
How to Model Unitary Oracles
Mark Zhandry (NTT Research & Stanford University)

Q: What does it mean to “efficiently implement” a unitary?
Only recently first pass at formalization by [Bostanci-Efron-Metger-Poremba-Qian-Yuen’23]

Q: How should we model query access to efficient unitaries?
|Ψ⟩ à U |Ψ⟩ What about inverse, controlling, anything else?

Q: What does a black box unitary (e.g. for separations) look like?

Primitive P Primitive Q
P

Adversary A for Q Adversary B for P
A

Our thesis (subject to further scrutiny):

• Efficient implementation = small circuit that
implements U including global phase, ideally to within
exponentially-small error

• Oracles capturing efficient computation should allow
controlling CU, (controlled) inverses CU†, as well as
conjugates CU* and transposes CUT,

• Black box separations should likewise allow queries to
CU, CU†, CU*, CUT

CU, CU†

CU, CU† comes up frequently when using quantum sub-routines

• Gentle Measurements [Winter’99, Aaronson’04]

• Hadamard Test [Aharonov-Jones-Landau’09]

• Phase estimation [Kitaev’95]

• Amplitude amplification where angle unknown [Brassard-Høyer’97,
Grover’98]

• Quantum state repair [Chiesa-Ma-Spooner-Z’21]

• …

How to implement U†?

A
B

C

E

D

One of the basic rules of linear algebra

A†

B†

C†

E†

D†

How to implement CU?

Since each gate is finite-sized, can implement
controlled versions via brute-force

Folklore, but also formalized in [Kim-Tang-Preskill’20]

Caveat: Global Phase

If Q is a quantum circuit, the unitary implemented
by controlling each gate is indeed CQ

BUT

We usually ignore overall phase when
implementing unitaries

Q = eiθ U à CQ=C(eiθ U) ≠ CU

Inherent with existing notion of universality (defined ignoring global phase)

Example: Controlled QFT with Clifford+T Circuits

Fact: Clifford+T circuits on n≥3 qubits have determinant 1

Fact: Det(QFTq)=1 iff q = 1 mod 8 or q = 6 mod 8

Corollary: Clifford+T circuits cannot implement QFTq including global
phase, unless q = 1 mod 8 or q = 6 mod 8.

In particular, cannot implement Shor’s algorithm with global phase

Caveat: Global Phase

Thm: There exist families of unitaries that can be computed efficiently when ignoring
global phase, but cannot be computed at all when paying attention to global phase, and
also cannot be controlled
Proof: Ux = ei f(x) I, where x encodes instances of the Halting problem

Because of this, we posit that “efficient implementation” should include global phase

(Q, θ) implements U means U = eiθ Q

Fortunately, we generally know the phase θ

How to actually implement CU

θ

P(θ)

θ’
(comes from implementing P(θ))

Another Example: Estimating the Jones Polynomial
[Aharonov-Jones-Landau’05]

Blueprint:

• Knot à circuit Q made of unitaries Ui of polynomial dimension

• Brute-force construct each Ui à circuit for Q over universal gate set
• Hadamard test à estimate Re[⟨Ψ|Q|Ψ⟩] for some state |Ψ⟩

• Estimate gives approximation of Jones polynomial

“Problem”: Hadamard test requires controlled operation. If implementing Ui
introduces global phase, will result in incorrect output

Easy Solution: Directly brute-force CUi

What about U*, UT?

How to implement U*, UT?

A
B

C

E

D

A*

B*

C*

E*

D*

AT

BT

CT

ET

DT

U =

U* =

UT =

Black-box separations

Often, cannot prove something is hard, but want to
nevertheless justify why it’s hard

Typical solution: oracle (black-box) separations
E.g. ∃U s.t. QMAU ≠ QCMAU [Aaronson-Kuperberg’07]

Justification: often, the best we can do with a (quantum) circuit
is just evaluate it on certain inputs (i.e. treat it as a black box)

How reasonable are black-box separations?

