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Abstract

It is well established that full-fledged quantum computers, when realized, will completely break
many of today’s cryptosystems. This looming threat has led to the proposal of so-called “post-
quantum” systems, namely those that appear resistant to quantum attacks. We argue, however,
that the attacks considered in prior works model only the near future, where the attacker may be
equipped with a quantum computer, but the end-users implementing the protocols are still running
classical devices.

Eventually, quantum computers will reach maturity and everyone — even the end-users — will
be running quantum computers. In this event, attackers can interact with the end-users over quan-
tum channels, opening up a new set of attacks that have not been considered before. This thesis
puts forth new security models and new security analyses showing how to ensure security against
such quantum channel attacks. In particular, we re-build many core cryptographic functionalities,
including pseudorandom functions, encryption, digital signatures, and more, resulting in the first
protocols that are safe to use in a ubiquitous quantum computing world. Along the way, we resolve
several open problems in quantum query complexity, such as the Collision Problem for random
functions, the Set Equality Problem, and the Oracle Interrogation Problem.
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Chapter 1

Introduction

Quantum physics has the potential to fundamentally change the face of cryptography. On the neg-
ative side, quantum computers can break many existing cryptosystems [Sho94], in particular most
public key systems used today. On the positive side, new quantum protocols will, for example,
allow parties to securely exchange keys without relying on any computational assumptions [BB84].
However, even in a world where quantum computers are a part of daily life, classical cryptosys-
tems will still be required. For example, classical storage will likely be far more economical than
quantum storage, and thus classical encryption protocols will be needed for cost-effective encrypted
hard-drives. Therefore, it is important to understand the feasibility of classical cryptosystems in a
quantum world.

Any post-quantum cryptosystem — that is, a classical system that is immune to quantum attacks
— must have an underlying computational problem that is difficult for quantum computers. Hard
problems on lattices, such as finding the shortest vector in a high-dimensional lattice, have been
used to build a variety of cryptosystems. Moreover, the these hard problems have so far resisted
quantum attacks, and some evidence suggests that they may be hard for quantum computers [Reg02].
Therefore, a promising choice for a post-quantum system is one based on lattices.

While many systems based on lattices have been proposed, their security is typically only analyzed
against classical adversaries. This means the attacks considered and the proof techniques used are
classical. Unfortunately, security against such classical attacks does not immediately imply security
against quantum attacks, even when the underlying computational problem is hard for quantum
computers. This leads to very important questions including:

How should we model quantum attacks on classical cryptosystems?

How do we build systems secure against such attacks?

How do we analyze such systems and argue their security?

1
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1.1 Our Contributions

In this thesis, we address the questions above by giving new quantum security models for classical
protocols, and new constructions and analysis techniques for these models.

1.1.1 New quantum security models

First, we argue that the classical analyses mentioned above can typically be translated into some
security against quantum adversaries. However, we argue that the resulting security analysis only
reflects the near future, where end-users are still running classical devices and communicating over
classical channels, but the users want to protect their communication from new quantum threats.

In more detail, the classical security analysis of a lattice-based cryptosystem consists of three
parts: an underlying hard problem on lattices (such as finding the shortest vector), a well-defined
classical security model, and a reduction showing how to convert any classical adversary breaking
security in the model into a classical algorithm breaking the supposedly hard lattice problem. Thus,
if the underlying problem is hard for classical computers, no such classical adversary can exist in the
model. For example, for encryption, a common security model is chosen plaintext security, where the
adversary is trying to decrypt a ciphertext, and in order to help him achieve this task, the adversary
has access to an encryption oracle that encrypts arbitrary plaintexts of the adversary’s choice. To
prove classical security in this model, one would show how to convert any efficient classical adversary
that can decrypt given access to an encryption oracle into an efficient classical algorithm for the
shortest vector problem (SVP).

Typically, such proofs work in a “black box” manner, only looking at the inputs and outputs of
the adversary (where oracle queries are considered part of the input/output behavior), and not how
the adversary is actually implemented. Thus, we can usually translate such proofs immediately into
quantum security proofs. The result is a conversion from any quantum adversary that can decrypt
given (still classical) access to an encryption oracle into an efficient quantum algorithm for SVP.
Thus, if SVP is hard for quantum computers, no such quantum adversary can exist. Note that since
oracle queries are part of the input/output behavior of the adversary, this translation can only rule
out adversaries with classical access to the encryption oracle, as the proofs are only guaranteed to
work for classical input/output behavior.

Generally, translating classical security proofs to the quantum setting captures the attacks where
the adversary has a quantum computer, but is limited to interacting with the protocol using clas-
sical communication. Intuitively, the adversary is only able to take advantage of quantum physics
to enhance his computational power. This captures the near-future scenario where end-users are
still implementing their systems on classical devices, which inherently cannot communicate over
quantum channels. Thus, a quantum adversary trying to break into the device is limited to classical
interaction. This is the setting generally considered in “post-quantum” cryptography.
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Quantum channel attacks. A natural question is, then, what happens if the adversary can
attack the system over a quantum channel. Such attacks are likely in a world where even end-users
are using quantum devices, and hence can potentially interact with the adversary using quantum
communication. Even if the end-users are not running full-fledged quantum computers, their devices
may exhibit some quantum effects. For example, modern processors have reached the point where
quantum tunneling is an important consideration.

What are the right ways to model these enhanced quantum interaction — or quantum channel —
attacks? The natural approach is to take cues from the classical security definitions, and replace the
adversary’s classical interaction with quantum interaction. For encryption as mentioned above, this
approach would yield a model where the adversary is given quantum access to an encryption oracle
to help it decrypt the ciphertext. This means the adversary can query the oracle on quantum super-
positions of messages: quantum states that are simultaneously every message in the message space.
In response, the adversary receives a corresponding superposition of encryptions of all messages.
Seeing superpositions of exponentially-many ciphertexts may give the adversary extra information
to help it break the protocol.

Our new models. We give new quantum security models for the following systems:

• Quantum random oracle model. In some cases, even in the post-quantum setting, quantum
interaction is possible. One example is the random oracle model. Here, the protocol and the
attacker have black box access to a random function oracle, and security is proved in this
setting. The random oracle model is a heuristic model for hash functions; ultimately when
the protocol is implemented the random oracle is replaced by a concrete hash function. In
this case, the adversary evaluates the hash function for himself and can, for example, evaluate
the hash function on quantum superpositions of inputs. Therefore, in our heuristic oracle
model, quantum interaction with the oracle must be allowed, even if the rest of the adversary’s
interaction with the rest of the protocol is classical. We call the resulting model the quantum
random oracle model.

• Pseudorandom functions. Pseudorandom functions (PRFs) are one of the fundamental
building blocks in symmetric key cryptography. Roughly, a PRF is a keyed function that, when
given (classical) oracle access to the function (but not the key), the function is indistinguishable
from a truly random function. We define quantum pseudorandom functions (QPRFs) as PRFs
that are secure even when given quantum oracle access to the function. Aaronson [Aar09] first
raised the question of constructing QPRFs.

• Message authentication codes and signatures. Message authentication codes (MACs)
are used to ensure data integrity. Messages can be signed using a secret key, and signatures
— called tags — are verified using the same key. Classical security stipulates that, even after
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seeing tags for many messages, it is computationally infeasible to forge a tag on a new message.
The straightforward generalization of this attack allows the adversary to obtain signatures on
superpositions of messages. Unfortunately, as the superposition of messages may include every
message in the message space, it is not clear what a “new” message should be. In particular,
the adversary can obtain signatures on a uniform superposition of all messages, measure or
observe the superposition, and then obtain a tag on a random message. He can even do this
for each one of his signing queries, resulting in q tags on random messages, where q is the
number of queries made. We therefore propose a new notion of a forgery, where we require
the adversary to produce tags on q + 1 messages. Such a forgery notion is similar to what is
used for blind signatures [PS96].

A signature scheme is a publicly verifiable version of a MAC. We define security for signatures
analogously.

• Encryption. As mentioned above, one way to define security for encryption is to allow
the adversary an encryption oracle to help it decrypt a plaintext. Actually, the classical
definition requires that the adversary cannot distinguish an encryption of a message m0 from an
encryption of message m1, where the “challenge” messages m0,m1 are chosen by the adversary.
This reflects the fact that we consider even leaking a single bit of information a break of the
system, and that the adversary may have some influence over the messages being sent.

One way to translate this notion into the quantum setting is to allow quantum access to
the encryption oracle, and to allow the adversary’s challenge messages to actually be quantum
superpositions of messages. This means the adversary is trying to distinguish one superposition
of ciphertexts from another. Unfortunately, the natural way of formalizing this definition yields
notions that can always be broken. Thus such notions are not useful.

Instead, we define security using the arguably more natural approach, where the challenge
messages remain classical, but the adversary still has quantum access to the encryption oracle.
We believe this is a reasonable relaxation, as it seems to capture the setting where the end-
user is using the protocol to encrypt classical messages, even though he is running a quantum
computer. If the user wishes to encrypt a quantum state, an actual quantum protocol should
probably be used (such as in [BCG+02]).

Our definition also allows us to give a natural notion of chosen ciphertext security, where the
adversary is additionally given quantum access to a decryption oracle.

1.1.2 New Quantum Proof Techniques

With our new security models in hand, we now ask the question: are any existing post-quantum
schemes secure in our models? To answer this question, we would need to open up the classical
proofs, and see if the proofs work even when the adversary is allowed quantum interaction.
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Case study: pseudorandom functions. A pseudorandom function (PRF) is a keyed function
PRF : K×X → Y with the property that, for a random key k R←−K, the function F (x) = PRF(k, x) is
computationally indistinguishable from a truly random function F : X → Y when given only oracle
access to F . Since we require the adversary to run in polynomial time, it clearly can only make a
polynomial number of queries. In other words, the adversary can only “see” a polynomial number
of outputs of the function. When we move to the quantum setting, we allow the adversary to make
quantum queries to F . Now, even if the adversary makes only a single query, it could potentially be
a query on a superposition of all exponentially many inputs. Thus, while the number of queries is
still a polynomial, the number of outputs “seen” by the adversary is potentially exponential.

It is possible to conjecture, say, that any given PRF candidate is quantum secure — for example,
the Advanced Encryption Standard (AES) could be a quantum pseudorandom function. However,
for known constructions of PRFs from simpler primitives, the security analysis inherently requires
that the adversary only “sees” a polynomial number of outputs, and therefore these analyses are
insufficient for quantum security. This limitation, in the case of the GGM PRF [GGM86], was
observed by Aaronson [Aar09].

In more detail, Goldreich, Goldwasser, and Micali [GGM86] are the first to define (classical) pseu-
dorandom functions, and show how to construct PRFs from any pseudorandom generator (PRG).
One way to view their construction is as a technique to expand the domain size of a PRF. Suppose
we have PRF1 : K × X → K and PRF2 : K × {0, 1} → K. Then we can construct a new PRF
PRF : K × (X × {0, 1})→ K where PRF(k, (x, b)) = PRF2(PRF1(x), b). That is, we use PRF1 to de-
rive a key for PRF2, which we then evaluate on the bit b. PRFs where the domain size is a constant,
such as PRF2, are better known as pseudorandom generators. By iterating this construction many
times starting with X = {0, 1}, the GGM construction is obtained.

In the classical setting, the GGM proof proceeds by defining a few hybrid experiments.

• Hybrid 0. This is the case where the adversary is given oracle access to the oracle (x, b) 7−→
PRF(k, (x, b)) = PRF2(PRF1(k, x), b) for a random key k.

• Hybrid 1. In this case, the adversary is given a “hybrid” oracle. A truly random function G

is chosen, and the adversary is given the oracle (x, b) 7−→ PRF2(G(x), b).

• Hybrid 2. Now the adversary is given a truly random oracle (x, b) 7−→ F (x, b) for a truly
random function F .

PRF is secure if Hybrid 0 and Hybrid 2 are indistinguishable. Notice that the difference be-
tween Hybrid 0 and Hybrid 1 is that the function x 7−→ PRF1(k, x) for a random k is replaced with
a truly random oracle G. Thus, the security of PRF1 shows that these hybrids are indistinguishable.
It then suffices to prove that Hybrid 1 and Hybrid 2 are indistinguishable, which implies that
Hybrid 0 and Hybrid 2 are indistinguishable.
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To that end, recall that the (classical) adversary only makes a polynomial number of classical
queries. Let q be the number of queries. Suppose for the moment that the set S = {x1, . . . , xq} of
x values the adversary queries on is known in advance. Now, suppose that we have at our disposal
q oracles H1, . . . ,Hq where either Hi(b) = PRF2(ki, b) for all i and for independently random ki, or
each Hi is an independently chosen truly random function. Then we can simulate the adversary:
when the adversary queries on (xi, b), we simply query Hi(b) and send the response back to the
adversary. In the case where Hi are PRF2, the adversary sees Hybrid 1. In the case where the Hi

are random functions, the adversary sees Hybrid 2. It is straightforward to generalize this to the
setting where the xi are not known in advance. Thus, to prove the indistinguishability of Hybrids
1 and 2, it suffices to show that the two cases for the sequence of Hi oracles are indistinguishable. If
q = 1, then this follows from the security of PRF2. For q > 1, a simple hybrid argument shows that
the security also follows from PRF2, though there is a security loss of a factor of q in the reduction.
Polynomial losses in security are generally considered acceptable, so this completes the proof.

When we move to the quantum query setting, the indistinguishability of Hybrid 0 and Hybrid 1
goes through unaffected. However, the second part of the proof, showing that Hybrid 1 and Hybrid
2 are indistinguishable, breaks down. The issue is that the queries could be on superpositions of all
messages, so the set S of queried x values is potentially the entire domain X , which has exponential
size. This means the straightforward proof has a security loss of a factor of |X | (as opposed to q),
which is exponential. Such security losses are generally considered unacceptable, so a new proof is
required.

Our new technique. Writing PRF2(k) = (PRF2(k, 0),PRF2(k, 1)), we see that we want to show
the following: if PRF2(k) for a random k is indistinguishable from a truly random string y, then
the oracles PRF2(G(·)) and F (·) where G and F are random functions are computationally indis-
tinguishable, even given a polynomial number of quantum queries to the oracles. To argue this,
we need a reduction that takes any algorithm A that distinguished PRF2(G(·)) from F , and uses
it to construct an algorithm B that can distinguish a single sample PRF2(k) from a random string
y. Using a simple hybrid argument, it even suffices to construct, for some polynomial function r,
a distinguisher B that distinguishes r samples from the distribution PRF2(·) from r truly random
samples.

