintain functionality 
• Hide internal details 

Typical crypto application: hide embedded secrets 
• Example: symmetric key to public key encryption 
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The Field of Obfuscation 
•  [Hada’00, BGIRSVY’01] Investigation, definitions, impossibilities 
•  [GK’05, GR’07] Further investigation 
•  [GGHRSW’13] First candidate obfuscator 

•  Functional encryption 

•  [BR’13, BGKPS’13, …] Additional constructions 
•  [SW’13, GGHR’13, BZ’13, ABGSZ’13, …] Uses 

•  Public key encryption, signatures, deniable encryption, multiparty key 
exchange, MPC, … 

•  [BCPR’13, BCP’13, KMNPRY’14 …] Further Investigation 

Good news: Obf is solving everyone’s open problems! 
Bad news: Obf is far from practical 



How Obfuscation (Currently) Works 
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Program 

Multilinear 
Map 

Obfuscating Formulas Obfuscating Circuits 
FHE decrypt +  

FHE Eval* 
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* verification of 

Caveat: 
•  For some schemes, obfuscating formulas enough 
•  However, many times requires obfuscating lattice primitives 

 ⇒ still obfuscating large program 

[GGHRSW’13, BR’13, BGKPS’13, PST’13, AGIS’14]  



Outline of Talk 
• Motivating example:  
     Non-interactive multiparty key exchange w/o setup 
 
• Obfuscation-based solution [BZ’14] 

• New primitive: Witness PRF 
•  Abstracts features needed from obfuscation 

• Construction from multilinear maps 
•  Comparable efficiency to witness encryption 
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Multiparty (Non-Interactive) Key Exchange 

Public bulletin board 
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History 
 
2 parties: Diffie Hellman Protocol [DH’76] 

 
3 parties: Bilinear maps [Joux’2000] 

 
n>3 parties:  

 Multilinear maps [BS’03,GGH’13,CLT’13] 

  Requires trusted setup phase 
 Obfuscation [BZ’14] 
  No setup at all 



Map-based constructions for n>3

First achieved using multilinear maps [GGH’13,CLT’13] 

• These constructions all require trusted setup before 
protocol is run 

• Trusted authority can also learn group key 

params




OBFUSCATION-BASED 
SOLUTION 



Building blocks: 
•  One-way function G:S à X  
•  Pseudorandom function (PRF) F 

Starting Point 

s1ßS
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Shared key: Fk( x1, x2, x3, x4 ) ← how to compute securely?
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Introduce Trusted Authority (for now) 

k
 P( y1, ..., yn, s, i ) {

     If G(s) ≠ yi, output ⊥

     Otherwise, output Fk(y1, ..., yn )

}


O


PO 



First attempt 

PO 

KABCD = PO(x1, x2, x3, x4, s1, 1)
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Problems: 
•  k not guaranteed to be hidden using iO 
• Still have trusted authority 



Removing Trusted Setup 
As described, our scheme needs trusted setup 
 
Observation: Obfuscated program can be generated 
independently of publishing step 
 
 
 
 
 
Untrusted setup: designate user 1 as “master party” 
•  generates PO, sends with x1


k
 P( y1, ..., yn, s, i ) {

     If G(s) ≠ yi, output ⊥

     Otherwise, output Fk(y1, ..., yn )

}


O
 PO 



Hiding k

Enhance primitives: 
• OWF à PRG 
• PRF à “puncturable PRF” (e.g. [GGM’84]) 
 

THM([BZ’14]): 
 iO + PRG + puncturable PRF = multiparty NIKE 



Multiparty Key Exchange Without Trusted Setup 
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WITNESS PRFs 



Are we working too hard? 
Don’t need full power of obfuscation for key exchange 
• Don’t care if computation leaked, except for PRF step 
 
Obfuscation as access control: 
• Can only learn output if given token for input 

k
 P( y1, ..., yn, s, i ) {

     If G(s) ≠ yi, output ⊥

     Otherwise, output Fk(y1, ..., yn )

}


Input Token Validation 
Secret output 



New Abstraction: Witness PRFs 

Instance: x∈L

Witness: w  

NP Language L


(fk,ek) ß Gen(L)

fk defines a PRF: F(fk,・)

     domain = instances 

ek


Eval(ek,x,w) = F(fk,x) 

if w is witness that x∈L


Security: if x∉L, F(fk,x) pseudorandom given ek 

•  Even if x chosen by adv. 
•  Even if adv. has F(fk,・) oracle


Similar to smooth projective hash functions (SPHFs) 



