
How To Avoid
Obfuscation Using
Witness PRFs
Mark Zhandry – Stanford University

What is Obfuscation?
“Scramble” a program:
• Maintain functionality
• Hide internal details

Typical crypto application: hide embedded secrets
• Example: symmetric key to public key encryption

 Enc

^

m

k

c

O

 EncO

c

m

The Field of Obfuscation
•  [Hada’00, BGIRSVY’01] Investigation, definitions, impossibilities
•  [GK’05, GR’07] Further investigation
•  [GGHRSW’13] First candidate obfuscator

•  Functional encryption

•  [BR’13, BGKPS’13, …] Additional constructions
•  [SW’13, GGHR’13, BZ’13, ABGSZ’13, …] Uses

•  Public key encryption, signatures, deniable encryption, multiparty key
exchange, MPC, …

•  [BCPR’13, BCP’13, KMNPRY’14 …] Further Investigation

Good news: Obf is solving everyone’s open problems!
Bad news: Obf is far from practical

How Obfuscation (Currently) Works

Formula
Matrix

Branching
Program

Multilinear
Map

Obfuscating Formulas Obfuscating Circuits
FHE decrypt +

FHE Eval*

O

* verification of

Caveat:
•  For some schemes, obfuscating formulas enough
•  However, many times requires obfuscating lattice primitives

 ⇒ still obfuscating large program

[GGHRSW’13, BR’13, BGKPS’13, PST’13, AGIS’14]

Outline of Talk
• Motivating example:
 Non-interactive multiparty key exchange w/o setup

• Obfuscation-based solution [BZ’14]

• New primitive: Witness PRF
•  Abstracts features needed from obfuscation

• Construction from multilinear maps
•  Comparable efficiency to witness encryption

MULTIPARTY KEY
EXCHANGE

Multiparty (Non-Interactive) Key Exchange

Public bulletin board

KABCD

 KABCD

 KABCD

 KABCD

?

sA

xA

sB

 sC

sD

xB

 xC

xD

xA

 xB

 xC

xD

xA

 xB

 xC

xD

xA

 xB

 xC

xD

xA

 xB

 xC

xD

xA

 xB

 xC

xD

History

2 parties: Diffie Hellman Protocol [DH’76]

3 parties: Bilinear maps [Joux’2000]

n>3 parties:

 Multilinear maps [BS’03,GGH’13,CLT’13]

 Requires trusted setup phase
 Obfuscation [BZ’14]
 No setup at all

Map-based constructions for n>3

First achieved using multilinear maps [GGH’13,CLT’13]

• These constructions all require trusted setup before
protocol is run

• Trusted authority can also learn group key

params

OBFUSCATION-BASED
SOLUTION

Building blocks:
•  One-way function G:S à X
•  Pseudorandom function (PRF) F

Starting Point

s1ßS

 s2

 s3

s4

Shared key: Fk(x1, x2, x3, x4) ← how to compute securely?

x1

 x2

x3

 x4

Introduce Trusted Authority (for now)

k

 P(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 Otherwise, output Fk(y1, ..., yn)

}

O

PO

First attempt

PO

KABCD = PO(x1, x2, x3, x4, s1, 1)

s1ßS

 s2

 s3

s4

x1

 x2

x3

 x4

Problems:
•  k not guaranteed to be hidden using iO
• Still have trusted authority

Removing Trusted Setup
As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated
independently of publishing step

Untrusted setup: designate user 1 as “master party”
•  generates PO, sends with x1

k

 P(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 Otherwise, output Fk(y1, ..., yn)

}

O

 PO

Hiding k

Enhance primitives:
• OWF à PRG
• PRF à “puncturable PRF” (e.g. [GGM’84])

THM([BZ’14]):
 iO + PRG + puncturable PRF = multiparty NIKE

Multiparty Key Exchange Without Trusted Setup

sA

 sB

 sC

sD

xA

PO
xB

xC

 xD

WITNESS PRFs

Are we working too hard?
Don’t need full power of obfuscation for key exchange
• Don’t care if computation leaked, except for PRF step

