How To Avoid Obfuscation Using Witness PRFs

Mark Zhandry – Stanford University

What is Obfuscation?

- "Scramble" a program:
- Maintain functionality
- Hide internal details

Typical crypto application: hide embedded secrets

Example: symmetric key to public key encryption

The Field of Obfuscation

- [Hada'00, BGIRSVY'01] Investigation, definitions, impossibilities
- [GK'05, GR'07] Further investigation
- [GGHRSW'13] First candidate obfuscator
 - Functional encryption
- [BR'13, BGKPS'13, ...] Additional constructions
- [SW'13, GGHR'13, BZ'13, ABGSZ'13, ...] Uses
 - Public key encryption, signatures, deniable encryption, multiparty key exchange, MPC, …
- [BCPR'13, BCP'13, KMNPRY'14 ...] Further Investigation

Good news: Obf is solving everyone's open problems! **Bad news:** Obf is far from practical

How Obfuscation (Currently) Works

[GGHRSW'13, BR'13, BGKPS'13, PST'13, ÅGIS'14]

Caveat:

- For some schemes, obfuscating formulas enough
- However, many times requires obfuscating lattice primitives
 ⇒ still obfuscating large program

Outline of Talk

- Motivating example:
 - Non-interactive multiparty key exchange w/o setup
- Obfuscation-based solution [BZ'14]
- New primitive: Witness PRF
 - Abstracts features needed from obfuscation
- Construction from multilinear maps
 - Comparable efficiency to witness encryption

MULTIPARTY KEY EXCHANGE

Multiparty (Non-Interactive) Key Exchange

History

- 2 parties: Diffie Hellman Protocol [DH'76]
- 3 parties: Bilinear maps [Joux'2000]
- n>3 parties: Multilinear maps [BS'03,GGH'13,CLT'13] Requires trusted setup phase Obfuscation [BZ'14] No setup at all

Map-based constructions for n>3

First achieved using multilinear maps [GGH'13,CLT'13]

- These constructions all require trusted setup before protocol is run
- Trusted authority can also learn group key

OBFUSCATION-BASED SOLUTION

Starting Point

Building blocks:

- One-way function $G:S \rightarrow X$
- Pseudorandom function (PRF) F

Shared key: $F_k(x_1, x_2, x_3, x_4) \leftarrow$ how to compute securely?

Introduce Trusted Authority (for now)

First attempt

Problems:

- k not guaranteed to be hidden using iO
- Still have trusted authority

Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated independently of publishing step

k
$$P(y_1, ..., y_n, s, i)$$

If $G(s) \neq y_i$, output \bot
Otherwise, output $F_k(y_1, ..., y_n)$
}

Untrusted setup: designate user 1 as "master party"

• generates \mathbf{P}_0 , sends with \mathbf{x}_1

Hiding k

Enhance primitives:

- OWF \rightarrow PRG
- PRF \rightarrow "puncturable PRF" (e.g. [GGM'84])

THM([BZ'14]): iO + PRG + puncturable PRF = multiparty NIKE

Multiparty Key Exchange Without Trusted Setup

WITNESS PRFs

Are we working too hard?

Don't need full power of obfuscation for key exchange

• Don't care if computation leaked, *except* for PRF step

Obfuscation as access control:

Can only learn output if given token for input

New Abstraction: Witness PRFs

NP Language L

- Even if **x** chosen by adv.
- Even if adv. has F(fk, ·) oracle

Similar to smooth projective hash functions (SPHFs)

Relation to Witness Encryption [GGSW'13]

(witness key encapsulation)

NP Language L

Security: if **x\equiv L**, **k** pseudorandom given **c** Main difference:

- Witness encryption: Alice needs **x** during setup
- Witness PRF: Alice does not need x

Witness PRFs \rightarrow Multiparty Key Exchange

Language L?

- Need all parties to have witness for z (so z∈L)
- Eavesdropper can't compute witness (can't even tell if z∈L)

Witness PRFs \rightarrow Multiparty Key Exchange

Security Proof (2 users)

Security of $\mathbf{G} \Rightarrow$ worlds indistinguishable

Step 1: Replace x_i

Alternate World

Step 2: Apply witness PRF

Alternate World

What can WPRFs be used for?

- CCA Secure PKE [iO: SW'13]
- (Reusable) witness encryption [iO: GGHRSW'13]
- (Reusable) secret sharing for monotone NP [WE: KNY'14]
- Multiparty key exchange w/o trusted setup [iO: BZ'14]
- Poly-many hardcore bits for any one-way function [diO: BST'14]*
- Fully distributed broadcast encryption with small parameters*

CONSTRUCTING WITNESS PRFs

Starting point: WE for Subset Sum

SubSums($A \in Z^n$) = { $A \cdot x : x \in \{0,1\}^n$ } (i.e. subset-sums of elements of A)

Subset-sum problem: given ($A \in Z^n$, $t \in Z$), determine if $t \in SubSums(A)$

Tool: Multilinear Maps

Groups:

Multilinearity:
$$e(g_1^a, g_2^b, \dots, g_n^z) = g_T^{ab\dots z}$$

Hopefully hard: anything but group operations, mapEx: undo exponentiation (DLOG), CDH, MDDH, etc.