How would such a distinguisher work? Somehow, it seems that B needs to simulate the oracle
seen by A in such a way that if the r samples are from PRF2, then the oracle is PRF2(G(·)), and if
the r samples are truly random, then the oracle is F (·). Perhaps the most natural approach is to
choose, for every input x to A’s oracle, one of the r samples, and set the output of the oracle on x

to be that sample. Therefore, if the samples come from PRF2, then the oracle is x 7−→ PRF2(kix)
for random ix ∈ {1, . . . , r}, whereas if the samples are truly random, then the oracle is x 7−→ yix for
random ix.
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Unfortunately, such oracles are not the correct oracles we wanted to simulate. For example,
consider the oracle given by yix , which has only r possible outputs for a polynomial r, but has |X |
inputs, which is exponential. We call such oracles small-range functions. Such small range functions
have very many collisions, exponentially more than a truly random function. Therefore, if a collision
in a small-range function can be found, the oracle can be distinguished from a random oracle. One
may hope that by setting r � q, however, the adversary cannot find a collision in the oracle, and
thus the oracle will hopefully be indistinguishable from a random function. Indeed, in the classical
case, this works for r > Ω(q2).

In the quantum query case, there are two problems. For starters, prior quantum collision lower
bounds are for specific oracle classes, and do not apply to our small-range functions. Second, it may
be that, while finding collisions in a small-range function is hard, they can still be distinguished
from a random function by other means.

To remedy these limitations, we introduce new techniques for arguing the indistinguishability
of oracles by quantum queries. Applying our techniques to small-range distributions, we obtain
that for r > Ω(q3), the adversary cannot distinguish the small range function x 7−→ yix cannot be
distinguished from a random function (which in particular implies that collisions cannot be found).
We similarly obtain that x 7−→ PRF2(kix) is indistinguishable from PRF2(G(·)) for r > Ω(q3). Thus,
our simulator B approximately simulates the oracle distributions A expects, and from this we show
that B successfully distinguishes r samples from PRF2 from r random strings. A simple hybrid
argument shows how to obtain a distinguisher for a single sample.

Techniques for other primitives. Our new proof technique using small-range distributions is
also useful for proving the security of message authentication codes, signatures, and encryption.
However, in many cases, this technique alone is not enough, and additional techniques need to be
developed. In Chapters 3 and 4, we summarize several of our new quantum proof techniques. In
addition to being useful for fully quantum security proofs, these techniques are also useful for security
proofs in the Quantum Random Oracle Model.

1.1.3 New Constructions

For pseudorandom functions, as we explained above, we show that many existing constructions are
actually secure against quantum channel attacks. However, in many cases, we do not have security
proofs for existing constructions. It may be that many of the existing constructions are secure,
but need more advanced technique to prove their security. However, others may actually insecure
against quantum channel attacks. For example, in Section 6.2.2, we show that the Carter-Wegman
MAC is insecure against quantum query attacks.

In either case, we need new constructions that can be analyzed using our techniques. We give a
variety of new constructions:
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• We show that a minor modification to the Carter-Wegman MAC is secure against quantum
queries.

• We give several generic conversions from post-quantum digital signatures into signatures se-
cure against quantum queries, based on either concrete primitives or using the random oracle
heuristic.

• We give new constructions of encryption in both the secret key and public key setting.

All of our new constructions are based on existing protocols, and have efficiency comparable
to the prior schemes. Therefore, even in the case where we cannot prove the quantum channel
security of existing schemes, we obtain quantum channel security with minimal overhead compared
to post-quantum security.

1.1.4 Other Results.

Along the way to developing new security analyses for the quantum world, we resolve several open
problem in quantum query complexity. These include:

• A tight bound of θ(N1/3) quantum query complexity of finding collisions for random functions.
Prior results [AS04, Yue14] only analyzed the case where the output of the function is larger
than its input, whereas our result works for arbitrary input/output sizes. Moreover, ours is
the first analyses that is tight for the case of random functions.

• A tight lower bound of Ω(N1/3) for the element distinctness problem. The best prior lower
bound was Ω(N1/5).

• An exact characterization of the oracle interrogation problem for random functions, where the
goal is to produce k input/output pairs of the function using fewer than k queries. The only
previously analyzed case was for single-bit functions due to van Dam [van98], who gave an
attack requiring roughly k/2 queries. We give exact upper bounds and lower bounds for the
general case. For constant-size outputs, we show that ck queries suffice to recover k outputs,
for some constant c < 1 that depends on the output size. However, for very large outputs, k
queries are required.

1.2 Related Work

Quantum random oracles. Quantum accessible random oracles have been used in several prior
works. Brassard and Salvail [BS08] and Brassard et al. [BHK+11] analyze variants of Merkle puzzles
in the quantum random oracle model (QROM). Bennet et al. [BBBV97] show that relative to a
random oracle, a quantum computer cannot solve all of NP .
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Subsequent to our work, several other works have investigated classical cryptosystems in the
quantum random oracle model. For example, Dagdelen et al. [DFG13] investigate the Fiat-Shamir
transformation, arguing that a natural class of proof strategies cannot prove its security in the
quantum random oracle model, though this class does not capture all of the proof strategies covered
in this thesis. Ambainis, Rosmanis, and Unruh [ARU14] give more evidence of the difficulty of
proving Fiat-Shamir by showing that, relative to an oracle, the protocol is insecure. Their proof
relies on some of the techniques developed here. Unruh [Unr14] gives an alternative to the Fiat-
Shamir transformation that is secure in the quantum random oracle model.

Quantum superposition attacks. Concurrently and independently of this work, Damg̊ard et
al. [DFNS14] consider quantum superposition attacks on classical cryptographic protocols. Specifi-
cally, they examine secret sharing and multiparty computation in a model where an adversary may
corrupt a superposition of subsets of players, and build zero knowledge protocols that are secure,
even when a dishonest verifier can issue challenges on superpositions.

General conditions for quantum security. Some progress toward identifying sufficient condi-
tions under which classical protocols are also quantum immune has been made by Unruh [Unr10]
and Hallgren et al. [HSS11]. Unruh shows that any scheme that is statistically secure in Cannetti’s
universal composability (UC) framework [Can01] against classical adversaries is also statistically
secure against quantum adversaries. Hallgren et al. show that for many schemes, this is also true in
the computational setting. These results, however, do not apply to the primitives studied here and
do not consider quantum superposition attacks.

1.3 Publications Contained in This Thesis

The results in this thesis are based on results in the following published papers:

• Random Oracles in a Quantum World, with Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja
Lehmann, and Christian Schaffner (in ASIACRYPT 2011).

• Secure Identity-Based Encryption in the Quantum Random Oracle Model (in CRYPTO 2012).

• How to Construct Quantum Random Functions (in FOCS 2012).

• Quantum-Secure Message Authentication Codes, with Dan Boneh (in EUROCRYPT 2013).

• Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World, with Dan
Boneh (in CRYPTO 2013).

• A Note on the Quantum Collision and Set Equality Problems (in Quantum Information and
Computation).



Chapter 2

Preliminaries

We say that ε = ε(n) is negligible if, for all polynomials p(n), ε(n) < 1/p(n) for large enough n.
For an integer k, we will write [k] = {1, ..., k}. We will sometimes associate the set [2] = {1, 2}

with the set of bits {0, 1}; using this notation, the set of n bit strings can be written as [2]n. Let
x = x1...xn be a string of length n. We write x[a,b] to denote the substring xaxa+1...xb.

Given two sets X and Y, define YX as the set of functions f : X → Y. If a function f maps X
to Y ×Z, we can think of f as two functions: one that maps X to Y and one that maps X to Z. In
other words, exponents distribute: (Y × Z)X = YX ×ZX .

Given f ∈ YX and g ∈ ZY , let g ◦ f be the composition of f and g. That is, g ◦ f(x) = g(f(x)).
If F ⊆ YX , let g ◦ F be the set of functions g ◦ f for f ∈ F . Similarly, if G ⊆ ZY , G ◦ f is the set of
functions f ◦ g where g ∈ G. Define G ◦ F accordingly.

Given a distributionD and some event event, we write Prx←D[event] to represent the probability
that event happens when x is drawn from D. For a given set X , we will sometimes abuse notation
and write X to denote the uniform distribution on X .

Given a distribution D on YX and a function g ∈ ZY , define the distribution g ◦ D over ZX

where we first draw f from D, and output the composition g ◦ f . Given f ∈ YX and a distribution
E over ZX , define E ◦ f and E ◦D accordingly.

Given a distribution D on a set Y, and another set X , define DX as the distribution on functions
in YX where the output for each input is chosen independently according to D.

The distance between two distributions D1 and D2 over a set X is

|D1 −D2| =
∑
x∈X
|D1(x)−D2(x)| .

If |D1 −D2| ≤ ε, we say D1 and D2 are ε-close. If |D1 −D2| ≥ ε, we say they are ε-far.

10
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2.1 Background on Quantum Computation

The quantum system A is a complex Hilbert space H with inner product 〈·|·〉. The state of a
quantum system is given by a vector ‖ψ〉 of unit norm (〈ψ|ψ〉 = 1). Given quantum systems H1

and H2, the joint quantum system is given by the tensor product H1 ⊗ H2. Given |ψ1〉 ∈ H1 and
|ψ2〉 ∈ H2, the product state is given by |ψ1〉|ψ2〉 ∈ H1 ⊗ H2. Given a quantum state |ψ〉 and an
orthonormal basis B = {|b0〉, ..., |bd−1〉} for H, a measurement of |ψ〉 in the basis B results in a
value bi with probability |〈bi|ψ〉|2, and the state |ψ〉 is “collapsed” to the state |bi〉. We let b B← |ψ〉
denote the distribution on bi obtained by sampling |ψ〉 in basis B. when the basis B is obvious from
context, we omit B and write b← |ψ〉

A unitary transformation over a d-dimensional Hilbert space H is a d × d matrix U such that
UU† = Id, where U† represents the conjugate transpose. A quantum algorithm operates on a
product space Hin ⊗ Hout ⊗ Hwork and consists of n unitary transformations U1, ...,Un in this
space. Hin represents the input to the algorithm, Hout the output, and Hwork the work space. A
classical input x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then, the
unitary transformations are applied one-by-one, resulting in the final state

|ψx〉 = Un...U1|x, 0, 0〉 .

The final state is measured, obtaining (a, b, c) with probability |〈a, b, c|ψx〉|2. The output of the
algorithm is b.

Efficient Quantum Algorithms. An efficient quantum algorithm is a quantum algorithm such
that:

• the unitary matrices Ui above come from a finite “basis” set.

• Let the size of a Hilbert space H be the logarithm of the dimension: log2 dimH. Then the
size of Hout and Hwork is a polynomial in the size of Hin. Typically, Hin,Hout,Hwork will be
be the tensor product of many qubits. In this case, the size of each space is just the number
of qubits. Then this requirement becomes that the total number of qubits is a polynomial in
the input size of the algorithm.

• The number of matrices, n, is a polynomial in the size of Hin.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a unitary transfor-
mation O where

O|x, y, z〉 = |x, y +O(x), z〉

where + : X × X → X is some group operation on X . Suppose we have a quantum algorithm
that makes quantum queries to oracles O1, ..., Oq. Let |ψ0〉 be the state of the algorithm before any
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queries, and let U1, ...,Uq be the unitary transformations applied between queries. The final state
of the algorithm will be

UqOq...U1O1|ψ0〉

We can also have an algorithm make classical queries to Oi. In this case, the input to the oracle
is measured before applying the transformation Oi.

Fix an oracle O : X → Y. Let O(q) : X q → Yq be the oracle that maps x into O(x) =
(O(x1), O(x2), ..., O(xq)). Observe that any quantum query to O(q) can be implemented using q

quantum queries to O, where the unitary transformations between queries just permute the registers.
We say that an algorithm that makes a single query to O(q) makes q non-adaptive queries to O. An
efficient quantum oracle algorithm is one where the number of oracle queries is polynomial, and the
computation between each query is efficient as defined above.

When A is allowed to make queries to an oracle O, we will often write A|O〉(x) to denote the
execution of A on input x with quantum oracle access to O. We will often write AO(x) to denote the
case where A only has classical access to O. If A is allowed quantum queries to oracles O1, O2, . . . ,
we write A|O1〉,|O2〉,...(x). Similar notation is used for multiple classical oracles, as well as a mix of
classical and quantum oracles.

The Density Matrix. Suppose the state of a quantum system depends on some hidden random
variable z ∈ Z, which is distributed according to a distribution D. That is, if the hidden variable is
z, the state of the system is |ψz〉. We can then define the density matrix of the quantum system as

ρ =
∑
z∈Z

Pr
D

[z]|ψz〉〈ψz|

Applying a unitary matrix U to the quantum state corresponds to the transformation

ρ→ UρU†

A partial measurement on some registers has the effect of zeroing out the terms in ρ where those
registers are not equal. For example, if we have two registers x and y, and we measure the x register,
then the new density matrix is

ρ′x,y,x′,y′ =

ρx,y,x′,y′ if x = x′

0 otherwise

The probability a quantum algorithm outputs x is simply the value in the xth diagonal entry of
ρ. Thus all statistical information about a quantum algorithm is contained in its density matrix.
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2.2 Post-quantum Cryptographic Primitives

All of the cryptographic primitives we discuss are efficiently computable on a classical computer.
However, we consider security only against quantum adversaries. All primitives we discuss implicitly
involve a security parameter that affects running times, key spaces, message spaces, and parameter
sizes. When we say a function is negligible, we mean negligible in the implicit security parameter. We
also take efficient to mean polynomial-time in the security parameter (whether discussing efficient
classical algorithms or efficient quantum computation).

2.2.1 Notions without interaction

First we describe security for those primitives whose definition involves a non-interactive adversary.
This means the adversary A receives some input and tries to solve some task without any interaction.
This is in contrast to the primitives discussed in Section 2.2.2, where security is defined using an
interactive game where the adversary interacts with the primitive in question in order to solve its
task. Since the security models here are non-interactive, there is no difference from the post-quantum
setting where the protocols are implemented on a classical computer (but security is desired against
quantum adversaries) and the fully quantum setting where the protocols are implemented on a
quantum computer. Moreover, for primitives in this section, classical security analyses can typically
be translated into post quantum analyses.