In general, known to fail sometimes (e.g. Chang-Chor-Goldreich-
Hartmanis-Håstad-Ranjan-Rohatgi’94)

Nevertheless, seems to be a reasonable heuristic and is widely used
throughout classical and quantum complexity theory/cryptography

However, in order for a black-box separation to be most convincing, the
oracle should be modeled in a way that best reflects the “real world”

Our thesis: In real world, can implement U*, UT,
so ideally should include these in oracle model

Unitary vs “Standard” Oracle Separations

Unitary Oracle Separations

Thm [Aaronson-Kuperberg’07]: There is a unitary U s.t. QMAU ≠ QCMAU

+ a number of follow-up unitary separations in both complexity theory and cryptography

However, unitary oracle separations are considered “non-standard”, or at least
less desirable that separations relative to classical oracles

Notable research goal: translating unitary separations to classical separations

Question: Can you implement the AK07 oracle using a classical oracle?
Version of this question appeared in AK07 as the “unitary synthesis problem”

UQO ≈
(query bounded)

Attempt 1: Indistinguishability

Problem: adversary can also query O directly à may reveal more
information about U not revealed by queries

Question: Can you implement the AK07 oracle using a classical oracle?
Version of this question appeared in AK07 as the “unitary synthesis problem”

QO, O U, SimU≈
(query bounded)

Attempt 2: Indifferentiability
[Maurer-Renner-Holenstein’04]

Good enough for most cryptographic separations, possibly for “efficient”
complexity separations (excl. witness classes like QMA)

Question: Can you implement the quantum oracles using a
classical oracle, under indifferentiability?

Thm (informal): No! Unless your quantum oracle allows access to
U†, U*, UT (with caveats; also not lack of controlling)
Proof Idea:

U* ≈ (QSimU)* = (Q*)(SimU)* ≈ (Q*)SimU

By indifferentiability,
conjugating both sides

Each non-oracle
gate conjugated

Since SimU is supposed to
look like a classical function

Application: How (not) to construct
indifferentiable random unitaries

Pseudorandom unitaries from pseudorandom functions

Thm [Ma-Huang’25]:

C P F C’ U≈

C,C’ = random Cliffords
F = ∑x |x⟩⟨x| ei 2 π f(x) / q for random function f
P = ∑x |p(x)⟩⟨x| for random permutation p

(with inverse queries)

Note: PFC construction due to [Metger-Poremba-Sinha-Yuen’24]

Natural question: can we build indifferentiable
random unitaries if F,P replaced with a random

function/permutation?

Necessary-seeming first step: can we build PRUs
from PRFs, such that PRU is secure against queries

to U, U†, U*, UT (*-security?)

*-attack on CPFC’ when q=2

U* = (C P F C’)*
= C* P F (C’)*
= (XθZφ) C P F C’ (Xθ’Zφ’)
= (XθZφ) U (Xθ’Zφ’)

*-attack on CPFC’ when q=2

U* = Xθ U Xθ’ Suppose for the moment that

Essentially instance of Simon’s oracle

Can find θ,θ’ in poly-many queries

Can distinguish, since clearly such shifts
should not hold for Haar random U

*-attack on CPFC’ when q=2

Combining X’s and Z’s: X and Z don’t commute, but X⊗X and Z⊗Z do

U* = Zφ U Zφ’ Can likewise break if

Technically, need controlled oracle to implement Simon’s
algorithm. Can remove by querying U⊗U* vs U*⊗U

Two queries give Simon’s oracle with shift (θ, θ’, φ, φ’)

Is there anything beyond CU, U†, U*, UT?

(Anti-) Homomorphisms on Unitaries

CU, U* are homomorphisms on unitaries

C(UV) = (CU)(CV) (UV)* = (U*)(V*)

UT, U† are anti-homomorphisms
(UV)T = (VT)(UT) (UV)† = (V†)(U†)

All anti-homomorphisms are the inverse of some homomorphism

Can efficiently compute (anti-)homomorphisms by applying them gate-by-gate

Concrete question: what homomorphisms can be
efficiently computed? Is there anything except CU, U* ?

The determinant as a homomorphism

Given unitary circuit Q, can compute det(Q) by
taking the determinant of each gate and multiplying

However, this ignores the role ancillas!

Ancillas

In general, when computing a unitary U using a circuit Q, Q may involve ancillas

Typically, ancillas are initialized to |0⟩ and returned to |0⟩ at the end

Q (|Ψ⟩|0⟩) = (U|Ψ⟩) |0⟩

Q =
U

V
V may be arbitrarily related to U

Det(Q) = Det(U)Det(V)

Det(Q) and Det(U)
arbitrarily related

Ancilla-Respecting Homomorphisms

U
V

H’

H’ is an ancilla-respecting implementation of a homomorphism H if:

=
H(U)

J(U,V)

CU, U* are both implementations of themselves

No efficient ancilla-respecting homomorphisms beyond CU, U*

Thm (this work): Let H be some continuous homomorphism. Then either:
• H(U) can be implemented by polynomially-many queries to CU or CU*, or
• H has no efficient ancilla-respecting implementation