WE for Subset Sum

Key observation: c independent of t

Enc (A, t):
$$\alpha \leftarrow Z_p$$
, $V_i = g_i^{\alpha A_i}$
 $c = \{V_i\}$ $k = g_T^{\alpha^{\dagger}}$

Dec ({V_i}, w) : Let W_i = V_i if w_i = 1, g_i if w_i = 0
k = e(W₁, ..., W_n) = g_T<sup>$$\alpha$$
 w₁A_{1+...+w_nA_n}</sup> = g_T ^{α A·w}

Can prove security* in generic multilinear map model (i.e. need new assumptions on maps)

*not quite secure: e.g. **† = p-1**

Gen (A):
$$\alpha \leftarrow Z_p$$
, $V_i = g_i^{\alpha A_i}$
ek = { V_i } fk = α

$$F(\alpha, t) = g_{T}^{\alpha^{t}}$$

Eval ({V_i}, w) : Let
$$W_i = V_i$$
 if $w_i = 1$, g_i if $w_i = 0$
Output: $e(W_1, ..., W_n) = g_T^{\alpha^{w_1A_1+...+w_nA_n}} = g_T^{\alpha^{A\cdot w}}$

Can prove security* in generic multilinear map model (i.e. need new assumptions on maps)

Final Step: Reduce NP to SubSums(A)

Need reduction from any language L∈NP to SubsetSum where:

- A only depends language (not instance)
- t depends on language and instance
- Few extra minor requirements (to block trivial attacks)

We give solution:

- **n** linear in relation size
- Similar to [GOS'06] ZK proofs of knowledge for Circuit SAT

Let C: $\{0,1\}^n \rightarrow \{0,1\}^m$ be a circuit

Goal: derive matrix **V** and target **b** such that:

• If C(x)=y, then is possible to compute a proof $\pi \in \{0,1\}^k$ where:

$$\mathbf{V} \cdot \begin{bmatrix} \mathbf{x} \\ \mathbf{\pi} \\ \mathbf{y} \end{bmatrix} = \mathbf{b}$$

If C(x)≠y, then no such proof exists

Proving Computation as Subset-Sum Simple case: C(x) = ¬x

$$V = (1 \ 1) \quad b = (1)$$

(No proof)

$$V \cdot \begin{bmatrix} x \\ y \end{bmatrix} = b \iff x + y = 1 \iff y = -x$$

Proving Computation as Subset-Sum Simple case: $C(x_1, x_2) = x_1 \land x_2$

$$V = (1 \ 1 \ -1 \ -2) \quad b = (0)$$

On input x_1, x_2 , prove that $y = x_1 \land x_2 = x_1x_2$:

$$\pi = x_1 \oplus x_2 = x_1 + x_2 - 2x_1x_2$$

$$V \cdot \begin{bmatrix} x_1 \\ x_2 \\ \pi \\ y \end{bmatrix} = x_1 + x_2 - (x_1 + x_2 - 2x_1x_2) - 2x_1x_2 = 0$$

Proving Computation as Subset-Sum Simple case: $C(x_1, x_2) = x_1 \land x_2$

$$V = (1 \ 1 \ -1 \ -2) \quad b = (0)$$

On input $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y} = \neg(\mathbf{x}_1 \land \mathbf{x}_2) = 1 - \mathbf{x}_1 \mathbf{x}_2$, prove that $\mathbf{y} = \mathbf{x}_1 \land \mathbf{x}_2$?

$$V \cdot \begin{bmatrix} x_1 \\ x_2 \\ \pi \\ y \end{bmatrix} = x_1 + x_2 - \pi - 2(1 - x_1 x_2) \\ = -2 + 4x_1 x_2 + (x_1 \oplus x_2) - \pi \neq 0$$

For general circuits, verify gate-by-gate

- Each gate gets two columns: value and proof
- Each gate gets one row: verification matrix

Reduction

Given NP relation $R:\{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}$, construct V,b:

$$\exists \pi \text{ s.t. } V \cdot \begin{bmatrix} x \\ w \\ \pi \\ 1 \end{bmatrix} = b \iff R(x,w)=1$$

Reduction

$$C \cdot w + D \cdot \pi = b - E - B \cdot x$$

Reduction

Define

$$\mathsf{A}=\left(\begin{array}{c}\mathsf{C}\\\mathsf{D}\end{array}\right)$$

On input **x**, let **t** = **b** - **E** - **B** · **x**

 $t \in SubSums(A) \iff \exists w s.t. R(x,w)=1$

$$C \cdot w + D \cdot \pi = b - E - B \cdot x$$

*Not quite there: A consists of vectors, but scalars. Multiple ways to fix

Witness PRFs vs Obfuscation

Witness PRF steps:

- Build witness PRF for circuit relations directly
 - NP reduction to subset-sum
 - Place subset-sum "in the exponent" of multilinear map
- Efficiency depends on reduction
- Comparable to WE

Obfuscation steps:

- Step 1: Build obfuscator for formulas
 - Transform formula into branching program
 - Put branching program "in the exponent" of multilinear map
- Step 2: Boost to general circuits
 - Universal circuits + proof of FHE eval + FHE decryption
 - Obfuscate it all

Main inefficiency of witness PRFs: multilinear maps
Lots of research ⇒ likely to improve in near future

Witness PRFs vs Obfuscation

Witness PRF advantages

- More efficient
- Simpler construction
- Simpler assumptions on multilinear maps

Obfuscation advantages

- More versatile
 - Intermediate computations
 hidden
 - Hide more general secrets
- More applications
 - Short signatures
 - Functional encryption
 - Deniable encryption

•••

Conclusion

For many obfuscation applications, use witness PRFs instead

Open questions:

- From standard assumptions on multilinear maps?
- From LWE?
- Stronger notions with similar efficiency?

Thanks!