Definition 2.1. A secure one-way function is a classically efficient function f : X → Y that cannot
be inverted efficiently on a quantum computer. That is, for any efficient quantum adversary A,

Pr[f( A(f(x)) ) = f(x) : x R←−X ] < negl

Definition 2.2. A secure pseudorandom generator is classically efficient function g : X → Y (with
|Y| > |X |) that has outputs that are indistinguishable from random strings by quantum computers.
That is, for any efficient quantum adversary A,

|Pr[A(g(x)) = 1 : x R←−X ]− Pr[A(y) : y R←−Y]| < negl

The classical proof that one-way functions imply pseudorandom generators [HILL99] carries
over to the quantum setting. Thus, one-way functions secure against quantum adversaries imply
pseudorandom generators secure against quantum adversaries. The other direction is trivial.

Definition 2.3. A collision-resistant hash function is a collection H of classically efficient functions
h : X → Y (with |Y| � |X |) for which finding collisions is intractable by efficient quantum computers.
That is, for any efficient quantum adversary A,

Pr[h(m0) = h(m1) : h R←−H, (m0,m1) R←−A(h)] < negl
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Injective trapdoor functions. An injective trapdoor function is an injective one-way function
for which there is a secret trapdoor that allows for efficient inverting.

Definition 2.4. An injective trapdoor function is a tuple (Gen, F, F−1) of classically efficient algo-
rithms with associated spaces X ,Y such that

• Gen() is a randomized algorithm on no inputs that outputs a secret inversion key ik and public
evaluation key ek

• F (fk, x) is a deterministic function that takes as input the public key function ek and an input
x ∈ X , and outputs some y ∈ Y.

• F−1(ik, y) is a deterministic function that takes as input the secret inversion key ik and an
image point y ∈ Y, and outputs some point x ∈ X .

• F−1 is the inverse of F . That is,

Pr[F−1(ik, F (ek, x)) = x : (ik, ek) R←−Gen(), x R←−X ] = 1

In particular, this means F (ek, ·) must be injective.

• F is one-way without the secret key. That is, for any efficient quantum algorithm A,

Pr[A(ek, y) = x : (ik, ek) R←−Gen(), x R←−X , y ← F (ek, x)] < negl (2.2.1)

A trapdoor permutation is an injective trapdoor function where Y = X (and in particular, this
means F (ek, ·) is a permutation).

Post-quantum injective trapdoor functions where built by Peikert and Waters [PW08] based on
the hardness of the Learning With Errors problem, a standard lattice assumption. We note that
the Peikert-Waters scheme departs slightly from the notion above: in their notion, there is also a
sampling algorithm that samples from some distribution D on X . Security is defined with respect
to inputs x drawn from D, instead of uniform x. That is, x R←−X in Equation 2.2.1 is replaced with
x
R←−D. It is generally straightforward to modify protocols using “ideal” injective trapdoor functions

into protocols using this relaxed notion.
Until recently, the only known trapdoor permutations where based on factoring, and are there-

fore insecure in the quantum setting. A very recent work of Bitansky, Paneth, and Wichs [BPW15]
shows how to build trapdoor permutations from program obfuscation. Some existing obfuscation
constructions [GGH+13] are not known to be susceptible to quantum attacks. However, the con-
structions are extremely impractical, and the security is not very well understood. Therefore, no
practical post-quantum trapdoor permutations currently exist.
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Pre-image Sampleable Functions. Whereas injective trapdoor functions can be thought of as a
relaxation of trapdoor permutations to arbitrary injective functions, pre-image sampleable functions
(PSFs) can be thought of as a relaxation of trapdoor permutations to arbitrary surjective functions.
However, we will make some additional restrictions on PSFs which will make them very useful in
several scenarios.

Definition 2.5. A pre-image sampleable function (PSF) is a tuple of classically efficient algorithms
(Gen, F, F−1) with associated spaces X ,Y such that

• Gen() is a randomized algorithm on no inputs that outputs a secret inversion key ik and public
function key fk

• F (fk, x) is a deterministic function that takes as input the public key fk and an input x ∈ X ,
and outputs some y ∈ Y.

• F−1(ik, y) is a randomized function that takes as input the secret key ik and an image point
y ∈ Y, and samples some point x′ ∈ X .

• F−1 inverts F . This means that the distribution x R←−F−1(ik, y) is the same as the conditional
distribution x

R←−X conditioned on F (fk, x) = y. In particular, this means

Pr[F (fk, F−1(ik, y)) = y : (ik, fk) R←−Gen(), y R←−X ] = 1

• F is one-way without the secret key. That is, for any efficient quantum algorithm A,

Pr[F (fk,A(fk, y)) = y : (ik, fk) R←−Gen(), y R←−Y] < negl

Up to this point, PSFs are a generalization of trapdoor permutations. Now we add two additional
requirements that make PSFs incomparable to trapdoor permutations:

• F has high pre-image min-entropy. That is, for every y ∈ Y and for every (ik, fk) R←−Gen(), the
min-entropy of the distribution F−1(ik, y) is at least least 1. We can also require even higher
min-entropy, such as − log(negl).

• F is collision resistant. That is, for every efficient quantum adversary A,

Pr[F (fk, x0) = F (fk, x1) : (ik, fk) R←−Gen, (x0, x1) R←−A(fk)] < negl

Gentry, Peikert, and Vaikuntanathan [GPV08] give a post-qantum pre-image sampleable func-
tion whose security is based on the hardness of the Short Integer Solution problem, a standard
lattice assumption. Similar to the Peikert-Waters injective trapdoor function, the Gentry-Peikert-
Vaikuntanathan PSFs depart somewhat from the ideal notion described above. First, security again
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follows for x chosen from a non-uniform D. Moreover, F−1 only produces pre-images from a distribu-
tion statistically close to the desired distribution. However, this relaxation suffices for our purposes,
though it makes the analysis more complicated. For ease of exposition, we describe all our protocols
based on PSFs using the ideal notion described above.

Chameleon hash functions. A chameleon hash function is a special type of randomized hash
function. Like plain hash functions, it is expected to be collision resistant and one-way. However, a
chameleon hash function also comes hash a secret trap-door that allows inverting in a very strong
sense. Namely, given the trap-door, any hash h, and any message m, it is possible to produce random
coins that cause m to hash to h.

Definition 2.6. A chameleon hash function is a tuple of classically efficient algorithms (Gen,H, Inv)
with associated spaces M,Y,R such that:

• Gen() is a randomized algorithm on no inputs that outputs a secret inversion key sk and public
function key fk

• H(fk,m; r) is deterministic (when considering r as input), takes as input a public key fk, a
message m ∈M, and randomness r ∈ R, and outputs values in Y.

• For any (ik, fk)← Gen(), the distribution of H(fk,m; r) for random m
R←−M and random r

R←−R
is uniform

• Inv(ik, h,m) is a (potentially randomized) algorithm that takes as input a secret key, an value
h ∈ Y, and message m ∈ M, and produces an r such that H(ek,m, r) = h. Moreover, r is
distributed identically uniform conditioned on H(fk,m, r) = h.

• H(fk, ·, ·) is collision resistant. That is, for any efficient algorithm A,

Pr[H(fk,m0; r0) = H(fk,m1; r1) : (ik, fk) R←−Gen(), (m0,m1) R←−A(ek)] < negl

Cash et al. [CHKP10] build chameleon hash functions based on the Short Integer Solution prob-
lem. Again, their construction departs from the ideal notion described above. Namely, the random-
ness in their construction comes from a non-uniform distribution, and Inv only produces a distribution
that is negligibly-close to correct. Nonetheless, their construction suffices for our purposes.

2.2.2 Notions with Interaction

We now give the security definitions for primitives where the security game is potentially interactive.
In these notions, quantum interaction gives a potentially stronger notion than classical interaction,
even when only considering quantum queries. Here we present the notions allowing only classical
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interaction, which are suitable for the near future where the systems are implemented on a classical
device, but security is desired against quantum adversaries. We note that for these “post-quantum”
definitions, classical security analyses generally hold. In Chapter 6, we give our new security models
that allow for quantum interaction, and are therefore sufficient for schemes implemented on quantum
devices.

Pseudorandom functions. A pseudorandom function is an important building block in cryptog-
raphy, from which most of symmetric-key cryptography can be derived. It is a keyed function that
“looks like” a random function when only given black-box oracle access, but not the key.

Definition 2.7. A pseudorandom function (PRF) is a classically efficient function PRF : K×X → Y
that is indistinguishable from a random function. That is, for any efficient quantum adversary A
with classical access to an oracle,

Pr[APRF(k,·)() = 1]− Pr[AO(·)() = 1] < negl

Goldreich, Goldwasser, and Micali [GGM86] show how to build (classical) PRFs from any pseudo-
random generator. Their analysis carries over into the post-quantum setting, showing in particular
that PRFs can be build from any one-way function.

Message authentication codes. A message authentication code is a procedure used to ensure
data integrity. Very roughly, it is a keyed (possibly randomized) procedure that is hard to compute
without the key, even given many values of the funciton.

Definition 2.8. A message authentication code MACs is a pair of classically efficient functions
(Sig,Ver) where

• Sig(k,m) is a keyed (possibly randomized) procedure that outputs a tag σ for a message m.

• Ver(k,m, σ) is a keyed verification procedure, that takes as input a message and candidate tag,
and either accepts or rejects.

• Verification always accepts valid tags. That is, for every message m, Pr[Ver(k,m, σ) = acc :
k
R←−K;σ R←−Sig(k,m)] = 1

Moreover, a MAC satisfies one of several security requirements:

• (Sig,Ver) is strongly existentially unforgeable under a chosen message attack (strongly EUF-
CMA secure) if all efficient quantum adversaries A have negligible advantage in the following
experiment. A random key k ∈ K is chosen. Amakes a polynomial number of adaptive classical
signing queries on messages mi, i = 1, . . . , q, to which it receives tags σi = Sig(k,mi). Then,
the adversary produces a pair (m∗, σ∗). The advatnage of A is defined as the probability that
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σ∗ is a valid tag for m∗ and (m∗, σ∗) is a new message/tag pair, that is, Ver(k,m∗, σ∗) = acc
and (m∗, σ∗) /∈ {(mi, σi)}i∈[q].

• (Sig,Ver) is q-time strongly EUF-CMA secure if it is strongly EUF-CMA secure for adversaries
limited to making q signing queries.

• We can also make weak variants of the above definitions by requiring the adversary to produce
(m∗, σ∗) where m∗ is a new message (as apposed to only requiring that (m∗, σ∗) is a new
message/tag pair). That is, m∗ /∈ {mi}i∈[q].

Any classical PRF (with sufficiently many output bits) gives a secure classical MAC, and this
fact carries over to the post-quantum setting. Post-quantum PRFs can also be used to instantiate
the Carter-Wegman MAC; the resulting scheme will be secure in the sense above.

Digital signatures. A digital signature is a public-key version of a message authentication code.

Definition 2.9. A signature scheme is a tuple of classically efficient functions (Gen,Sig,Ver) where

• Gen() is a randomized procedure of no inputs that produces a secret signing key sk and a public
verification key vk.

• Sig(sk,m) is a secret key (possibly randomized) procedure that outputs a signature σ for a
message m.

• Ver(vk,m, σ) is a public key verification procedure, that takes as input a message and candidate
tag, and either accepts or rejects.

• Verification always accepts valid tags. That is, for every message m, Pr[Ver(vk,m, σ) = acc :
(sk, vk) R←−Gen();σ R←−Sig(sk,m)] = 1

Moreover, a signature scheme satisfies one of several security requirements, very similar to the
security requirements made of MACs:

• (Gen,Sig,Ver) is strongly existentially unforgeable under a chosen message attack (strongly
EUF-CMA secure) if all efficient quantum adversaries A have negligible advantage in the
following experiment. A signing and verification key pair (sk, vk) R←−Gen() is generated. A
receives vk, and then makes a polynomial number of adaptive classical signing queries on
messages mi, i = 1, . . . , q, to which it receives signatures σi = Sig(sk,mi). Then, the adversary
produces a pair (m∗, σ∗). The advantage of A is defined as the probability that σ∗ is a
valid tag for m∗ and (m∗, σ∗) is a new message/tag pair, that is, Ver(vk,m∗, σ∗) = acc and
(m∗, σ∗) /∈ {(mi, σi)}i∈[q].
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• (Gen,Sig,Ver) is strongly existentially unforgeable under a random message attack (strongly
EUF-RMA secure) if the messages mi are chosen at uniformly and independently random
instead of being chosen arbitrarily by the adversary.

• (Gen,Sig,Ver) is universally unforgeable under a random message attack (UUF-RMA secure)
if the message m∗ is chosen uniformly at random, as are the mi.

• We can make q-time variants of any of the above definitions by restricting to adversaries where
q is bounded.

• We can also make weak variants of the above definitions by requiring the adversary to produce
(m∗, σ∗) where m∗ is a new message (as apposed to only requiring that (m∗, σ∗) is a new
message/tag pair). That is, m∗ /∈ {mi}i∈[q]. Notice that, for the UUF-RMA definition, there
will be no collisions between m∗ and the mi, so the distinction between strong and weak
security is irrelevant. Therefore, we omit the modifier and just refer to UUF-RMA security.

Rompel [Rom90] shows that signatures can be built from any one-way function, and this result
carries over into the post-quantum setting. Various other signature schemes based on hard lattice
problems also remain secure against quantum adversaries, assuming the lattice problems remain
hard for quantum computers.

Private key encryption. A symmetric key encryption scheme (also called a private key encryp-
tion scheme) is a procedure to ensure message privacy.

Definition 2.10. A symmetric key encryption scheme is a pair of a classically efficient procedures
(Enc,Dec) where:

• Enc(k,m) is a keyed randomized procedure that, given a message m, produces a ciphertext c.

• Dec(k, c) is a keyed deterministic procedure that, given a ciphertext c produces a message m.

• Decryption is the inverse of encryption. That is, for all messages m, Pr[Dec(k, c) = m :
k
R←−K, c R←−Enc(k,m)] = 1.

Additionally, we make one of several security requirements for (Enc,Dec):

• (Enc,Dec) is secure against a chosen plaintext attack (CPA-secure) if all efficient quantum
adversaries A have negligible advantage in the following experiment. A random key k

R←−K
and a random bit b are chosen, and A is given oracle access to the (randomized) function
Enck,b(m0,m1) −→ Enc(k,mb). Fresh random coins are chosen for each query to the function.
Then, A produces a guess b′ for b. The advantage of A is the probability of guessing correctly,
minus the probability a random guess is correct. That is, the advantage of A is the quantity∣∣∣Pr[b R←−AEnck,b() : k R←−K, b R←−{0, 1}]− 1

2

∣∣∣
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• (Enc,Dec) is one-time secure if it is CPA-secure against adversaries limited to making a single
query.