Proof for determinant: Suppose det had implementation det’

Let W be diagonal matrix with entries di, ∏ be some permutation matrix

∏W∏† is diagonal, so can write

∏W∏† =
W∏

V∏

No efficient ancilla-respecting homomorphisms beyond CU, U*

Thm (this work): Let H be some continuous homomorphism. Then either:
• H(U) can be implemented by polynomially-many queries to CU or CU*, or
• H has no efficient ancilla-respecting implementation

Proof for determinant:

∏W∏† =
W∏

V∏

det’(∏W∏†) =
Det(W∏)

J(∏,W)

Ancilla-respecting:

No efficient ancilla-respecting homomorphisms beyond CU, U*

Thm (this work): Let H be some continuous homomorphism. Then either:
• H(U) can be implemented by polynomially-many queries to CU or CU*, or
• H has no efficient ancilla-respecting implementation

Proof for determinant:

det’(∏W∏†) =
det(W∏)

J(∏,W)

But also det’(∏W∏†) = det’(∏) det’(W) det’(∏)†

For any fixed ∏, det(W∏) is linear combination of entries of det’(W)

No efficient ancilla-respecting homomorphisms beyond CU, U*

Thm (this work): Let H be some continuous homomorphism. Then either:
• H(U) can be implemented by polynomially-many queries to CU or CU*, or
• H has no efficient ancilla-respecting implementation

Proof for determinant:
For any fixed ∏, det(W∏) is linear combination of entries of det’(W)

det(W∏) = di1 di2 … for arbitrary subsets {i1, i2,… }

dim({ det(W∏) } ∏) = (dim(Q) choose dim(U)) ≈ 22n

For even 1-qubit ancilla, can take to be 2×2n 2n for n-qubit unitary

No efficient ancilla-respecting homomorphisms beyond CU, U*

Thm (this work): Let H be some continuous homomorphism. Then either:
• H(U) can be implemented by polynomially-many queries to CU or CU*, or
• H has no efficient ancilla-respecting implementation

Proof for determinant:
For any fixed ∏, det(W∏) is linear combination of entries of det’(W)

dim({ det(W∏) } ∏) ≈ 22n det’(W) needs at least ≈ 22n entries

det’(W) is at least 22n/2 × 22n/2

det’(W) is a unitary on at least 2n-1 qubits Inefficient!!!

Ancilla complexity

Thm (this work): Suppose PH ⊆ ̸BPP. Then there is a family of quantum
circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas

In particular, obtain a quantum complexity
separation from a purely classical separation

Thm (this work): Suppose PH ⊆ ̸BPP. Then there is a family of quantum
circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas

Proof idea: Let C be a classical log-depth circuit

[Cleve’91]: UC|x,b⟩ = |x,b⊕C(x)⟩
implemented efficiently using 2 ancillas

Now suppose UC can be implemented efficiently using 0 ancillas

det(UC) = (-1)parity(C) can be computed efficiently
(classically), just given C

⊕P ⊆ P

Thm (this work): Suppose PH ⊆ ̸BPP. Then there is a family of quantum
circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas

Proof idea:

[Toda’91]: PH ⊆ BPP⊕P

So if ⊕P ⊆ P, then PH ⊆ BPP, a contradiction

Errors

So far, have assumed perfect implementations of unitaries

But in general, may only have approximate
implementaoons. How should the errors be modeled?

Model of [Bostanci-Efron-Metger-Poremba-Qian-Yuen’23]:
for any desired inverse-poly error ε, can construct circuit Q
that is ε-close to U (diamond distance as quantum channel)

Why inverse poly, and not negligible errors or even exponenoal?

Inverse poly good enough for many applications, but often seems
less than what techniques give us and what we may want/need

Consider family of unitaries {Uk}k that is a PRU (e.g. CPFC’)

Suppose we implement Uk using concrete circuit Qk, that has inverse-poly error ε

Qk is actually insecure. Adversary can make
poly(1/ε) queries, overall error will be ≈1

Takeaway: For cryptographic primitives, should really insist on at
least negligible errors, in practice exponentially-small errors

Remark: Even in classical world, sampling tasks (e.g. discrete
Gaussians for lasce crypto) usually expected to have
exponen.ally-small errors

Exponentially-small errors may be a better
modeling choice in many settings

Thm (this work): Suppose PH ⊆ ̸BPP. Then there is a family of quantum
circuits that can be computed efficiently with 2 ancillas, but not 0 ancillas
(in exponen7ally-small error model)

Clarification:

Thanks!