Relation to Witness Encryption [GGSW’13] 

Instance: x∈L

Witness: w  

NP Language L


(c,k) ß Enc(L,x) 

c


Dec(c,w) = k

if w is witness that x∈L


x


(witness key encapsulation) 

Security: if x∉L, k pseudorandom given c  
Main difference: 
•  Witness encryption: Alice needs x during setup 
•  Witness PRF: Alice does not need x




Witness PRFs à Multiparty Key Exchange 

PO 

KABCD = F(fk,z) where z=(x1,x2,x3,x4)
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Language L? 
•  Need all parties to have witness for z (so z∈L)

•  Eavesdropper can’t compute witness (can’t even tell if z∈L)  

ek




Witness PRFs à Multiparty Key Exchange 

KABCD = F(fk,z) where z=(x1,x2,x3,x4)
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L = { z=(x1,x2,x3,x4) : xi = G(s) for some s,i }

     Alice’s witness: (s1,1), Bob’s witness: (s2,2), … 
     Alice’s computation: KABCD = Eval(ek,z,(s1,1))




Security Proof (2 users)


L = { (x1,x2) : xi =

       G(s) for some (s,i) }
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Adversary’s goal:  
   Learn F(fk,(x1, x2))
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Security Proof


L = { (x1,x2) : xi =
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Step 1: Replace xi

Real World Alternate World 

Security of G ⇒ worlds indistinguishable 

L = { (x1,x2) : xi =

       G(s) for some (s,i) }
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Step 1: Replace xi

Alternate World 

Observation: 
   Since |X| >> |S|, 
   w.h.p. no  s,i  s.t.  G(s)=xi  
 
 
 
 
 
 
 

⇒  (x1, x2) ∉ L


X
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L = { (x1,x2) : xi =

       G(s) for some (s,i) }
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Step 2: Apply witness PRF

Alternate World 




 (x1, x2) ∉ L  





F(fk, (x1, x2)) indist.   
from random 

 
 

Secure in alternate world 
 
 

Secure in real world 
 

✓ 

L = { (x1,x2) : xi =

       G(s) for some (s,i) }
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What can WPRFs be used for? 
• CCA Secure PKE  [iO: SW’13] 

•  (Reusable) witness encryption  [iO: GGHRSW’13] 

•  (Reusable) secret sharing for monotone NP  [WE:  KNY’14] 

• Multiparty key exchange w/o trusted setup  [iO: BZ’14] 

• Poly-many hardcore bits for any one-way function  [diO: BST’14]* 

• Fully distributed broadcast encryption with small parameters* 

● = new in this work * = needs extractability notion 



CONSTRUCTING 
WITNESS PRFs 



Starting point: WE for Subset Sum 
SubSums(A ∈ Zn ) = { A・x : x ∈ {0,1}n }

 (i.e. subset-sums of elements of A) 


Subset-sum problem: given (A ∈ Zn , t∈ Z ), determine 
if t ∈ SubSums(A) 

 



Tool: Multilinear Maps 
Groups:  
 
 
 
Map: 
 
 
 
Multilinearity: 
 
Hopefully hard: anything but group operations, map 
• Ex: undo exponentiation (DLOG), CDH, MDDH, etc. 

G1
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GT
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b,…,gn
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ab…z


prime order: p




WE for Subset Sum 
Use n-linear map 
Write: A = (A1  A2  …  An)



Enc ( A, t ):  α ß Zp,   Vi = gi

αAi 



 
c = {Vi} 
k = gT
αt


 
Dec ( {Vi}, w ) : Let Wi = Vi if wi = 1,    gi if wi = 0


k = e(W1, …, Wn) = gT
αw1A1+…+wnAn = gT

αA・w


*not quite secure: e.g. t = p-1


Can prove security* in generic multilinear map model 
 (i.e. need new assumptions on maps) 

Key observation: c independent of t




Witness PRF for L = SubSums(A)

Gen (A):  α ß Zp,   Vi = gi

αAi 



 
ek = {Vi} 
fk = α

 
F (α, t) = gT

αt 
 
Eval ( {Vi}, w ) : Let Wi = Vi if wi = 1,    gi if wi = 0


   Output: e(W1, …, Wn) = gT
αw1A1+…+wnAn = gT

αA・w

 ✓ 

Can prove security* in generic multilinear map model 
 (i.e. need new assumptions on maps) 



