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Typical Crypto Application 

m




Solution: (Private Key) Encryption 

m = Dec(   , c)
c = Enc(   , m)


c


⇒ m


Major question: How is security defined? 

c
+




Definition 1: 1-time security 

 
 

c0 = Enc(   , m0)


For any m0,m1: 

c1 = Enc(   , m1)
≈


Statistical security: statistical closeness 
•  [Sha’49]: |     | ≥ |m|


Computational security: computational indistinguishability 
•  Restrict adversaries running efficiently 
•  Now possible to have |     | << |m|


Question: what if I encrypt a second message? 



Definition 2: CPA Security 

Indistinguishability under chosen plaintext attack 
 

 
Challenger Adversary 

Def: CPA-Security  ⇒ ∀ efficient        , | Pr[b’=b] – ½ |  < negl


Random bit b,  Random key 

m0, m1

c = Enc(   , mb)
 c


b’




Definition 3: CCA Security 

Indistinguishability under chosen ciphertext attack 
 

 
Challenger Adversary 

Random bit b,  Random key 

Empty table T

m0, m1
c = Enc(   , mb)
 c


b’


Add c to T

c


m = Dec(   , c)
 m if c∉T


Def: CCA-Security  ⇒ ∀ efficient        , | Pr[b’=b] – ½ |  < negl




Other Scenarios 

Circular security: 
 

 
 

 

Side-channel attacks:  

Enc(   ,    )


f(    )


Takeaway:  
Models should give adversary as much power as possible




Quantum Computers 

So far, assumed adversary obeys classical physics 
 

What about quantum physics? 
 

Quantum computing = using quantum physics to perform 
certain computations 

• Active research area 

•  [Sho’94]: quantum computers can break lots of crypto 



Post-Quantum CCA Security 

Challenger Adversary 
Random bit b,  Random key 

Empty table T

m0, m1
c = Enc(   , mb)
 c


b’


Add c to T

c


m = Dec(   , c)
 m if c∉T


Def: CCA-Security  ⇒ ∀ efficient        , | Pr[b’=b] – ½ |  < negl


Interaction still classical 



Post-Quantum Security 

All interaction is classical 

Post-quantum = end-users are classical 



Full Quantum Security 

Full quantum = end-users are quantum 

Quantum messages 



Quantum Background 

Quantum states: 
 

 

 

Measurement: 

 
 

 

Simulate classical ops in superposition: 

m =  superposition of all messages 
= Σαm|m⟩    (Σ|αm|2 = 1)


m m with probability |αm|2


m F
 F(m)
 = Σαm|F(m)⟩  



Full Quantum CCA Security? 

Challenger Adversary 
Random bit b,  Random key 

b’


c


Def: CCA-Security  ⇒ ∀ efficient        , | Pr[b’=b] – ½ |  < negl


c = Enc(   , mb )

m0, m1


c


m
m = Dec(   , c )




Are Full Quantum Attacks Plausible? 

Objection: can always “classicalize” by sampling 
 

 
 

 

 
 ⇒ Reduce attack to post-quantum attack! 

 
Reasons to still use full quantum notions: 

• Classicalization is burden on hardware designer 
• What if adversary can bypass? 

• Classicalization amounts to a hardware assumption 

m
m


c




This Work 

[BDFLSZ’11,Zha’12a,Zha’13]: Quantum random oracle model 
 

[Zha’12b]: Pseudorandom functions 
 

[BZ’13a]: Message Authentication Codes 

 
[BZ’13b]: Digital signatures and encryption 

 
 

 
 

Theorem: Full-quantum security > Post-quantum security


Theorem (Informal): Full-quantum security can be obtained 
with “minimal” overhead w.r.t. post-quantum security




Efficient keyed functions that “look like” random functions 
•  Fundamental building block in symmetric crypto 

Example: Pseudorandom Functions 

Func(X,Y)

F


Choose random bit b


[GGM’84] 

PRF


Classical security: 

b=1


x


Def: Security ⇒ ∀ efficient        , | Pr[b’=b] – ½ |  < negl


b’


F(x)




Efficient keyed functions that “look like” random functions 
•  Fundamental building block in symmetric crypto 

Example: Pseudorandom Functions 

Func(X,Y)

F


Choose random bit b


[GGM’84] 

PRF


Post-quantum security: 

b=1


x


Def: PQ-Security ⇒ ∀ efficient        , | Pr[b’=b] – ½ |  < negl


b’


F(x)




Efficient keyed functions that “look like” random functions 
•  Fundamental building block in symmetric crypto 

Example: Pseudorandom Functions 

Func(X,Y)

F


Choose random bit b


[GGM’84] 

PRF


Full-quantum security: 

b=1


Def: FQ-Security ⇒ ∀ efficient        , | Pr[b’=b] – ½ |  < negl


b’


x


F(x)




How to build QPRFs? 