• (Enc,Dec) is secure against a chosen ciphertext attack (CCA-secure) if A is addionally allowed
a decryption oracle. That is, all efficient quantum adversaries A have negligible advantage
in the following experiment. A random key k

R←−K and a random bit b are chosen. Then
A is given access to a pair of stateful oracles. The first oracle is the randomized function
Enck,b(m0,m1) 7−→ Enc(k,mb), which now also adds the resulting ciphertext c to an initially
empty table T . The second oracle is the deterministic function

Deck(c) 7−→

⊥ if c ∈ T

Dec(k, c) if c /∈ T

where⊥ is a special symbol indicating failure. Then, A produces a guess b′ for b. The advantage
of A is the probability of guessing correctly, minus the probability a random guess is correct.
That is, the advantage of A is the quantity

∣∣∣Pr[b R←−AEnck,b,Deck() : k R←−K, b R←−{0, 1}]− 1
2

∣∣∣
Notice that the requirement that Deck(c) outputs ⊥ for c ∈ T is required to avoid trivial
attacks. Recall that c ∈ T is equal to Enc(k,mb) for known m0,m1. Therefore, if m0 6= m1,
seeing the decryption of c ∈ T would allow for determining b.

Private key CCA-secure encryption can be build from any PRF, which in turn can be build from
any one-way function.

Public key encryption. An asymmetric key encryption scheme (also called a public key encryp-
tion scheme) is public key analog of private key encryption.

Definition 2.11. An asymmetric key encryption scheme is a tuple of a classically efficient procedures
(Gen,Enc,Dec) where:

• Gen() is a randomized provedure of no inputs that outputs a secret message decrypion key dk
and a public encryption key ek.

• Enc(ek,m) is a public key randomized procedure that, given a messagem, produces a ciphertext
c.

• Dec(dk, c) is a secret key deterministic procedure that, given a ciphertext c produces a message
m.

• Decryption is the inverse of encryption. That is, for all messages m, Pr[Dec(dk, c) = m :
(dk, ek) R←−Gen(), c R←−Enc(ek,m)] = 1.

Additionally, we make one of several security requirements for (Gen,Enc,Dec):
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• (Gen,Enc,Dec) is secure against a chosen plaintext attack (CPA-secure) if all efficient quantum
adversaries A have negligible advantage in the following experiment. A random secret/public
key pair (dk, ek) ← Gen() and a random bit b are chosen, and A is given the encryption
key ek. Moreover, A is given oracle access to the (randomized) function Encek,b(m0,m1) −→
Enc(ek,mb). Fresh random coins are chosen for each query to the function. Then, A produces a
guess b′ for b. The advantage of A is the probability of guessing correctly, minus the probability
a random guess is correct. That is, the advantage of A is the quantity∣∣∣∣Pr[b R←−AEncek,b(ek) : (dk, ek) R←−Gen(), b R←−{0, 1}]− 1

2

∣∣∣∣
Notice that in the asymmetric setting, A can encrypt messages for itself. This allows one to
show, by a simple hybrid argument, that CPA-security is equivalent to 1-time security, where
A is only allowed a single query to Encek,b.

• (Enc,Dec) is secure against a chosen ciphertext attack (CCA-secure) ifA is additionally allowed
a decryption oracle. That is, all efficient quantum adversaries A have negligible advantage in
the following experiment. A random secret/public key pair (dk, ek)← Gen() and a random bit
b are chosen, and A is given the encryption key ek. Then A is given access to a pair of stateful
oracles. The first oracle is the randomized function Encek,b(m0,m1) 7−→ Enc(ek,mb), which
now also adds the resulting ciphertext c to an initially empty table T . The second oracle is
the deterministic function

Decdk(c) 7−→

⊥ if c ∈ T

Dec(dk, c) if c /∈ T

where ⊥ is a special symbol indicating failure. Then, A produces a guess b′ for b. The
advantage of A is the probability of guessing correctly, minus the probability a random guess
is correct. That is, the advantage of A is the quantity∣∣∣∣Pr[b R←−AEncek,b,Decdk(ek) : (dk, ek) R←−Gen(), b R←−{0, 1}]− 1

2

∣∣∣∣
Again, a simple hybrid argument shows that public key CCA-security is equivalent to the case
where A is only allowed a single query to Encek,b (though still allowed arbitrarily many queries
to Decdk).

There are many possibilities for post-quantum CPA secure public key encryption, starting with
the work of Ajtai and Dwork [AD97]. Post-quantum CCA security can be obtained, for example,
from any post-quantum identity-based encryption (IBE) scheme (see below for IBE definitions and
instantiations) using the IBE-to-CCA conversion of Boneh et al. [BCHK07].
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Identity-based encryption. Identity-based encryption is a variant of public key encryption
where user’s public keys are simply some identifying information, such as an email address. Identity-
based encryption offers an alternative to the standard public key infrastructure. A user then goes
to a central authority, who generates the corresponding secret key for the user’s identity.

Definition 2.12. An identity-based encryption scheme (IBE) is a tuple of a classically efficient
procedures (Gen,KeyGen,Enc,Dec) where:

• Gen() is a randomized procedure of no inputs that outputs a master secret key msk and a
master encryption key mek.

• KeyGen(msk, id) is a (potentially randomized) procedure that requires the master secret, and
generates the user decryption key dkid for user id.

• Enc(mek, id,m) is a public key randomized procedure that, given an identity id and message
m, produces a ciphertext c encrypted to the identity id.

• Dec(dkid, c) is a procedure requiring the user secret key for identity id that, given a ciphertext
c produces a message m.

• Decryption is the inverse of encryption for the same identity. That is, for all messages m and
identities

∫
·· ·
∫

,

Pr[Dec(dkid, c) = m : (msk,mek) R←−Gen(), c R←−Enc(mek, id,m), dkid
R←−KeyGen(msk, id)] = 1

• All efficient quantum adversaries A have negligible advantage in the following experiment.
A master secret key and encryption key par (msk,mek) R←−Gen() are generated, a random bit
b
R←−{0, 1} is chosen, and mek is given to A. An empty table T is initialized. A is then given

access to two stateful oracles. The first oracle is the randomized function

Encmek,b(id,m0,m1) 7−→

⊥ if id ∈ T

Enc(mek,mb) if id /∈ T

which also updates the table T by adding id. Call queries to this oracle challenge queries. The
second oracle is the potentially randomized function

KeyGenmsk(id) 7−→

⊥ if id ∈ T

KeyGen(msk, id) if id /∈ T

which also updates the table T by adding id. Call queries to this oracle keygen queries. Then,
A produces a guess b′ for b. The advantage of A is the probability of guessing correctly, minus
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the probability a random guess is correct. That is, the advantage of A is the quantity∣∣∣∣Pr[b R←−AEncmek,b,KeyGenmsk(mek) : (msk,mek) R←−Gen(), b R←−{0, 1}]− 1
2

∣∣∣∣
Notice that the requirement that A cannot access both Encmek,b and KeyGenmsk on the same
identity id is required to block trivial attacks. Namely, if A could query KeyGenmsk on id,
obtaining dkid, then it could use dkid to decrypt a ciphertext c R←−Encmek,b(id,m0,m1), obtaining
the message mb. From mb, A can determine b.

Also notice that, by a simple hybrid argument, we can assume that A only makes a single
query to the Encmek,b oracle.

While the original construction of identity-based encryption based on bilinear maps [BF01] is
insecure against quantum adversaries, there are many candidate constructions based on lattices,
such as [ABB10a].



Chapter 3

The Rank Method

In this chapter we introduce the rank method which is a general approach to proving lower bounds
on quantum algorithms. The setup is as follows: we give a quantum algorithm A access to some
quantity H ∈ H. By access, we mean that the final state of the algorithm is some fixed function
of H. In this paper, H will be a set of functions, and A will be given oracle access to H ∈ H by
allowing A to make q quantum oracle queries to H, for some q. For now, we will treat H abstractly,
and return to the specific case where H is a set of functions later.

The idea behind the rank method is that, if we treat the final states of the algorithm on differentH
as vectors, the space spanned by these vectors will be some subspace of the overall Hilbert space.
If the dimension of this subspace is small enough, the subspace (and hence all of the vectors in it)
must be reasonably far from most of the vectors in the measurement basis. This allows us to bound
the ability of such an algorithm to achieve some goal.

For H ∈ H, let |ψH〉 be the final state of the quantum algorithm A, before measurement, when
given access to H. Suppose the different |ψH〉 vectors all lie in a space of dimension d. Let ΨA,H
be the the |H| × d matrix whose rows are the various vectors |ψH〉.

Definition 3.1. For a quantum algorithm A given access to some value H ∈ H, we define the rank,
denoted rank(A,H), as the rank of the matrix ΨA,H.

The rank of an algorithm A seemingly contains very little information: it gives the dimension
of the subspace spanned by the |ψH〉 vectors, but gives no indication of the orientation of this
subspace or the positions of the |ψH〉 vectors in the subspace. Nonetheless, we demonstrate how
the success probability of an algorithm can be bounded from above knowing only the rank of ΨA,H.
The following is prove in Section 7.1:

Lemma 3.2. Let A be a quantum algorithm that has access to some value H ∈ H drawn from some
distribution D and produces some output w ∈ W. Let R : H × W → {True, False} be a binary

24
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relation. Then the probability that A outputs some w such that R(H,w) = True is at most(
max
w∈W

Pr
H←D

[R(H,w)]
)
× rank(A,H) .

In other words, the probability that A succeeds in producing w ∈ W for which R(H,w) is true is
at most rank(A,H) times the best probability of success of any algorithm that ignores H and just
outputs some fixed w.

We now move to the specific case of oracle access to bound the rank. H is now some set of
functions from X to Y, and our algorithm A makes q quantum oracle queries to a function H ∈ H.
Concretely, A is specified by q + 1 unitary matrices Ui, and the final state of A on input H is the
state

UqHUq−1 · · ·U1HU0|0〉

where H is the unitary transformation mapping |x, y, z〉 into |x, y+H(x), z〉, representing an oracle
query to the function H. To use the rank method (Lemma 3.2) for our purposes, we need to bound
the rank of such an algorithm. First, we define the following quantity:

Ck,q,n ≡
q∑
r=0

(
k

r

)
(n− 1)r .

We now show an upper bound of the rank of an algorithm making a bounded number of queries
to an oracle. The following is proved in Section 7.2:

Theorem 3.3. Let X and Y be sets of size m and n and let H0 be some function from X to Y. Let
S be a subset of X of size k and let H be some set of functions from X to Y that are equal to H0

except possibly on points in S. If A is a quantum algorithm making q queries to an oracle drawn
from H, then

rank(A,H) ≤ Ck,q,n .

3.0.3 A Simple Example

Suppose our task is to, given one quantum query to an oracle H : X → Y, produce two distinct
pairs (x0, y0) and (x1, y1) such that H(x0) = y0 and H(x1) = y1. Suppose further that H is drawn
from a pairwise independent set H. We will now see that the rank method leads to a bound on the
success probability of any quantum algorithm A.

Corollary 3.4. No quantum algorithm A, making a single query to a function H : X → Y drawn
from a pairwise independent set H, can produce two distinct input/output pairs of H, except with
probability at most |X |/|Y|.
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Proof. Let m = |X | and n = |Y|. Since no outputs of H are fixed, we will set S = X in Theorem 3.3,
showing that the rank of the algorithm A is bounded by Cm,1,n = 1+m(n−1) < mn. If an algorithm
makes no queries to H, the best it can do at outputting two distinct input/output pairs is to just
pick two arbitrary distinct pairs, and output those. The probability that this zero-query algorithm
succeeds is at most 1/n2. Then Lemma 3.2 tells us that A succeeds with probability at most
rank(A,H) times this amount, which equates to m

n .

For m > n, this bound is trivial. However, for m smaller than n, this gives a non-trivial bound,
and for m exponentially smaller than n, this bound is negligible.

3.1 Main Application: The Oracle Interrogation Problem

In this section, we consider the following problem: given q quantum queries to a random oracle
H : X → Y, produce k > q distinct pairs (xi, yi) such that yi = H(xi). Let n = |Y| be the size
of the range. We will be interested in two cases: (1) where the size of the range n is very large,
say much larger than the number of queries, and (2) when the size of the range is very small, say a
constant.

In the classical setting, when k ≤ q, this problem is easy, since we can just pick an arbitrary set of
k different xi values, and query the oracle on each value. For k > q, no adversary of even unbounded
complexity can solve this problem, except with probability 1/nk−q, since for any set of k inputs,
at least k − q of the corresponding outputs are completely unknown to the adversary. Therefore,
for large n, we have have a sharp threshold: for k ≤ q, this problem can be solved efficiently with
probability 1, and for even k = q + 1, this problem cannot be solved, even inefficiently, except with
negligible probability.

In the quantum setting, the k ≤ q case is the same as before, since we can still query the
oracle classically. However, for k > q, the quantum setting is more challenging. The adversary can
potentially query the random oracle on a superposition of all inputs, so he “sees” the output of the
oracle on all points. Proving that it is still impossible to produce k input/output pairs is thus more
complicated, and existing methods fail to prove that this problem is difficult. Therefore, it is not
immediately clear that we have the same sharp threshold as before.

In Section 3.1.1 we use the rank method to bound the probability that any (even computationally
unbounded) quantum adversary succeeds. Then in Section 3.1.2 we show that our bound is tight by
giving an efficient algorithm for this problem that achieves the lower bound. In particular, we prove
the following theorem:

Theorem 3.5. Let A be a quantum algorithm making q queries to a random oracle H : X → Y
whose range has size n, and produces k > q pairs (xi, yi) ∈ X × Y. The probability that the xi

values are distinct and yi = H(xi) for all i ∈ [k] is at most 1
nk
Ck,q,n. Moreover, there is a quantum

algorithm that exactly acheives this success probability.
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We consider two cases:

• Exponentially-large range Y and polynomial k, q. In this case, even when k = q+1 the success
probability is negligible. That is, to produce even one additional input/output pair is hard.
Thus, we get the same sharp threshold as in the classical case

• Constant size range Y and polynomial k, q. Then even if q is a constant fraction of k we
can still produce k input/output pairs with overwhelming probability using only q quantum
queries. This is in contrast to the classical case, where the success probability for q = ck,
c < 1, is negligible in k.

3.1.1 A Tight Upper Bound

Theorem 3.6. Let A be a quantum algorithm making q queries to a random oracle H : X → Y
whose range has size n, and produces k > q pairs (xi, yi) ∈ X ×Y. The probability that the xi values
are distinct and yi = H(xi) for all i ∈ [k] is at most 1

nk
Ck,q,n.