Final Step: Reduce NP to SubSums(A)

Need reduction from any language L∈NP to SubsetSum 
where: 
• A only depends language (not instance) 
•  t depends on language and instance 
• Few extra minor requirements (to block trivial attacks) 

We give solution: 
•  n linear in relation size 
• Similar to [GOS’06] ZK proofs of knowledge for Circuit SAT   



Proving Computation as Subset-Sum 
Let C: {0,1}n à  {0,1}m be a circuit 
 
Goal: derive matrix V and target b such that: 
•  If C(x)=y, then is possible to compute a proof π∈{0,1}k 

where: 

•  If C(x)≠y, then no such proof exists 

x

π

y


V・    = b 




Proving Computation as Subset-Sum 
Simple case: C(x) = ¬x

 

V = (1  1)    b = (1)

 

(No proof) 

x

y
V・    = b  ⟺  x + y = 1  ⟺  y=¬x




Proving Computation as Subset-Sum 
Simple case: C(x1,x2) = x1 ⋀ x2

 

V = (1  1  -1  -2)    b = (0)

 
On input x1,x2, prove that y = x1 ⋀ x2 = x1x2: 
 

π = x1 ⊕ x2 = x1 + x2 – 2x1x2


x1
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π
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V・    = x1+x2–(x1+x2-2x1x2)-2x1x2 = 0   




Proving Computation as Subset-Sum 
Simple case: C(x1,x2) = x1 ⋀ x2

 

V = (1  1  -1  -2)    b = (0)

 
On input x1,x2, y = ¬(x1 ⋀ x2) = 1-x1x2,  

 prove that y = x1 ⋀ x2? 
 

x1

x2

π

y


V・    = x1+x2–π-2(1-x1x2) 



 

 

= -2+4x1x2+(x1⊕x2)-π ≠ 0




Proving Computation as Subset-Sum 
For general circuits, verify gate-by-gate 
• Each gate gets two columns: value and proof 
• Each gate gets one row: verification matrix 

Ex: C(x1,x2,x3) =  
⋀

⋀

⋀

x1 x2 x3 

¬ 



Proving Computation as Subset-Sum 
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Proving Computation as Subset-Sum 
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Proving Computation as Subset-Sum 
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Proving Computation as Subset-Sum 
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Proving Computation as Subset-Sum 
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Reduction 
Given NP relation R:{0,1}n×{0,1}m à {0,1}, construct V,b:  
 
 
 
  
 

x

w

π

1


∃π  s.t.  V・    = b  ⟺  R(x,w)=1




Reduction 
Write 
 
  
 

V=
 B
 C
 D
 E


x

w

π

1


A・    = B・x + C・w + D・π + E  =  b


C・w + D・π  =  b – E – B・x




Define 
 
 
 
On input x, let t = b – E – B・x


Reduction 

A=
 C
 D


t ∈SubSums(A)  ⟺  ∃w  s.t.  R(x,w)=1


C・w + D・π  =  b – E – B・x

*Not quite there: A consists of vectors, but scalars.  Multiple ways to fix




Witness PRFs vs Obfuscation 
Obfuscation steps: 
•  Step 1: Build obfuscator for 

formulas 
•  Transform formula into branching 

program 

•  Put branching program “in the 
exponent” of multilinear map 

 

•  Step 2: Boost to general circuits 
•  Universal circuits + proof of FHE 

eval + FHE decryption 

•  Obfuscate it all 

Witness PRF steps: 

•  Build witness PRF for circuit 
relations directly 
•  NP reduction to subset-sum 

•  Place subset-sum “in the 
exponent” of multilinear map 

 

  

Main inefficiency of witness PRFs: multilinear maps 
•  Lots of research ⇒ likely to improve in near future 

•  Efficiency depends on reduction 
•  Comparable to WE 



Witness PRFs vs Obfuscation 
Witness PRF advantages 
 
•  More efficient 

•  Simpler construction 

•  Simpler assumptions 
on multilinear maps 

Obfuscation advantages 
 
•  More versatile 

•  Intermediate computations 
hidden 

•  Hide more general secrets 

•  More applications 
•  Short signatures 
•  Functional encryption 
•  Deniable encryption 
•  … 



Conclusion 
For many obfuscation applications, use witness PRFs instead 
 
Open questions: 
• From standard assumptions on multilinear maps? 
• From LWE? 
• Stronger notions with similar efficiency? 
 

Thanks! 