Obfuscation as access control:
• Can only learn output if given token for input

k

 P(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 Otherwise, output Fk(y1, ..., yn)

}

Input Token Validation
Secret output

New Abstraction: Witness PRFs

Instance: x∈L

Witness: w

NP Language L

(fk,ek) ß Gen(L)

fk defines a PRF: F(fk,・)

 domain = instances

ek

Eval(ek,x,w) = F(fk,x)

if w is witness that x∈L

Security: if x∉L, F(fk,x) pseudorandom given ek

•  Even if x chosen by adv.
•  Even if adv. has F(fk,・) oracle

Similar to smooth projective hash functions (SPHFs)

Relation to Witness Encryption [GGSW’13]

Instance: x∈L

Witness: w

NP Language L

(c,k) ß Enc(L,x)

c

Dec(c,w) = k

if w is witness that x∈L

x

(witness key encapsulation)

Security: if x∉L, k pseudorandom given c
Main difference:
•  Witness encryption: Alice needs x during setup
•  Witness PRF: Alice does not need x

Witness PRFs à Multiparty Key Exchange

PO

KABCD = F(fk,z) where z=(x1,x2,x3,x4)

s1ßS

 s2

 s3

s4

x1

 x2

x3

 x4

Language L?
•  Need all parties to have witness for z (so z∈L)

•  Eavesdropper can’t compute witness (can’t even tell if z∈L)

ek

Witness PRFs à Multiparty Key Exchange

KABCD = F(fk,z) where z=(x1,x2,x3,x4)

s1ßS

 s2

 s3

s4

x1

 x2

x3

 x4

ek

L = { z=(x1,x2,x3,x4) : xi = G(s) for some s,i }

 Alice’s witness: (s1,1), Bob’s witness: (s2,2), …
 Alice’s computation: KABCD = Eval(ek,z,(s1,1))

Security Proof (2 users)

L = { (x1,x2) : xi =

 G(s) for some (s,i) }

S

s2

G

x2

s1

G

x1

Adversary’s goal:
 Learn F(fk,(x1, x2))

Gen()

ek

fk

Security Proof

L = { (x1,x2) : xi =

 G(s) for some (s,i) }

S

s2

G

x2

s1

G

x1

Gen()

ek

Step 1: Replace xi

Real World Alternate World

Security of G ⇒ worlds indistinguishable

L = { (x1,x2) : xi =

 G(s) for some (s,i) }

S

s2

G

x2

s1

G

x1

Gen()

ek

L = { (x1,x2) : xi =

 G(s) for some (s,i) }

Gen()

ek

X

x2

x1

Step 1: Replace xi

Alternate World

Observation:
 Since |X| >> |S|,
 w.h.p. no s,i s.t. G(s)=xi

⇒ (x1, x2) ∉ L

X

S

x0

x1

L = { (x1,x2) : xi =

 G(s) for some (s,i) }

Gen()

ek

X

x2

x1

Step 2: Apply witness PRF

Alternate World

 (x1, x2) ∉ L

F(fk, (x1, x2)) indist.
from random

Secure in alternate world

Secure in real world

✓

L = { (x1,x2) : xi =

 G(s) for some (s,i) }

Gen()

ek

X

x2

x1

What can WPRFs be used for?
• CCA Secure PKE [iO: SW’13]

•  (Reusable) witness encryption [iO: GGHRSW’13]

•  (Reusable) secret sharing for monotone NP [WE: KNY’14]

• Multiparty key exchange w/o trusted setup [iO: BZ’14]

• Poly-many hardcore bits for any one-way function [diO: BST’14]*

• Fully distributed broadcast encryption with small parameters*

● = new in this work * = needs extractability notion

CONSTRUCTING
WITNESS PRFs

Starting point: WE for Subset Sum
SubSums(A ∈ Zn) = { A・x : x ∈ {0,1}n }

 (i.e. subset-sums of elements of A)

Subset-sum problem: given (A ∈ Zn , t∈ Z), determine
if t ∈ SubSums(A)

Tool: Multilinear Maps
Groups:

Map:

Multilinearity:

Hopefully hard: anything but group operations, map
• Ex: undo exponentiation (DLOG), CDH, MDDH, etc.

