
Cryptography in the Age
of Quantum Computers
Mark Zhandry – Stanford University

Based on joint works with:
Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner

Typical Crypto Application

m

Solution: (Private Key) Encryption

m = Dec(, c)
c = Enc(, m)

c

⇒ m

Major question: How is security defined?

c
+

Definition 1: 1-time security

c0 = Enc(, m0)

For any m0,m1:

c1 = Enc(, m1)
≈

Statistical security: statistical closeness
•  [Sha’49]: | | ≥ |m|

Computational security: computational indistinguishability
•  Restrict adversaries running efficiently
•  Now possible to have | | << |m|

Question: what if I encrypt a second message?

Definition 2: CPA Security

Indistinguishability under chosen plaintext attack

Challenger Adversary

Def: CPA-Security ⇒ ∀ efficient , | Pr[b’=b] – ½ | < negl

Random bit b, Random key

m0, m1

c = Enc(, mb)
 c

b’

Definition 3: CCA Security

Indistinguishability under chosen ciphertext attack

Challenger Adversary

Random bit b, Random key

Empty table T

m0, m1
c = Enc(, mb)
 c

b’

Add c to T

c

m = Dec(, c)
 m if c∉T

Def: CCA-Security ⇒ ∀ efficient , | Pr[b’=b] – ½ | < negl

Other Scenarios

Circular security:

Side-channel attacks:

Enc(,)

f()

Takeaway:
Models should give adversary as much power as possible

Quantum Computers

So far, assumed adversary obeys classical physics

What about quantum physics?

Quantum computing = using quantum physics to perform
certain computations

• Active research area

•  [Sho’94]: quantum computers can break lots of crypto

Post-Quantum CCA Security

Challenger Adversary
Random bit b, Random key

Empty table T

m0, m1
c = Enc(, mb)
 c

b’

Add c to T

c

m = Dec(, c)
 m if c∉T

Def: CCA-Security ⇒ ∀ efficient , | Pr[b’=b] – ½ | < negl

Interaction still classical

Post-Quantum Security

All interaction is classical

Post-quantum = end-users are classical

Full Quantum Security

Full quantum = end-users are quantum

Quantum messages

Quantum Background

Quantum states:

Measurement:

Simulate classical ops in superposition:

m = superposition of all messages
= Σαm|m⟩ (Σ|αm|2 = 1)

m m with probability |αm|2

m F
 F(m)
 = Σαm|F(m)⟩

Full Quantum CCA Security?

Challenger Adversary
Random bit b, Random key

b’

c

Def: CCA-Security ⇒ ∀ efficient , | Pr[b’=b] – ½ | < negl

c = Enc(, mb)

m0, m1

c

m
m = Dec(, c)

Are Full Quantum Attacks Plausible?

Objection: can always “classicalize” by sampling

 ⇒ Reduce attack to post-quantum attack!

Reasons to still use full quantum notions:

• Classicalization is burden on hardware designer
• What if adversary can bypass?

• Classicalization amounts to a hardware assumption

m
m

c

This Work

[BDFLSZ’11,Zha’12a,Zha’13]: Quantum random oracle model

[Zha’12b]: Pseudorandom functions

[BZ’13a]: Message Authentication Codes

[BZ’13b]: Digital signatures and encryption

Theorem: Full-quantum security > Post-quantum security

Theorem (Informal): Full-quantum security can be obtained
with “minimal” overhead w.r.t. post-quantum security

Efficient keyed functions that “look like” random functions
•  Fundamental building block in symmetric crypto

Example: Pseudorandom Functions

Func(X,Y)

F

Choose random bit b

[GGM’84]

PRF

Classical security:

b=1

x

Def: Security ⇒ ∀ efficient , | Pr[b’=b] – ½ | < negl

b’

F(x)

Efficient keyed functions that “look like” random functions
•  Fundamental building block in symmetric crypto

Example: Pseudorandom Functions

Func(X,Y)

F

Choose random bit b

[GGM’84]

PRF

Post-quantum security:

b=1

x

Def: PQ-Security ⇒ ∀ efficient , | Pr[b’=b] – ½ | < negl

b’

F(x)

Efficient keyed functions that “look like” random functions
•  Fundamental building block in symmetric crypto

Example: Pseudorandom Functions

Func(X,Y)

F

Choose random bit b

[GGM’84]

PRF

Full-quantum security:

b=1

Def: FQ-Security ⇒ ∀ efficient , | Pr[b’=b] – ½ | < negl

b’

x

F(x)

How to build QPRFs?