Hope that existing PQ-secure PRFs are FQ secure 

Examples: GGM, NR, BPR 
 

Questions: 

• Do classical security analyses carry over? 

•  If not, what new tools are needed? 

 

 



Pseudorandom Generators 

s


y


G

G0(s)
 G1(s)


S


Y


≈


Indistinguishable by efficient 
 quantum adversaries 



The GGM Construction 

x0  ⟶ 

k


G 

x1  ⟶ 
G G 

x2  ⟶ G G G G 

Fk(000)
 Fk(001)
 Fk(010)
 Fk(011)
 Fk(100)
 Fk(101)
 Fk(110)
 Fk(111)


S




The GGM Construction 
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The GGM Construction 
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The GGM Construction 
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The GGM Construction 

x0  ⟶ 

k


G 

x1  ⟶ 
G G 

x2  ⟶ G G G G 
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Quantum Security Proof? 

Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 

 
Step 1: Hybridize over levels of tree 



Hybridize Over Levels 

Hybrid 0: 

S




Hybridize Over Levels 

Hybrid 1: 
S
 S




Hybridize Over Levels 

Hybrid 2: 
S
 S
 S
 S




Hybridize Over Levels 

Hybrid 3: 

S
 S
 S
 S
 S
 S
 S
 S




Hybridize Over Levels 

Hybrid n: 

S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S




Hybridize Over Levels 

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S


Distinguish PRF from Func(X,Y) with adv. ε 
 

Distinguish two adjacent hybrids with adv. ε/n

n polynomial ⇒ acceptable loss 



Hybridize Over Levels 

S
S
S
S
S
S
S
S

Y
Y
Y
Y
Y
Y
Y
Y


Argument carries over to quantum setting unmodified 

Distinguish PRF from Func(X,Y) with adv. ε 
 

Distinguish two adjacent hybrids with adv. ε/n

n polynomial ⇒ acceptable loss 



Quantum Security Proof? 

Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 

 
Step 1: Hybridize over levels of tree 

 

Step 2: Simulate hybrids using PRG/Random samples 
 

✓ 



Simulating Hybrids 

Y
Y
Y
Y
Y
Y
Y
Y

S
S
S
S
S
S
S
S


S
S
S

Y
Y
Y


Hybrid distinguisher 

Distinguisher for 
several samples 



How It Was Done Classically 

Adversary only queries polynomial number of points 

Only need to fill active nodes  

Active node: value used to answer query 

⇒ need poly-many samples 



Quantum Simulation? 

Adversary can query on all exponentially-many inputs 



Quantum Simulation? 

Adversary can query on all exponentially-many inputs 

Need exponentially many samples to simulate! 

All nodes are active! 



Quantum Security Proof? 

Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 

 
Step 1: Hybridize over levels of tree 

 

Step 2: Simulate hybrids using PRG/Random samples 
 
Step 3: Hybrid over samples  
 

? 

✓ 



Hybrid Over Samples 
S
S
S


Y
Y
Y


Distinguisher for t samples 
with advantage ε 

Distinguisher for 1 sample 
with advantage ε/t


S

Y


Argument carries over to quantum setting unmodified 



Quantum Security Proof? 

Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 

 
Step 1: Hybridize over levels of tree 

 

Step 2: Simulate hybrids using PRG/Random samples 
 
Step 3: Hybrid over samples 
• Exponential samples ⇒ exponential security loss 

• Can only handle poly-many samples 

? 

✓ 

✓ 



Quantum Security Proof? 

Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 

 
Step 1: Hybridize over levels of tree 

 

Step 2: Simulate hybrids using PRG/Random samples 
 
Step 3: Hybrid over samples 
• Exponential samples ⇒ exponential security loss 

• Can only handle poly-many samples 

X 

✓ 

✓ 



A Distribution to Simulate 

Distribution D on Y ⇒ induces distribution on functions 
 

For all x∈X: 

yx ß D


H(x) = yx  

H: 

H ß DX


D D D D D D D D D D D D D D D D 

Goal: simulate using poly-many samples 



Solution: Small-Range Distributions 

D D 

…


D 

y1
y2
 yr


y4
y3
y1
 y3
y2
y4
y4
 y4
y1
y2
y2
 y2
y2
y3
y3
 y2


R ß Funcs(X, [r])

H(x) = yR(x)


H ß SRr
X(D)


H: 



Small-Range Distributions 

Theorem: SRr
X(D) is indistinguishable from DX by any q-

query quantum algorithm, except with advantage O(q3/r)


Notes: 
•  Highly non-trivial 
•  Distinguishing prob not negligible, but good enough 

•  We get to choose r

•  Random function R not efficiently constructible 

Theorem: Can simulate R using k-wise independence 



Quantum GGM Proof 

PRF distinguisher will 
distinguish two adjacent 

hybrids 

S
S
S
S
S
S
S
S

Y
Y
Y
Y
Y
Y
Y
Y


Y
Y
Y
Y

S
S
S
S


≈
 ≈
(SR distributions) (SR distributions) 

Poly-many samples 



Quantum Security Proof 

Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 

 
Step 1: Hybridize over levels of tree 

 

Step 2: Approx. sim. hybrids using poly-many samples 
 
Step 3: Hybrid over samples 
 

 
Result: PRG distinguisher 

Impossible by assumption ⇒ PRF distinguisher impossible 

✓ 

✓ 

✓ 



Quantum Query Results 



Quantum Collision Finding 

Y Y 

…


Y 

y1
y2
 yr


y4
y3
y1
 y3
y2
y4
y4
 y4
y1
y2
y2
 y2
y2
y3
y3
 y2


R ß Funcs(X, [r])

H(x) = yR(x)


H ß SRr
X(Y)


Recall small-range distributions when D is uniform: 



Quantum Collision Finding 

Another view: 
X
 Y


[r]
R
 S


H = S∘R 

Theorem: H is indistinguishable from random by any q-
query quantum algorithm, except with advantage O(q3/r)


Corollary: If |Y|>>|X|2, impossible to find collision in H 
unless q≥Ω(r1/3)




Quantum Collision Finding 

What about truly random functions with |Y| << |X|2 ?  
 
 
 
 
Previous r1/3 lower bounds known for different settings 
• E.g. k-to-1 functions [AS’01] 
• All prior settings required |Range| ≥ |Domain|

• Our works for all domain/range sizes 
 
Bound is tight: [BHT’97] q=O(r1/3)


Corollary: If |Y|>>|X|2, impossible to find collision in H 
unless q≥O(r1/3)


Theorem: q≥Ω(r1/3) quantum queries are required to find 
collisions in a random function R:Xà[r] 



Quantum Oracle Interrogation 

Using q queries, determine function at k>q points 
 

 
 

 

 
 

 
 

Func(X,Y)
F

x


F(x)


( x1, F(x1) ), ( x2, F(x2) ), … (xk, F(xk) )


Important for MAC, signature security 



Quantum Oracle Interrogation 

Classically: hard   Adv = 1/|Y|k-q

•  Large outputs: Adv = negl even for k=q+1

• Small outputs: Adv = negl for k = c q



Quantum: not so fast 

 

 

Also true for small ranges: 

 

 

Question: What about large range sizes? 

 

Theorem [vD’98]: For F:Xà{0,1}, 
q quantum queries  ⇒ k = 1.9q points w.h.p 


Theorem: For F:Xà{0,1}2, 
q quantum queries  ⇒ k = 1.3q points w.h.p 




Quantum Oracle Interrogation 

 
 

 
 

Theorem: For F:Xà{0,1}n, 
q quantum queries  ⇒ Pr[k=q+1 points] ≤ (q+1)/2n


Highly	  non-‐trivial	  

New quantum impossibility tool: The Rank Method 
 
Therefore: 

•  Small range: Pr[q+1 points] large 

•  Large range: Pr[q+1 points] small 



Quantum Polynomial Interpolation 

Using q queries to a polynomial, determine polynomial 

Poly(d)
F

x


F(x)


F

Classical:  q=d+1 à easy   Quantum: q=d/2 à hard [KK’10] 

   q<d+1 à hard 

Theorem: (quantum) q=d à easy


Theorem: (quantum) q=(d+1)/2, “large” d à hard




Conclusion 

Studying full quantum security notions important 
• Quantum computers seem inevitable 

• Unclear what attacks are possible 
• Strive for strongest definitions 

• Bonus: quantum query complexity results 

Future work: more advanced primitives 

•  Identity-based encryption 
•  Functional encryption 

•  Fully homomorphic encryption 
• Other quantum query questions 
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