Proof. Before giving the complete proof, we sketch the special case where k is equal to the size of
the domain. In this case, any quantum algorithm that outputs k distinct input/output pairs must
output all input/output pairs. Similar to the proof of Corollary 3.4, we will set S = X , and use
Theorem 3.3 to bound the rank of A at Ck,q,n. Now, any algorithm making zero queries succeeds
with probability at most 1/nk. Lemma 3.2 then bounds the success probability of any q query
algorithm as

1
nk
Ck,q,n .

Now for the general proof: first, we will assume that the probability A outputs any particular
sequence of xi values is independent of the oracle H. We will show how to remove this assumption
later. We can thus write

|ψqH〉 =
∑

x
αx|x〉|φH,x〉

where αX are complex numbers whose square magnitudes sum to one, and |x〉|φH,x〉 is the normalized
projection of |ψqH〉 onto the space spanned by |x, w〉 for all w. The probability that A succeeds is
equal to ∑

H

Pr[H]
∑

x
|〈x, H(x)|ψqH〉|

2 =
∑
H

Pr[H]
∑

x
|αx|2|〈H(x)|φH,x〉|2 .

First, we reorder the sums so the outer sum is the sum over x. Now, we write H = (H0, H1)
where H0 is the oracle restricted to the components of x, and H1 is the oracle restricted to all other
inputs. Thus, our probability is:

1
nm

∑
x
|αx|2

∑
H0,H1

∣∣〈H0(x)|φ(H0,H1),x〉
∣∣2 .
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Using the same trick as we did before, we can replace |〈H(x)|φH,x〉| with the quantity∣∣∣projspan|φ(H0,H1),x〉|H0(X )〉
∣∣∣ ,

which is bounded by
∣∣∣∣projspan{|φ(H′0,H1),x〉}|H0(x)〉

∣∣∣∣ as we vary H ′0 over oracles whose domain is the

components of x. The probability of success is then bounded by

1
nm

∑
x
|αx|2

∑
H0,H1

∣∣∣∣projspan{|φ(H′0,H1),x〉}|H0(x)〉
∣∣∣∣2 .

We now perform the sum over H0. Like in the proof of Corollary 3.4, the sum evaluates to
dim span{|φ(H′0,H1),x〉}. Since the |φ(H′0,H1),x〉 vectors are projections of |ψqH〉, this dimension is
bounded by dim span{|ψq(H′0,H1)〉}. Let H be the set of oracles (H ′0, H1) as we vary H ′0, and consider
A acting on oracles in H. Fix some oracle H∗0 from among the H ′0 oracles, and let S be the set of
components of x. Then (H ′0, H1) differs from (H∗0 , H1) only on the elements of S. Since |S| ≤ k,
Lemma 3.2 tells us that rank(A,H) ≤ Ck,q,n. But

rank(A,H) = dim span{|ψq(H′0,H1)〉}

Therefore, we can bound the success probability by

1
nm

∑
x
|αx|2

∑
H1

Ck,q,n .

Summing over all nm−k different H1 values and all x values gives a bound of

1
nk
Ck,q,n

as desired.
So far, we have assume that A produces x with probability independent of H. Now, suppose

our algorithm A does not produce x with probability independent of the oracle. We construct a
new algorithm B with access to H that does the following: pick a random oracle O with the same
domain and range as H, and give A the oracle H + O that maps x into H(x) + O(x). When A

produces k input/output pairs (xi, yi), output the pairs (xi, yi − O(xi)). (xi, yi) are input/output
pairs of H + O if and only if (xi, yi − O(xi)) are input/output pairs of H. Further, A still sees
a random oracle, so it succeeds with the same probability as before. Moreover, the oracle A sees
is now independent of H, so B outputs x with probability independent of H. Thus, applying the
above analysis to B shows that B, and hence A, produce k input/output pairs with probability at
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most
1
nk
Ck,q,n

For this paper, we are interested in the case where n = |Y| is exponentially large, and we are
only allowed a polynomial number of queries. Suppose k = q+ 1, the easiest non-trivial case for the
adversary. Then, the probability of success is

1
nq+1

q∑
r=0

(
q + 1
r

)
(n− 1)r = 1−

(
1− 1

n

)q+1
≤ q + 1

n
. (3.1.1)

Therefore, to produce even one extra input/output pair is impossible, except with exponentially
small probability, just like in the classical case. This proves the first part of Theorem 3.5.

3.1.2 The Optimal Attack

In this section, we present a quantum algorithm for the problem of computing H(xi) for k different
xi values, given only q < k queries:

Theorem 3.7. Let X and Y be sets, and fix integers q < k, and k distinct values x1, ..., xk ∈ X .
There exists a quantum algorithm A that makes q non-adaptive quantum queries to any function
H : X → Y, and produces H(x1), ...,H(xk) with probability Ck,q,n/nk, where n = |Y|.

The algorithm is similar to the algorithm of [van98], though generalized to handle arbitrary range
sizes. This algorithm has the same success probability as in Theorem 3.6, showing that both our
attack and lower bound of Theorem 3.6 are optimal. This proves the second part of Theorem 3.5.

Proof. Assume that Y = {0, ..., n−1}. For a vector y ∈ Yk, let ∆(y) be the number of coordinates
of y that do not equal 0. Also, assume that xi = i.

Initially, prepare the state that is a uniform superposition of all vectors y ∈ Yk such that
∆(y) ≤ q:

|ψ1〉 = 1√
V

∑
y:∆(y)≤q

|y〉

Notice that the number of vectors of length k with at most q non-zero coordinates is exactly

q∑
r=0

(
k

r

)
(n− 1)r = Ck,q,n .

We can prepare the state efficiently as follows: Let Setupk,q,n : [Ck,q,n] → [n]k be the following
function: on input ` ∈ [Ck,q,n],
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• Check if ` ≤ Ck−1,q,n. If so, compute the vector y′ = Setupk−1,q,n(n), and output the vector
y = (0,y′).

• Otherwise, let `′ = `− Ck−1,q,n. It is easy to verify that `′ ∈ [(n− 1)Ck−1,q−1,n].

• Let `′′ ∈ Ck−1,q−1,n and y0 ∈ [n] \ {0} be the unique such integers such that `′ = (n− 1)`′′ +
y0 − n.

• Let y′ = Setupk−1,q−1,n(`′′), and output the vector y = (y0,y′).

The algorithm relies on the observation that a vector y of length k with at most q non-zero
coordinates falls into one of either two categories:

• The first coordinate is 0, and the remaining k − 1 coordinates form a vector with at most q
non-zero coordinates

• The first coordinate is non-zero, and the remaining k − 1 coordinates form a vector with at
most q − 1 non-zero coordinates.

There are Ck−1,q,n vectors of the first type, and Ck−1,q−1,n vectors of the second type for each
possible setting of the first coordinate to something other than 0. Therefore, we divide [Ak,q,n] into
two parts: the first Ck−1,q,n integers map to the first type, and the remaining (n − 1)Ck−1,q−1,n

integers map to vectors of the second type.
We note that Setup is efficiently computable, invertible, and its inverse is also efficiently com-

putable. Therefore, we can prepare |ψ1〉 by first preparing the state

1√
Ck,q,n

∑
`∈[Ck,q,n]

|`〉

and reversibly converting this state into |φ1〉 using Setupk,q,n.
Next, let F : Yk → [k]q be the function that outputs the indexes i such that yi 6= 0, in order

of increasing i. If there are fewer than q such indexes, the function fills in the remaining spaces the
first indexes such that yi = 0 If there are more than q indexes, the function truncates to the first q.
F is realizable by a simple classical algorithm, so it can be implemented as a quantum algorithm.
Apply this algorithm to |ψ1〉, obtaining the state

|ψ2〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉

Next, let G : Yk → Yq be the function that takes in vector y, computes x = F (y), and outputs
the vector (yx1 , yx2 , ..., yxq ). In other words, it outputs the vector of the non-zero components of y,
padding with zeros if needed. This function is also efficiently computable by a classical algorithm,
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so we can apply if to each part of the superposition:

|ψ3〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y), G(y)〉

Now we apply the Fourier transform to the G(y) part, obtaining

|ψ4〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉
∑

z
e−i

2π
n 〈z,G(y)〉|z〉

Now we can apply H to the F (y) part using q non-adaptive queries, adding the answer to the z
part. The result is the state

|ψ5〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉
∑

z
e−i

2π
n 〈z,G(y)〉|z +H(F (y))〉

We can rewrite this last state as follows:

|ψ5〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

ei
2π
n 〈H(F (y)),G(y)〉|y, F (y)〉

∑
z
e−i

2π
n 〈z,G(y)〉|z〉

Now, notice that H(F (y)) is the vector of H applied to the indexes where y is non-zero, and
that G(y) is the vector of values of y that those points. Thus the inner product is

〈H(F (y)), G(y)〉 =
∑
i:yi 6=0

H(i)× yi =
k∑
i=0

H(i)yi = 〈H([k]),y〉 .

The next step is to uncompute the z and F (y) registers, obtaining

|ψ6〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

ei
2π
n 〈H([k]),y〉|y〉

Lastly, we perform a Fourier transform the remaining space, obtaining

|ψ7〉 = 1√
Ck,q,nnk

∑
z

 ∑
y:∆(y)≤q

ei
2π
n 〈H([k])−z,y〉

|z〉
Now measure. The probability we obtain H([k]) is

1
Ck,q,nnk

∣∣∣∣∣∣
∑

y:∆(y)≤q

1

∣∣∣∣∣∣
2

= Ck,q,n
nk
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as desired.

As we have already seen, for exponentially-large Y, this attack has negligible advantage for any
k > q. However, if n = |Y| is constant, we can do better. The error probability is

k∑
r=q+1

(
k

r

)(
1− 1

n

)r( 1
n

)k−r
=
k−q−1∑
s=0

(
k

s

)(
1
n

)s(
1− 1

n

)k−s
.

This is the probability that k consecutive coin flips, where each coin is heads with probability
1/n, yields fewer than k − q heads. Using the Chernoff bound, if q > k(1− 1/n), this probability is
at most

e−
n
2k (q−k(1−1/n))2

.

For a constant n, let ε be any constant with 0 < ε < 1/n. If we use q = (1 − ε)k queries, the
error probability is less than

e−
n
2k (k(1/n−ε))2

= e−
nk
2 (1/n−ε)2

,

which is exponentially small in k. Thus, for constant n, and any constant ε with 0 < ε < 1/n,
using q = (1 − ε)k quantum queries, we can determine k input/output pairs with overwhelming
probability. This is in contrast to the classical case, where with any constant fraction of k queries,
we can only produce k input/output pairs with negligible probability. As an example, if H outputs
two bits, it is possible to produce k input/output pairs of of H using only q = 0.8k quantum queries
with overwhelming probability. However, with 0.8k classical queries, we can output k input/output
pairs with probability at most 4−0.2k < 0.76k.

3.1.3 Generalizing to Other Distributions

Here we generalize the bound of Section 3.1.1 to non-uniform distributions on oracles. Here, we
consider a case where the oracle H is non-uniform, but each output has some significant min-entropy,
and show that the bound of Theorem 3.6 still roughly applies.

Theorem 3.8. Fix sets X and Y, and distributions Dx on Y for each x ∈ X . Let H be a function
from X to Y where, for each x, H(x) is drawn independently according to Dx. Then any quantum
algorithm making q quantum queries to H can only produce q + 1 input/output pairs of H with
probability at most (q+ 1)/

⌊
2H∞

⌋
, where H∞ be the minimum over all x ∈ X of the min-entropy of

the distribution Dx.

We prove Theorem 3.8 by converting an algorithm violating the theorem to an algorithm violating
Theorem 3.6.

First, we need the following technical lemma:
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Lemma 3.9. Fix and integer r. Let D be a distribution of a set X such that Pr[x ← D] < 1/r
for all x. Then we can construct a distribution D′ on injective functions from [r] into X with the
property that Pr[x : f R←−D′, i R←−[s], x ← f(i)] = Pr[x : x R←−D] for all y. In other words, we can
generate x according D by drawing a random value i in [r], a random injective function f from D′,
and evaluating f(i).

Proof. Pick an arbitrary ordering of elements in X . Then there is a one-to-one correspondence be-
tween subsets of X of size r and strictly monotonically increasing functions from [r] to X . Therefore,
it suffices to show how do sample subsets T ⊆ X of size r such that sampling T and then picking
a random element of T simulates the distribution D. We give the algorithm SampleSubset, which
takes as input a set X , a distribution D on X , and an integer r such that where Pr[x← D] ≤ 1/r,
and samples from a distribution of subsets of size r with the desired properties:

Algorithm 1 SampleSubset(X , D, r)
If r = 1, draw x← D, output {x}, and exit.
Otherwise, let pL be the smallest non-zero probability in D.
Let pH be the largest probability in D.
Let p∗ ← min(pL, 1

r − pH).
Let T be the set of the r elements in X with the smallest non-zero probabilities.
With probability rp∗, output T and exit.
Otherwise, let D′ be the distribution where

Pr[x← D′] =
{

Pr[x←D]−p∗
1−rp∗ if x ∈ T

Pr[x←D]
1−rp∗ otherwise

Let F be the set of x such that Pr[x← D′] = 1
r .

If |F| = r, then output F and exit.
Otherwise, let D′′ be the distribution where

Pr[x← D′′] =
{

0 if x ∈ F
Pr[x←D′]
1−|F|/r otherwise

Sample T0 from SampleSubset(X , D′′, r − |F|)
Output T0 ∪ F .

We now prove that SampleSubsets works as promised. We need to show that D′ and D′′ are
distributions. Since p∗ is at most the smallest probability in D, all the probabilities in D′ are non-
negative. Moreover, by adding up all the probabilities in D′, we see that they sum to 1, so D′ is in
fact a distribution. This means all the probabilities in D′′ are non-negative as well. Using the fact
that all elements in F have probability 1/r under D′, we see that the probabilities in D′′ also sum
to 1, so D′′ is also a distribution. The fact that D′ is a distribution also shows that |F| ≤ r, since
otherwise the probabilities would sum to greater than 1.

Next, we explain why the recursive call to SampleSubset is valid. That is, that Pr[x← D′′] ≤ 1
r′
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where r′ = r − |F|. For D′, the maximum probability is at most

pH
1− rp∗ ≤

pH

1− ( 1
r − pH)

= r

r + (r − 1)/pH
≤ r

r + (r − 1)r = 1
r

For D′′, the maximum probability is at most (and in fact less than) 1/r
1−|F|/r = 1

r−|F| = 1
r′ , as

desired. Also, SampleSubset is never called with r′ = 0, since in this case we would have already
outputted F .