Hope that existing PQ-secure PRFs are FQ secure

Examples: GGM, NR, BPR

Questions:

• Do classical security analyses carry over?

•  If not, what new tools are needed?

Pseudorandom Generators

s

y

G

G0(s)
 G1(s)

S

Y

≈

Indistinguishable by efficient
 quantum adversaries

The GGM Construction

x0 ⟶

k

G

x1 ⟶
G G

x2 ⟶ G G G G

Fk(000)
 Fk(001)
 Fk(010)
 Fk(011)
 Fk(100)
 Fk(101)
 Fk(110)
 Fk(111)

S

The GGM Construction

x0 ⟶

k

G

x1 ⟶
G G

x2 ⟶ G G G G

Fk(000)
 Fk(001)
 Fk(010)
 Fk(011)
 Fk(100)
 Fk(101)
 Fk(110)
 Fk(111)

S

The GGM Construction

x0 ⟶

k

G

x1 ⟶
G G

x2 ⟶ G G G G

Fk(000)
 Fk(001)
 Fk(010)
 Fk(011)
 Fk(100)
 Fk(101)
 Fk(110)
 Fk(111)

S

The GGM Construction

x0 ⟶

k

G

x1 ⟶
G G

x2 ⟶ G G G G

Fk(000)
 Fk(001)
 Fk(010)
 Fk(011)
 Fk(100)
 Fk(101)
 Fk(110)
 Fk(111)

S

The GGM Construction

x0 ⟶

k

G

x1 ⟶
G G

x2 ⟶ G G G G

Fk(000)
 Fk(001)
 Fk(010)
 Fk(011)
 Fk(100)
 Fk(101)
 Fk(110)
 Fk(111)

S

The GGM Construction

x0 ⟶

k

G

x1 ⟶
G G

x2 ⟶ G G G G

Fk(000)
 Fk(001)
 Fk(010)
 Fk(011)
 Fk(100)
 Fk(101)
 Fk(110)
 Fk(111)

S

Quantum Security Proof?

Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Hybridize Over Levels

Hybrid 0:

S

Hybridize Over Levels

Hybrid 1:
S
 S

Hybridize Over Levels

Hybrid 2:
S
 S
 S
 S

Hybridize Over Levels

Hybrid 3:

S
 S
 S
 S
 S
 S
 S
 S

Hybridize Over Levels

Hybrid n:

S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S

Hybridize Over Levels

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

Distinguish PRF from Func(X,Y) with adv. ε

Distinguish two adjacent hybrids with adv. ε/n

n polynomial ⇒ acceptable loss

Hybridize Over Levels

S
S
S
S
S
S
S
S

Y
Y
Y
Y
Y
Y
Y
Y

Argument carries over to quantum setting unmodified

Distinguish PRF from Func(X,Y) with adv. ε

Distinguish two adjacent hybrids with adv. ε/n

n polynomial ⇒ acceptable loss

Quantum Security Proof?

Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

✓

Simulating Hybrids

Y
Y
Y
Y
Y
Y
Y
Y

S
S
S
S
S
S
S
S

S
S
S

Y
Y
Y

Hybrid distinguisher

Distinguisher for
several samples

How It Was Done Classically

Adversary only queries polynomial number of points

Only need to fill active nodes

Active node: value used to answer query

⇒ need poly-many samples

Quantum Simulation?

Adversary can query on all exponentially-many inputs

Quantum Simulation?

Adversary can query on all exponentially-many inputs

Need exponentially many samples to simulate!

All nodes are active!

Quantum Security Proof?

Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

Step 3: Hybrid over samples

?

✓

Hybrid Over Samples
S
S
S

Y
Y
Y

Distinguisher for t samples
with advantage ε

Distinguisher for 1 sample
with advantage ε/t

S

Y

Argument carries over to quantum setting unmodified

Quantum Security Proof?

Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

Step 3: Hybrid over samples
• Exponential samples ⇒ exponential security loss

• Can only handle poly-many samples

?

✓

✓

Quantum Security Proof?

Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

Step 3: Hybrid over samples
• Exponential samples ⇒ exponential security loss

• Can only handle poly-many samples

X

✓

✓

A Distribution to Simulate

Distribution D on Y ⇒ induces distribution on functions

For all x∈X:

yx ß D

H(x) = yx

H:

H ß DX

D D D D D D D D D D D D D D D D

Goal: simulate using poly-many samples

Solution: Small-Range Distributions

D D

…

D

y1
y2
 yr

y4
y3
y1
 y3
y2
y4
y4
 y4
y1
y2
y2
 y2
y2
y3
y3
 y2

R ß Funcs(X, [r])

H(x) = yR(x)

H ß SRr
X(D)

H:

Small-Range Distributions

Theorem: SRr
X(D) is indistinguishable from DX by any q-

query quantum algorithm, except with advantage O(q3/r)

Notes:
•  Highly non-trivial
•  Distinguishing prob not negligible, but good enough

•  We get to choose r

•  Random function R not efficiently constructible

Theorem: Can simulate R using k-wise independence

Quantum GGM Proof

PRF distinguisher will
distinguish two adjacent

hybrids

S
S
S
S
S
S
S
S

Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y

S
S
S
S

≈
 ≈
(SR distributions) (SR distributions)

Poly-many samples

Quantum Security Proof

Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Approx. sim. hybrids using poly-many samples

Step 3: Hybrid over samples

Result: PRG distinguisher

Impossible by assumption ⇒ PRF distinguisher impossible

✓

✓

✓

Quantum Query Results

Quantum Collision Finding

Y Y

…

Y

y1
y2
 yr

y4
y3
y1
 y3
y2
y4
y4
 y4
y1
y2
y2
 y2
y2
y3
y3
 y2

R ß Funcs(X, [r])

H(x) = yR(x)

H ß SRr
X(Y)

Recall small-range distributions when D is uniform:

Quantum Collision Finding

Another view:
X
 Y

[r]
R
 S

H = S∘R

Theorem: H is indistinguishable from random by any q-
query quantum algorithm, except with advantage O(q3/r)

Corollary: If |Y|>>|X|2, impossible to find collision in H
unless q≥Ω(r1/3)

Quantum Collision Finding

What about truly random functions with |Y| << |X|2 ?

Previous r1/3 lower bounds known for different settings
• E.g. k-to-1 functions [AS’01]
• All prior settings required |Range| ≥ |Domain|

• Our works for all domain/range sizes

Bound is tight: [BHT’97] q=O(r1/3)

Corollary: If |Y|>>|X|2, impossible to find collision in H
unless q≥O(r1/3)

Theorem: q≥Ω(r1/3) quantum queries are required to find
collisions in a random function R:Xà[r]

Quantum Oracle Interrogation

Using q queries, determine function at k>q points

Func(X,Y)
F

x

F(x)

(x1, F(x1)), (x2, F(x2)), … (xk, F(xk))

Important for MAC, signature security

Quantum Oracle Interrogation

Classically: hard Adv = 1/|Y|k-q

•  Large outputs: Adv = negl even for k=q+1

• Small outputs: Adv = negl for k = c q

Quantum: not so fast

Also true for small ranges:

Question: What about large range sizes?

Theorem [vD’98]: For F:Xà{0,1},
q quantum queries ⇒ k = 1.9q points w.h.p

Theorem: For F:Xà{0,1}2,
q quantum queries ⇒ k = 1.3q points w.h.p

Quantum Oracle Interrogation

Theorem: For F:Xà{0,1}n,
q quantum queries ⇒ Pr[k=q+1 points] ≤ (q+1)/2n

Highly	 non-‐trivial	

New quantum impossibility tool: The Rank Method

Therefore:

•  Small range: Pr[q+1 points] large

•  Large range: Pr[q+1 points] small

Quantum Polynomial Interpolation

Using q queries to a polynomial, determine polynomial

Poly(d)
F

x

F(x)

F

Classical: q=d+1 à easy Quantum: q=d/2 à hard [KK’10]

 q<d+1 à hard

Theorem: (quantum) q=d à easy

Theorem: (quantum) q=(d+1)/2, “large” d à hard

Conclusion

Studying full quantum security notions important
• Quantum computers seem inevitable

• Unclear what attacks are possible
• Strive for strongest definitions

• Bonus: quantum query complexity results

Future work: more advanced primitives

•  Identity-based encryption
•  Functional encryption

•  Fully homomorphic encryption
• Other quantum query questions

Acknowledgements

?