G1

 G2

 Gn

Gn-1

 …

GT

e

e(g1
a,g2

b,…,gn
z) = gT

ab…z

prime order: p

WE for Subset Sum
Use n-linear map
Write: A = (A1 A2 … An)

Enc (A, t): α ß Zp, Vi = gi

αAi

c = {Vi}

k = gT
αt

Dec ({Vi}, w) : Let Wi = Vi if wi = 1, gi if wi = 0

k = e(W1, …, Wn) = gT
αw1A1+…+wnAn = gT

αA・w

*not quite secure: e.g. t = p-1

Can prove security* in generic multilinear map model
 (i.e. need new assumptions on maps)

Key observation: c independent of t

Witness PRF for L = SubSums(A)

Gen (A): α ß Zp, Vi = gi

αAi

ek = {Vi}

fk = α

F (α, t) = gT

αt

Eval ({Vi}, w) : Let Wi = Vi if wi = 1, gi if wi = 0

 Output: e(W1, …, Wn) = gT
αw1A1+…+wnAn = gT

αA・w

 ✓

Can prove security* in generic multilinear map model
 (i.e. need new assumptions on maps)

Final Step: Reduce NP to SubSums(A)

Need reduction from any language L∈NP to SubsetSum
where:
• A only depends language (not instance)
•  t depends on language and instance
• Few extra minor requirements (to block trivial attacks)

We give solution:
•  n linear in relation size
• Similar to [GOS’06] ZK proofs of knowledge for Circuit SAT

Proving Computation as Subset-Sum
Let C: {0,1}n à {0,1}m be a circuit

Goal: derive matrix V and target b such that:
•  If C(x)=y, then is possible to compute a proof π∈{0,1}k

where:

•  If C(x)≠y, then no such proof exists

x

π

y

V・ = b

Proving Computation as Subset-Sum
Simple case: C(x) = ¬x

V = (1 1) b = (1)

(No proof)

x

y

V・ = b ⟺ x + y = 1 ⟺ y=¬x

Proving Computation as Subset-Sum
Simple case: C(x1,x2) = x1 ⋀ x2

V = (1 1 -1 -2) b = (0)

On input x1,x2, prove that y = x1 ⋀ x2 = x1x2:

π = x1 ⊕ x2 = x1 + x2 – 2x1x2

x1

x2

π

y

V・ = x1+x2–(x1+x2-2x1x2)-2x1x2 = 0

Proving Computation as Subset-Sum
Simple case: C(x1,x2) = x1 ⋀ x2

V = (1 1 -1 -2) b = (0)

On input x1,x2, y = ¬(x1 ⋀ x2) = 1-x1x2,

 prove that y = x1 ⋀ x2?

x1

x2

π

y

V・ = x1+x2–π-2(1-x1x2)

= -2+4x1x2+(x1⊕x2)-π ≠ 0

Proving Computation as Subset-Sum
For general circuits, verify gate-by-gate
• Each gate gets two columns: value and proof
• Each gate gets one row: verification matrix

Ex: C(x1,x2,x3) =
⋀

⋀

⋀

x1 x2 x3

¬

Proving Computation as Subset-Sum

⋀

⋀

⋀

x1 x2 x3

¬

z1=x1⋀x2

Z2=¬z1

 Z3=z1⋀x3

Z4=z2⋀z3

1 1 0 -1 -2 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 1 0 1 0 -1 -2 0 0