Now, we need to show that this sampling algorithm actually terminates. We look at two cases:

• p∗ = pL. Let xL be an element in T with Pr[xL ← D] = pL. Observe that under D′ and hence
D′′, xL has probability 0.

• p∗ = 1
r − pH . Let xH be an element with Pr[xH ← D] = pH . Under D′, Pr[xH ← D′] = 1

r , so
xH is included in F . Therefore, under D′′, xH has probability 0.

This means that in each recursive call to SampleSubset, the number of x with positive probability
decreases by at least 1. Since X is finite, eventually, the number of x with positive probability will
equal r (it cannot be less since all probabilities in D are at most than 1/r, meaning there are at
least r such elements).

It remains to be proven that our sampling algorithm gives the desired distribution. In the case
r = 1, then we just output sets {x} where x← D, which is correct. Otherwise, with probability rp∗,
we output T . In this case, drawing a random value from T gives us each element with probability
p∗. Since p∗ is at most pL, we have not over-sampled any element. If we do not output T , we then
need to sample subsets to match the distribution D′. If any x has Pr[x← D′] = 1

r , then x must be in
every subset, so we set it aside in the set F . We then need to draw r′ = r− |F| additional elements
not in F to match the correct distribution. It is straightforward to show that this is achieved by
calling SampleSubset(X , D′′, r − |F|).

We are now ready to prove Theorem 3.8:

Proof. Recall that we have an algorithm A making q queries to a random oracle H where outputs are
drawn from distributions Dx and produces q+1 input/output pairs with probability ε. Additionally,
for all x ∈ X , the min-entropy of Dx is at least H∞.

We now generate H in a different way: for each x, we know that Dx has min-entropy at least
H∞. This means that the most probable element in Dx has probability at most 1/2H∞ ≤ 1/b2H∞c.
Let r = b2H∞c. Lemma 3.9 shows that there is a distribution D′x on injective functions from [r]
to Y such that sampling from Dx is equivalent to sampling a random i

R←−[r], sampling a random
f
R←−D′x, and outputting f(i). Therefore, if we let F be a random oracle from X to [r], and G an
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oracle mapping each x ∈ X to a function sampled from D′x, the oracle that on input x computes
f = G(x) and outputs y = f(x) is distributed identically to H.

We can now construct an algorithm B that violates Theorem 3.6. B can make q quantum
queries to a random function F from X into [r]. B first builds the function G, and then simulates A,
answering A’s queries to H using F and G as above. Answering A’s queries is potentially problematic
since extra information is computed — the outputs of F and G. In order for B to properly answer
A’s queries without becoming entangled, B must uncompute these extra values. Since B knows G,
it can uncompute G easily. Uncomputing F would normally require making a second query to F ,
but this is unacceptable since then B would make 2q queries instead of q. However, the function f

outputted by G is injective, meaning we can invert it, which allows us to uncompute the output of
F by applying f−1 to the output of H. Therefore, each query A makes requires only a single query
to F .

With probability ε, A produces q+1 distinct input/output pairs (xi, yi) for H. B then computes
the functions fi = G(xi), and outputs the pairs (xi, f−1

i (yi)). These pairs will all be distinct and
valid input/output pairs of F . Since F is a random oracle, Theorem 3.6 shows that ε < (q + 1)/r.
Since r = b2H∞c, this completes the proof.



Chapter 4

Other New Techniques

We present several technical results that will be useful for arguing quantum security. We begin by
stating all of the lemmas, and in the following sections we will give several applications of these
theorems.

We first describe an important lemma that will facilitate many of our proofs. The following
theorem relates the behavior of a quantum oracle adversary A to the distribution on the oracle
restricted to small subsets of inputs.

Lemma 4.1. Let A be a quantum algorithm making q quantum queries to an oracle H : X → Y,
and c classical queries. If we draw H from some distribution D, then for every z, the quantity
PrH←D[A|H〉() = z] is a linear combination of the quantities PrH←D[H(xi) = ri∀i ∈ [2q+ c]] for all
possible settings of the xi and ri.

The proof of Theorem 4.1 appears in Section 7.3. This theorem shows, for example, that a
2q-wise independent function is indistinguishable from a truly random function when given only
q quantum oracle queries to the function, a fact that we will use in Section 4.1 to show how to
efficiently simulate random oracles.

We now use the theorem to derive two additional theorems that provide means to argue the
indistinguishability of distributions of oracles by quantum queries.

Lemma 4.2. Fix q, and let Dλ be a family of distributions on YX indexed by λ ∈ [0, 1]. Suppose
there are integers d and ∆ such that for every 2q pairs (xi, ri) ∈ X × Y, the function p(λ) =
PrH←Dλ [H(xi) = ri∀i ∈ [2q]] satisfies:

• p is a polynomial in λ of degree at most d.

• p(i)(0), the ith derivative of p at 0, is 0 for each i ∈ [∆− 1].

36
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Then any quantum algorithm A making q quantum queries can only distinguish Dλ from D0 with
probability at most 4∆

(2∆)!λ
∆d2∆.

In particular, if each p(λ) is a degree-d polynomial such that p′(0) = 0, then A can only distinguish
Dλ from D0 with probability at most 2

3λ
2d4.

Lemma 4.3. Fix q, and let Er be a family of distributions on YX indexed by r ∈ Z+⋃{∞}.
Suppose there are integers d and ∆ such that for every 2q pairs (xi, ri) ∈ X × Y, the function
p(λ) = PrH←E1/λ [H(xi) = ri∀i ∈ [2q]] satisfies:

• p is a polynomial in λ of degree at most d.

• p(i)(0), the ith derivative of p at 0, is 0 for each i ∈ [∆− 1].

Then any quantum algorithm A making q quantum queries can only distinguish Er from E∞ with
probability at most 22−∆ζ(2∆)d3∆(1/r)∆.

In particular, if each p(λ) is a degree-d polynomial, then A can only distinguish Er from E∞

with probability at most π2d3/3r.

These two theorems show that in some cases, we can understand the distinguishing advantage
of a quantum oracle algorithm simply by analyzing the oracle distributions themselves.

We note that, by setting D1/r = Er, Lemmas 4.2 and 4.3 appear almost the same. The main
difference is that Lemma 4.2 requires Dλ to be a valid distribution for all λ ∈ [0, 1], which in
particular implies that 0 ≤ p(λ) ≤ 1 for all λ ∈ [0, 1]. In contrast, Lemma 4.3, when setting
D1/r = Er, only requires Dλ to be a distribution on the reciprocals of integers. Thus, in particular,
this means p(λ) may not be in [0, 1] for, say, λ = 2/3. Thus, the conditions of Lemma 4.3 are
weaker, and as a result a weaker indistinguishability guarantee is obtained. The proofs appear in
Sections 7.4 and 7.5.

In Section 4.2, we use Lemma 4.2 to prove that a class of distributions, called semi-constant
distributions, is indistinguishable from uniform. In Sections 4.3, 4.4, and 4.5, we use Lemma 4.3 to
solve a variety of problems.

The next lemma allows us to extract useful information from intermediate stages of a quantum
computation without completely destroying the computation. In the classical setting, it is always
possible to read the state of the algorithm without disturbing it. However, the quantum uncertainty
principle dictates that this is not possible for quantum algorithms: observing the intermediate
quantum state of a quantum computation will disturb the state and therefore disturb the outcome
of the computation. The following shows that if we only observe a very small portion of the state,
the outcome of the computation can still be useful.

Lemma 4.4. Let A be a quantum algorithm, and let Pr[x] be the probability that A outputs x. Let
A′ be another quantum algorithm obtained from A by pausing A at an arbitrary stage of execution,
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performing a partial measurement that obtains one of k outcomes, and then resuming A. Let Pr′[x]
be the probability A′ outputs x. Then Pr′[x] ≥ Pr[x]/k.

Lemma 4.4 means, for example, that if you measure just one qubit at an intermediate point in
a computation, the probability of a particular output drops by at most a factor of two. Lemma 4.4
will be important for several quantum security arguments in Section 6.3

4.1 Application 1: Simulating Random Oracles

In this section, we explain how to efficiently simulate quantum-accessible random oracles. In the
classical setting, truly random oracles can be simulated efficiently on fly, only generating the outputs
of the oracle as needed. However, with a quantum accessible oracle, it is possible to query the
oracle on a superposition of all exponentially-many inputs. The simulator then needs to answer
with exponentially-many outputs. Simulating the random oracle perfectly would thus require an
exponential amount of randomness, rendering the simulation inefficient. We show that this is not a
problem in the case where the number of queries the adversary makes is a priori bounded:

Theorem 4.5. Any quantum algorithm A making a polynomially-bounded number quantum queries
to random oracles Oi can be efficiently simulated by a quantum algorithm B, which has the same
output distribution, but makes no queries.

Proof. We construct an algorithm B which simulates A, and answers queries to oracle Oi with
evaluations of efficient functions fi. One possible choice is to use pseudorandom functions (PRF)
for the fi. Such PRFs would need to be secure, even against quantum queries. PRFs of any flavor
necessarily involve a computational assumption, which we would like to avoid. At first glance, this
seems like the only option, as we need a function fi that cannot be distinguished from random.

Notice, however, that fi need not be secure against all adversaries, just the adversary we are
simulating. We know that our adversary makes qi queries to oracle Oi, so it suffices to have fi be
PRFs secure for up to qi quantum queries. In the classical setting, qi-wise independent functions
(functions that are qi-wise equivalent to a random function) serve as perfectly secure PRFs for up
to qi classical queries. We could hope that something similar holds in the quantum world: indeed,
according to Theorem 4.1, if fi is 2qi-wise equivalent to a random function, then the behavior of
our adversary is the same when the oracle is random and when it is fi. Thus if the fi are 2qi-wise
independent, algorithm A, as a subroutine of B, behaves identically to the case where A is given
truly random oracles. Hence, the output distribution of B is identical to that of A.

Efficient constructions of k-wise independent functions have been known for some time [Jof74,
KM94], and they have been used extensively in the derandomization literature [Lub85, ABI86,
KM93]. One common approach to construct a k-wise independent function f from X to Y is to
assume that N = |Y| is a prime power and interpret Y as the field FN . Then define a matrix C with
the following properties:
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• The entries are elements in FN .

• There are |X | rows and some small number r of columns.

• Each subset of k rows is linearly independent.

One such example is the Vandermonde matrix, which is used by Alon et al. [ABI86]. To define the
function f , we then pick a random vector v in FrN . f(x) is then the xth element of the vector C · v.
Since any k rows of C are linearly independent, any k elements of C · v are independent, and hence
f is k-wise independent. The key to making this efficient is that to compute f(x), we only need the
xth row of C, which we can compute on the fly.

Hence, we can simulate random oracles provided provided that the number of elements N in the
codomain is a prime power. If N is not a prime power, write N = N1 ·N2 · · ·Ns where the Ni are
prime powers. Then we can write Y = Y1 × Y2 × · · · × Ys where |Yi| = Ni, and construct k-wise
independent functions fi : X → Yi. Then the function f(x) = (f1(x), f2(x), . . . , fs(x)) is a k-wise
independent function from X to Y.

We can also simulate biased random oracles. For example, suppose O(x) is 1 with probability
λ, and 0 otherwise. We approximate λ by some rational number a/b where b is a prime power, and
construct a k-wise independent function f ′ with range Y = [b]. Then set

f(x) =

1 if f ′(x) ≤ a

0 otherwise

This simulates an oracle O2 where every output bit is chosen to be 1 with independent probability
a/b. Since a/b is only an approximation to λ, this does not perfectly simulate the desired O2.
However, by choosing a, b so that |a/b − λ| ≤ 2−t/|X |, the approximated and desired distributions
on oracles will be (2−t)-close, so the distributions are quantum indistinguishable. If |X | = 2n for
a polynomial n, as is the case for our applications, then we can choose a, b to be approximately
t+ n-bits. Therefore, we can simulate O2 with exponentially-small error in polynomial time.

We will show in Section 4.6 that we can even chose a, b so that |a/b− λ| ≤ 2−t, and the oracles
will still be distinguishable with only exponentially-small probability. Therefore, we can actually
choose a, b to be approximately t bits, yielding a more efficient simulation.

4.2 Application 2: Semi-Constant Distributions

We now introduce a class of distributions on oracles, which we call semi-constant distributions, and
we use Lemma 4.2 to argue that the distributions are indistinguishable from random functions by
algorithms making quantum oracle queries to the functions. We also present quantum attacks that
are within a polynomial factor of optimal.
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Definition 4.6. Define SCλ(X ,Y), the semi-constant distribution, as the distribution over YX

resulting from the following process:

• First, pick a random element y from Y.

• For each x ∈ X , do one of the following:

– With probability λ, set H(x) = y. We call x a distinguished input to H.

– Otherwise, set H(x) to be a random element in Y.

When X ,Y are clear from constant, we usually omit them and just write SCλ. First, notice that
SC0 is the uniform distribution, since in this case, the probability that an input is distinguished is
0. We bound the ability of a quantum algorithm to distinguish between SC and SC0 = U using
Lemma 4.2.

Lemma 4.7. Fix k. For each k pairs (xi, ri), the probability PrH←SC[H(xi) = ri∀i ∈ [k]] is a
degree-k polynomial in λ whose first derivative is 0 at λ = 0.

This, proved below, shows that for any q, we can set d = k = 2q and ∆ = 2 in the assumptions
of Lemma 4.2. We immediately get:

Corollary 4.8. The distribution of outputs of a quantum algorithm making q queries to an oracle
drawn from SC is at most a distance 32

3 q
4λ2 away from the case when the oracle is drawn from the

uniform distribution.

We do not know if this bound is tight. In Section 4.2.1, we adapt the collision search algorithm
of Brassard et al. [BHT97] to SC, obtaining a distinguishing probability of Ω(q3λ2).

We now prove Lemma 4.7:

Proof. Recall that SC is defined as follows:

• Pick y at random from Y.

• For each x ∈ X , with probability 1−λ, set H(x) to be a random element of Y. With probability
λ, set H(x) = y.

Suppose Y contains N elements. Let α({xi}i∈[k], {ri}i∈[k]) = Pr[H(xi) = ri ∀i ∈ [k]] the
probability that xi maps to ri for k values of xi and ri. Our goal is to show that α({xi}i∈[k], {ri}i∈[k]),
as a function of λ, is a polynomial of degree at most k whose first derivative at λ = 0 is 0.