0 0 0 0 0 1 0 1 -1 -2

V=

 b=

0

1

0

0

x1

 x2

 x3

 π1 z1

 z2

 π3 z3

 π4 z4

Proving Computation as Subset-Sum

⋀

⋀

⋀

x1 x2 x3

¬

z1=x1⋀x2

Z2=¬z1

 Z3=z1⋀x3

Z4=z2⋀z3

1 1 0 -1 -2 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 1 0 1 0 -1 -2 0 0

0 0 0 0 0 1 0 1 -1 -2

V=

 b=

0

1

0

0

x1

 x2

 x3

 π1 z1

 z2

 π3 z3

 π4 z4

Proving Computation as Subset-Sum

⋀

⋀

⋀

x1 x2 x3

¬

z1=x1⋀x2

Z2=¬z1

 Z3=z1⋀x3

Z4=z2⋀z3

1 1 0 -1 -2 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 1 0 1 0 -1 -2 0 0

0 0 0 0 0 1 0 1 -1 -2

V=

 b=

0

1

0

0

x1

 x2

 x3

 π1 z1

 z2

 π3 z3

 π4 z4

Proving Computation as Subset-Sum

⋀

⋀

⋀

x1 x2 x3

¬

z1=x1⋀x2

Z2=¬z1

 Z3=z1⋀x3

Z4=z2⋀z3

1 1 0 -1 -2 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 1 0 1 0 -1 -2 0 0

0 0 0 0 0 1 0 1 -1 -2

V=

 b=

0

1

0

0

x1

 x2

 x3

 π1 z1

 z2

 π3 z3

 π4 z4

Proving Computation as Subset-Sum

⋀

⋀

⋀

x1 x2 x3

¬

z1=x1⋀x2

Z2=¬z1

 Z3=z1⋀x3

Z4=z2⋀z3

1 1 0 -1 -2 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 1 0 1 0 -1 -2 0 0

0 0 0 0 0 1 0 1 -1 -2

V=

 b=

0

1

0

0

x1

 x2

 x3

 π1 z1

 z2

 π3 z3

 π4 z4

Reduction
Given NP relation R:{0,1}n×{0,1}m à {0,1}, construct V,b:

x

w

π

1

∃π s.t. V・ = b ⟺ R(x,w)=1

Reduction
Write

V=

 B

 C

 D

 E

x

w

π

1

A・ = B・x + C・w + D・π + E = b

C・w + D・π = b – E – B・x

Define

On input x, let t = b – E – B・x

Reduction

A=

 C

 D

t ∈SubSums(A) ⟺ ∃w s.t. R(x,w)=1

C・w + D・π = b – E – B・x

*Not quite there: A consists of vectors, but scalars. Multiple ways to fix

Witness PRFs vs Obfuscation
Obfuscation steps:
•  Step 1: Build obfuscator for

formulas
•  Transform formula into branching

program

•  Put branching program “in the
exponent” of multilinear map

•  Step 2: Boost to general circuits
•  Universal circuits + proof of FHE

eval + FHE decryption

•  Obfuscate it all

Witness PRF steps:

•  Build witness PRF for circuit
relations directly
•  NP reduction to subset-sum

•  Place subset-sum “in the
exponent” of multilinear map

Main inefficiency of witness PRFs: multilinear maps
•  Lots of research ⇒ likely to improve in near future

•  Efficiency depends on reduction
•  Comparable to WE

Witness PRFs vs Obfuscation
Witness PRF advantages

•  More efficient

•  Simpler construction

•  Simpler assumptions
on multilinear maps

Obfuscation advantages

•  More versatile

•  Intermediate computations
hidden

•  Hide more general secrets

•  More applications
•  Short signatures
•  Functional encryption
•  Deniable encryption
•  …

Conclusion
For many obfuscation applications, use witness PRFs instead

Open questions:
• From standard assumptions on multilinear maps?
• From LWE?
• Stronger notions with similar efficiency?

Thanks!