We will assume that all of the xi are distinct. Otherwise, let i1 6= i2 be two indices such that
xi1 = xi1 . If ri1 = ri2 , then we can drop xi2 and ri2 without affecting the value of α. In other words,

α({xi}i∈[k], {ri}i∈[k]) = α({xi}i∈[k]\i2 , {ri}i∈[k]\i2) .
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Then we can inductively apply the lemma for tuples of k − 1 elements, obtaining that

α({xi}i∈[k], {ri}i∈[k])

is a degree k − 1 polynomial whose first derivative is 0 at λ = 0.
If ri1 6= ri2 , then α({xi}i∈[k], {ri}i∈[k]) is identically zero since H cannot take on two values at

the same input. The zero function is a degree 0 polynomial whose first derivative is 0 at λ = 0.

Now suppose there are ` distinct ri, denoted by tm for m ∈ [`], and let km be the number of ri
equal to tm (note that

∑`
m=1 km = k). Let F be the set {1, ..., `,⊥}. For each f ∈ F , if f =⊥, f is

associated with the event that tm 6= y for all m, and otherwise, f is associated with the event that
tf = y.

Let eqf,m be 1 if f = m, 0 otherwise. The probability that O(xi) = tm is 1/N if we are choosing
the output at random, and otherwise, it is 1 if tm = y and 0 otherwise. In other words, this
probability is

(1− λ) 1
N

+ λeqf,m = 1
N

+ λ

(
eqf,m −

1
N

)
.

Since there are km copies of each tm among the ri,

Pr[H(xi) = ri∀i ∈ [k]|f ] =
∏̀
m=1

(
1
N

+ λ

(
eqf,m −

1
N

))km
.

Summing over all f gives

α({xi}i∈[k], {ri}i∈[k]) =
∑
f

Pr[f ]
∏̀
m=1

(
1
N

+ λ

(
eqf,m −

1
N

))km
.

This is a polynomial in λ. It is a sum of products of
∑
km = k monomials in λ, so its total

degree is at most k. Now, we shall approximate this to first order in λ, and show that the first-order
coefficient is 0:
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α({xi}, {ri}) =
∑
f

Pr[f ]
∏̀
m=1

(
1
N

+ λ

(
eqf,m −

1
N

))km

=
∑
f

Pr[f ]
∏̀
m=1

(
1

Nkm
+ km

1
Nkm−1λ

(
eqf,m −

1
N

))
+O(λ2)

= 1

N
∑

m
km

∑
f

Pr[f ]
∏̀
m=1

(
1 + kmNλ

(
eqf,m −

1
N

))
+O(λ2)

= 1
Nk

∑
f

Pr[f ]
(

1 +Nλ
∑̀
m=1

km

(
eqf,m −

1
N

))
+O(λ2)

= 1
Nk

+ λ

Nk−1

∑̀
m=1

km

∑
f

Pr[f ]eqf,m −
1
N

+O(λ2)

Notice that
∑
f Pr[f ]eqf,m is the probability that tm = y, which is equal to 1/N . Thus, all

the terms in the first-order coefficient cancel out, so the λ1 coefficient is 0. This completes the
lemma.

4.2.1 An Attack on Semi-Constant Distributions

Here we explore the problem of finding a collision in an oracle drawn from a small-range distribution
SC over YX . Our motivation for studying the collision problem is as follows: a classical algorithm
making q queries can only distinguish SC from random with probability O(λ2q2), since it can only
distinguish the two cases if it happens to query two distinguished points. Further, querying random
points, and outputting 1 if a collision is found achieves this bound. Thus, a collision search is the
best way to distinguish SC from random in the classical setting, and the same may also be true in
the quantum setting

Let N = |Y| be the number of elements in Y, and assume that λ >> 1
N so that, with high

probability, all collisions consist of distinguished inputs.
Let c be the minimum constant such that SC is indistinguishable from uniform except with

probability O(qcλ2). Corollary 4.15 shows us that c ≤ 4. We will now show that c ≥ 3, using
the following algorithm. The algorithm is basically the algorithm of Brassard et al. [BHT97], but
modified for our purposes. It operates as follows:

• Let p = (q − 1)/2, and assume pλ� 1 (since otherwise, a collision could be found easily with
a classical search). Select a subset W ⊆ X of size p. For each x ∈ W, store the pair (x,H(x))
in a table, sorted by the second coordinate. Check if there is a collision in W. If so, output
this collision.
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• Construct the oracle O(x) which is 1 if and only if x /∈ W and H(x) = H(x0) for some x0 ∈ W.
Since the entries toW are sorted by the second coordinate, this test can be performed efficiently.

• Run Grover’s algorithm on this oracle for p queries, looking for an x /∈ W such that H(x) =
H(x0) for some x0 ∈ W.

• Output (x, x0).

The first step uses p queries. If the algorithm is given an oracle from SC, the probability that
we find a distinguished input in the first step is

1− (1− λ)|W| = 1− (1− λ)p = Ω(pλ)

Grover’s algorithm [Gro96] finds an x such that O(x) = 1 with probability Ω(p2f) using p queries,
where f is the fraction of inputs to O that map to 1. Thus, f is the fraction of x such that x /∈ W
(which is most of them) and H(x) = H(x0) for some x0 ∈ W. If we found a distinguished input,
this fraction is (in expectation) at least λ.

If we found a distinguished input in the first step (which happens with probability Ω(pλ)),
Grover’s algorithm will find an x such that O(x) = 1 with probability Ω(p2λ) using p queries. Thus,
our algorithm uses 2p queries, and finds a collision with probability Ω(p3λ2).

If this algorithm is given a random oracle instead, the probability that we find a collision is
negligible. By adding an extra check that the output of the algorithm is indeed a collision (requiring
1 extra query since H(x0) has already been recorded), we get an algorithm using 2p+1 = q quantum
queries that distinguishes SC from random with probability Ω(p3λ2) = Ω(q3λ2), showing that c ≥ 3.

4.3 Application 3: Quantum Collision Resistance of Random
Functions

In this section, we tightly characterize the feasibility of finding collisions in a quantum random
oracle. Let M be the number of inputs, and N the number of possible outputs.

Previous Work. Brassard, Høyer, and Tapp [BHT97] give a quantum algorithm (henceforth called
the BHT algorithm) requiring O(M1/3) quantum queries to any two-to-one function f to produce a
collision with overwhelming probability. Ambainis [Amb03] gives an O(M2/3) algorithm (which we
will call Ambainis’s algorithm) for finding a collision in an arbitrary function f , guaranteed that it
contains at least one collision. This latter problem is related to the so-called element distinctness
problem, where one is asked to distinguish between an injective function and a function with a single
collision.
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On the lower bound side, most of the prior work has also focused on two-to-one functions.
In the case where the co-domain is at least as large as the domain, Aaronson and Shi [AS04],
Ambainis [Amb05], and Kutin [Kut05] prove an Ω(M1/3) lower bound for two-to-one functions. The
results also generalize to r-to-one functions. These results also imply an Ω(M2/3) lower bound for
the element distinctness problem.

While the above results provide matching upper and lower bounds for the problems they analyze,
they have a couple crucial limitations:

• Random functions are, with overwhelming probability, not r-to-one functions. Many images
will have only one pre-image, and others will have many pre-images. Thus, the above results
are not directly applicable to random functions, and hence do not apply to the cryptographic
applications discussed above.

• The above lower bounds are proved by showing that Ω(M1/3) queries are necessary to dis-
tinguish a two-to-one function from an injective function. Since a collision is a proof that
a function is not injective, this implies an Ω(M1/3) lower bound for finding a collision. In
essence, these works show that the collision detection problem — that is, deciding if there
exists a collision — is hard when the co-domain is at least as large as the domain. As the
collision detection problem is easier than the collision finding problem — actually computing a
collision — these lower bounds are stronger. However, the collision detection problem is trivial
in the case where the co-domain is smaller than the domain, as collisions are guaranteed to
exist. Therefore, the works mentioned above cannot be extended to prove anything about
the collision finding problem in this setting. For random functions, it is perfectly reasonable
to discuss the collision finding problem when the co-domain is much, much smaller than the
domain, and moreover, for cryptographic applications, the co-domain is almost always smaller
than the domain.

• Finally, the lower bounds only directly make implications about quantum algorithms with high
success probability (which we will call high-advantage algorithms). However, for cryptographic
applications, we desire security against adversaries that have even a very small success prob-
ability (so-called low-advantage algorithms): an attack that works one out of a million times
is still considered a break. Therefore, a complete lower bound would bound the number of
queries needed to achieve any desired success probability, or equivalently bound the success
probability of any algorithm making a specified number of queries. While it may be possible to
open up and re-work the proofs to make statements about low-advantage adversaries, existing
works do not do this and it is unclear what the result would be.

Yuen [Yue14] overcomes some of the above limitations by proving, in the case that the domain
and co-domain are the same size, the BHT algorithm does indeed produce a collision for random
functions after O(N1/3) queries. For a lower bound, Yuen proves that Ω(N1/5/ logN) queries are
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necessary to produce a collision, using a combination of the r-to-one lower bounds from [AS04] and
the quantum adversary method. However, the proof works by proving the indistinguishability of a
random function from a random injective function, and thus still requires the co-domain to be at
least as large as the domain. Moreover, it does not yield any concrete statements about adversaries
with low success probability.

Here, we completely resolve the quantum collision problem for random functions, showing that
Θ(N1/3) quantum queries are necessary and sufficient for for finding collisions. Our result also holds
with arbitrary domain and co-domain sizes, whereas prior works all required the co-domain to be at
least as large as the domain. As such, our result is the first to hold in the case where the co-domain
is much smaller than the domain and collisions are guaranteed to exist.

4.3.1 The Lower Bound

Theorem 4.9. There is a universal constant C such that the following holds. Let f : [M ] → [N ]
be a random function. Then any algorithm making q quantum queries to f outputs a collision for
f with probability at most C(q + 2)3/N . Moreover, if M ≤ N , then then any algorithm making q
quantum queries cannot even distinguish f from a random injective function, except with probability
at most Cq3/N .

Thus, to obtain a collision with bounded error requires q = Ω(N1/3) quantum queries. We prove
this theorem using Lemma 4.3.

The case M ≤ N. As a first step, we prove the theorem for M ≤ N . We will prove the distin-
guishing part of the theorem: any quantum algorithm making q quantum queries cannot distinguish
a random function from a random injective function, except with probability Cq3/N . This implies
that the probability of actually finding a collision in a random f is at most C(q + 2)3/N : we use
two extra queries to check if the collision is correct. The output of this check will distinguish the
two cases.

For the proof, we define distributions Dr on functions from [M ] to [N ], where sampling is obtained
by the following process:

1. Pick a random function g : [M ]→ [r].

2. Let S = {g(x) : x ∈ [M ]}. That is, S is the range of g.

3. Pick a random injective function h : S → [N ]. (Such functions exist since |S| ≤M ≤ N)

4. Output the function f = h ◦ g.

Another way of viewing the distribution Dr is in terms of collision profiles, used in Yuen’s original
proof [Yue14]. A collision profile counts, for each i, the number of image points of multiplicity i.
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Then the distribution Dr can be thought of as choosing a collision profile corresponding to a random
function from [M ] to [r], and then choosing a random function from [M ] to [N ] with the specified
collision profile.

We note three special cases of the distribution Dr:

• D1. This distribution just outputs a random constant function.

• DN . This distribution outputs a truly random function from [M ] to [N ]. Indeed, the function
g will be a random function, and the function h can be expanded to a random permutation
on [N ]. The composition is therefore a random function.

• D∞. This distribution outputs a random injective function from [M ] to [N ]. The function g

is, with probability 1, an injective function. Since h is injective, the composition h ◦ g is also
injective. Since h is a random injective function, the composition is random.

Therefore, our goal is to show that q quantum queries can only distinguish DN and D∞ with
probability Cq3/N . We need the following lemma:

Lemma 4.10. Fix k pairs (xi, yi) ∈ [M ] × [N ], and let p(r) = Prf←Dr [f(xi) = yi∀i ∈ {1, . . . , k}].
Then p is a polynomial in 1/r of degree at most k − 1.

Applying Lemma 4.3, we see that DN is indistinguishable from D∞ with probability π2(2q)3/3N .
Setting C = 8π2/3 < 27 prove this part of Theorem 4.9.

It remains to prove Lemma 4.10. Due to the symmetry of the distributions Dr, we have that
Prf←Dr [f(x) = y] = 1/N for any (x, r) ∈ [M ]× [N ]. Thus, the claim is true for k = 1. Now, assume
the claim is true for each k′ < k.

We can assume without loss of generality that all of the xi are distinct. If not, and xi = xj ,
there are two cases:

• yi = yj . In this case, we can delete the pair (xj , yj) since it is redundant. We then invoke
Lemma 4.10 using the remaining k − 1 tuples.

• yi 6= yj . Then p(r) = 0 since f(xi) cannot simultaneously equal yi and yj .

Let ` = |{yi : i ≤ k − 1}| be the number of distinct yi values, not including yk. Invoking
Lemma 4.10 inductively on the first k − 1 values, we see that

p′(r) = Pr
f←Dr

[f(xi) = yi∀i ∈ {1, . . . , k − 1}]

is a polynomial of degree at most k − 2 in 1/r. We now wish to study the conditional probability

Pr
f←Dr

[f(xk) = yk : f(xi) = yi∀i ∈ {1, . . . , k − 1}]
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Suppose yk = yi for some i < k. Since h is injective, this happens exactly when g(xk) = g(xi),
which happens with probability 1/r. Now suppose yk 6= yi for any i < k. This means g(xk) 6= g(xi)
for all i < k, which happens with probability 1 − `/r. In this case, h(g(xk)) = yk with probability
1/(N − `). Then the probability f(xk) = yk, conditioned on the other values, is (1−`/r)

N−` .
In either case, the value

Pr
f←Dr

[f(xk) = yk : f(xi) = ri∀i ∈ {1, . . . , k − 1}]

is a polynomial of degree 1 in 1/r. Combining with p′(r), we see that p(r) is a polynomial of degree
at most k − 1 in 1/r. This completes the proof of Lemma 4.10, and therefore proves Theorem 4.9
for the case M ≤ N .

The case M > N. If M > N , find some K such that KN ≥M . Suppose there was an algorithm
A that makes q queries to a random function f : [M ] → [N ], and outputs a collision x1, x2 with
probability ε. We now construct an algorithm B that makes q queries to a random function q :
[M ]→ [KN ] and outputs a collision with probability ε/K. B works as follows:

• Equate the sets [KN ] and [K]× [N ] using any arbitrary mapping.

• Let f : M → [N ] be the function obtained from g by dropping the [K] part of the output.

• B simulates A, and when A makes a query to f , B forwards the query to g, and drops the
[K] part of the response before returning the response to A. Since quantum operations are
reversible, we cannot just disregard the extra part. One approach is to uncompute the bits
using a second query to g. However, this doubles the number of queries used. Another better
option is to initialize the register where the [K] part will be written to as 1√

K

∑
i∈[K] |i〉.

Recall that quantum queries are typically implemented by adding the response of the query
into supplied register (mod K). After the query is performed, regardless of the output in
the [K] part, the state of the register will still be 1√

K

∑
i∈[K] |i〉, unentangled with the other

registers. Thus we can ignore the register and re-use it for subsequent queries.

• When A outputs a candidate collision (x1, x2), B outputs (x1, x2) as a collision for g.

We note that the [K] part of output of g is completely independent of A’s view. Also, if
f(x1) = f(x2), then g(x1) = g(x2) exactly when the [K] part of the outputs of g are the same in
both cases. This happens with probability 1/K, independent of A’s view. Thus, if A outputs a
collision for f with probability ε, B will output a collision for g with probability ε/K.

Now B solves the case where the co-domain (which has size KN) is larger than the domain
(which has size M). Therefore, ε/K ≤ C(q + 2)3/(KN), and so we have that ε ≤ C(q + 2)3/N .
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Remark. Notice that, even if we are only interested in high-advantage adversaries making N1/3

queries in the M > N case, when invoking Theorem 4.9 for M ≤ N , we will actually have a
low-advantage adversary making potentially far fewer than N1/3 queries. Therefore, the fact that
Theorem 4.9 handles low-advantage adversaries is crucial for this step, and we cannot rely on results
for only high-advantage adversaries, such as most results from the literature. For example, a result
showing q = Ω(N1/3) for high advantage adversaries in the M ≥ N case, when opened up, could
imply a bound of O(q/N1/3) for the success probability of a q query algorithm. Applying the
reduction above, we would obtain a bound of O(qM2/3/N) for the success probability of a q query
algorithm in the M > N setting. Such a result is weaker than what we obtain, and moreover
becomes meaningless when M = Ω(N3/2).

4.3.2 An Optimal Attack

Recall the following theorem of Ambainis [Amb03]:

Theorem 4.11 ([Amb03] Theorem 3). Let f : [M ′] → [N ] be a function that has at least one
collision. Then there is a quantum algorithm making O((M ′)2/3) quantum queries to f that finds
the collision with bounded error.

We use Ambainis’s algorithm as a black box to prove the following:

Theorem 4.12. Let f : [M ]→ [N ] be a random function, and suppose M = Ω(N1/2). Then there is
a quantum algorithm making O(N1/3) quantum queries to f which produces a collision with constant
probability.

The proof is simple, and basically follows the reduction used by Aaronson and Shi [AS04] to
prove their lower bound on the element distinctness problem. Let M ′ = N1/2/2. Assume for now
that M ′ ≤ M . Choose a random subset S ⊂ [M ] of size M ′. With probability approaching 1/e as
N goes to ∞, S will contain at least one collision for f . Let f ′ be the restriction of f to S, and run
Aimbanis’s algorithm on f ′. Then with probability essentially 1/e, Ambainis’s algorithm will return
a collision. The query complexity of Ambainis’s algorithm is O((M ′)2/3) = O(N1/3), as desired.
In the case where M � M ′, this can be repeated multiple times to obtain arbitrarily high success
probabilities.

If M ′ is not significantly smaller than M , then there is a constant probability p that no collisions
will be found. However, we can tweak the above algorithm to give us a collision with probability
arbitrarily close to 1− p.

4.4 Application 4: Lower Bound for Set Equality

In this section, we give an optimal lower bound for the Set Equality problem. In the set equal-
ity problem, two injective functions f and g are given with domain [M ] and codomain [N ] with
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N ≥ 2M , with the promise that either the ranges of f and g overlap completely, or they are dis-
joint. The goal is to distinguish the two cases. If the ranges are identical, then the BHT collision
finding algorithm [BHT97] can be adapted to find a claw of f and g: two points x1, x2 such that
f(x1) = g(x2). Thus, using O(M1/3) quantum queries, it is possible to distinguish the two cases.
Midrijanis [Mid04] shows a Ω(M1/5/ logM) lower bound for this problem, which is the previous best
lower bound.

We show that Ω(M1/3) queries are required to solve the Set Equality Problem, thus giving tight
upper and lower bounds. Improving the lower bound to Ω(N1/3) has important implications in
relating classical and quantum query complexity. In particular, Aaronson and Ambainis [AA11]
show that, for every permutation-symmetric function f , the classical randomized query complexity
D(f) is at most the ninth power of the quantum query complexity: D(f) = Õ(Q(f)9) (where Õ
hides logarithmic factors). This result uses Midrijanis’s lower bound for the set equality problem
as a black box. Improving the lower bound to Ω(N1/3) gives an improved D(f) = Õ(Q(f)7) for all
permutation-symmetric functions.

Theorem 4.13. Let f and g be injective functions from [M ] to [N ] (N ≥ 2M), conditioned on
either:

• The ranges of f and g are identical

• The ranges of f and g are distinct.

Then any algorithm making q quantum queries can only distinguish the two cases with probability at
most O(q3/M). In particular, any quantum algorithm achieving constant success probability must
make q = Ω(M1/3) quantum queries.

Note that Theorem 4.13 is an worst-case theorem. Below, we will prove an average-case version,
where f and g are random injective functions, subject to their ranges being identical or distinct.
However, in the case of Set Equality, there is a simple worst-case to average-case reduction showing
that these two problems equivalent. Namely, given an average-case distinguisher A, we can construct
a worst-case distinguisher B, which constructs random permutations σ1 and σ2, and simulates A’s
oracles as σ1 ◦ f ◦ σ2 and σ1 ◦ g ◦ σ2. Then the oracles seem by A are indeed random injective
functions, subject to their ranges either being identical or distinct.

We are now ready to prove Theorem 4.13. We consider three distributions on f, g:

(1) f = h ◦ f ′, g = h ◦ g′ where f ′, g′ are random permutations on [M ] and h is a random injective
function from [M ] to [N ]. Since f ′ and g′ have the same range, f and g are random injective
functions, subject to their ranges being identical.

(2) f = h◦f ′, g = h◦g′ where f ′, g′ are random functions from [M ] to [M ] and h is still a random
injective function from [M ] to [N ].
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(3) f ′, g′ are random functions from [M ] to [r] where r ≥M , S is the union of the ranges of f ′, g′,
and h is a random injective function from S to [N ] (since |S| ≤ 2M ≤ N , such functions exist).
As r goes to infinity, f ′ and g′ become random injective with distinct ranges, with probability
approaching 1. Then f and g are random injective functions with distinct ranges.

We now argue that case (1) is indistinguishable from case (2), which is indistinguishable from
case (3) as r goes to infinity, which completes the proof.

The only difference between (1) and (2) is that f ′ and g′ are switched from random injective
functions with co-domain M to random functions. Theorem 4.9 shows that the probability of
distinguishing these two cases is O(q3/M).

Notice that (2) is actually identical to (3) in the case r = M . Indeed, the set S in case (3) for
r = M can be extended to [M ] without changing the distribution of outputs. Therefore, we actually
need to show that case (3) with r = M is indistinguishable from case (3) with r =∞.

Now, think of f ′ and g′ as a single function with domain [M ] × {0, 1} ≡ [2M ] and range [r].
That is,

(f ′, g′)(x) =

f ′(x) if x ≤M

g′(x−M) if x > M

Similarly, think of f and g as a single function from [2M ] to [N ]. Then in case (3), the combined
function (f ′, g′) is just a random function. Then case (3) actually corresponds to the distributions
Dr from Section 4.3 on functions from [2M ] to [N ]. The analysis from that section shows that DM
and D∞ are indistinguishable, except with probability at most O(q3/M).

Piecing together, Cases (1) and (3) are indistinguishable, except with probability O(q3/M),
which completes the proof of Theorem 4.13.

4.5 Application 5: Small-Range Distributions

We introduce a new tool, called small-range distributions, which allow for simulating a large oracle
using very few samples. We then develop new quantum oracle techniques to prove that the simulated
oracle is indistinguishable from the large oracle, showing that the simulation is effective.

Let X and Y be sets. Given a distribution D on Y, define the small range distribution SRDr (X )
as the following distribution on functions from X to Y:

• For each i ∈ [r], chose a random value yi ∈ Y according to the distribution D.

• For each x ∈ X , pick a random i ∈ [r] and set O(x) = yi.

We will often omit the domain X when is is clear from context. An alternate view of this function
is to choose g ← D[r] and f ← [r]X , and output the composition g◦f . That is, SRDr (X ) = D[r]◦[r]X .
In other words, we choose a random function f from X to [r], and compose it with another random
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function g from [r] to Y, where outputs are distributed according to D. We call this distribution
a small-range distribution because the set of images of any function drawn from the distribution is
bounded to at most r points, which for r � Y will be a small subset of the co-domain. Notice that,
as r goes to infinity, f will be injective with probability 1, and hence for each x, g(f(x)) will be
distributed independently according to D. That is, SRD∞(X ) = DX .

We wish to show that SRDr (X ) for “small” r is indistinguishable from the corresponding “large-
range” function DX where every output is sampled independently according to D. This will allow us
to simulate the large-range DX using relatively few samples from D. For this, we need the following:

Lemma 4.14. Fix k. For any X , the probabilities in each of the marginal distributions of SRDr (X )
over k inputs are polynomials in 1/r of degree k.

We can then use Lemma 4.3 to bound the ability of any quantum algorithm to distinguish
SRDr (X ) from SRDr (X ) = DX :

Corollary 4.15. The output distributions of a quantum algorithm making q quantum queries to an
oracle either drawn from SRDr (X ) or DX are `(q)/r-close, where `(q) = π2(2q)3/3 < 27q3.

We observe that this bound is tight: in Section 4.5.2 we show that the quantum collision finding
algorithm of Brassard, Høyer, and Tapp [BHT97] can be used to distinguish SRDr (X ) from DX

with optimal probability. This shows that Lemma 4.3 is tight. In Section 4.5.1, we strengthen
Corollary 4.15, showing that a small range distribution is indistinguishable from a random function,
even when given additional information about the function.

We now prove Lemma 4.14:

Proof of Lemma 4.14. Our goal is to show that, for each of the marginal distributions over k
inputs to SRDr , each probability is a polynomial in 1/r of degree at most k.

Fix some xi and yi for i ∈ [k]. We consider the probability that O(xi) = yi for all i ∈ [k]. We
can assume without loss of generality that the xi are distinct. Otherwise, there are i, j such that
xi = xj . If yi 6= yj , then the probability is 0 (O is not a function in this case). If yi = yj , the
O(xj) = yj condition is redundant and can be removed, reducing this to the k−1 case. By induction
on k, the resulting probability is a polynomial of degree at most k − 1 < k.

Recall that SRDr = D[r] ◦ [r]X and D is a distribution on Y. Let O1 ← [r]X and O2 ← D[r]. Let
O′1 be the restriction of O1 to {x0, ..., xk−1}. Each O′1 then occurs with probability 1/rk. Now,

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = Pr
O1←[r]X ,O2←D[r]

[O2(O1(xi)) = yi∀i ∈ [k]]

= Pr
O′1←[r]{x0,...,xk−1},O2←D[r]

Pr[O2(O′1(xi)) = yi∀i ∈ [k]]

= 1
rk

∑
O′1

Pr
O2←D[r]

[O2(O′1(xi)) = yi∀i ∈ [k]]
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We now associate with each O′1 a partition P of [k] into r disjoint subsets Pj for j ∈ [r]. The
elements of Pj are the indices i such that O′1(xi) = j. Thus:

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
P=(Pj)

Pr[O2(j) = yi∀j ∈ [r],∀i ∈ Pj ]

Since O2 ← D[r], the distribution of outputs of O2 for each j are independent. Thus the
probabilities Pr[O2(j) = yi∀i ∈ Pj ] are also independently distributed. Thus,

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
P=(Pj)

∏
j∈[r]

Pr[O2(j) = yi∀i ∈ Pj ]

Since there are only k elements, at most k of the Pjs are non-empty. Thus, we can associate to
each partition P another partition Q of [k] into kQ ≤ k non-empty subsets, and a strictly increasing
function from fQ from [kQ] → [r]. The association is as follows: Qj′ = PfQ(j′) and Pj = ∅ if j has
no pre-image under fQ. This allows us to write:

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
Q=(Qj′ )

∑
fQ

∏
j′∈[kQ]

Pr[O2(fQ(j′)) = yi∀i ∈ Qj′ ]

We now notice that, for fixed j′, if the yi are all equal for i ∈ Qj′ , then since O2 ← D[r],
Pr[O2(fQ(j′)) = yi∀i ∈ Qj′ ] = D(yi) where i is any index in Qj′ . Otherwise, Pr[O2(j) = yi∀i ∈
Qj′ ] = 0 since O2 needs to be a function. Thus we can write Pr[O2(j) = yi∀i ∈ Qj′ ] = D(yi)σ(Qj′)
where σ(S) is 1 if yi are all equal for i ∈ S, and 0 otherwise. Thus,

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
Q=(Qj′ )

∑
fQ

∏
j′∈[kQ]

D(yi)σ(Qj′)

The summand does not depend on fQ, so let cQ be the number of fQ. Then we can write

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
Q=(Qj′ )

cQ
∏

j′∈[kQ]

Pr[O2(j′) = yi∀i ∈ Qj′ ]

The Q we are summing over are independent of r, as is the product in the above expression. cQ

is equal to the number of ways of picking kQ distinct elements of [r], which is
(
r
kQ

)
, and is thus

polynomial of degree kQ in r (and hence a polynomial of degree at most k). Therefore, performing
the sum, PrO←SRDr [O(xi) = yi∀i ∈ [k]] is a polynomial of degree at most k in r, divided by rk. The
result is a polynomial of degree at most k in 1/r.
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4.5.1 A Strengthening of Corollary 4.15

We now strengthen Corollary 4.15. Recall that we can think of the small range distributions as the
composition of a random function f ∈ [r]X and a random function g ∈ Y [r]. Corollary 4.15 shows
that the small range distribution g ◦ f is indistinguishable from a random function h ∈ YX using
quantum queries. Here, we show that this holds even if the adversary is given (quantum) oracle
access to the function f .

Theorem 4.16. Consider two distributions D1 and D2 on oracles from X into [r]× Y:

• D1: generate a random oracle f : X → [r] and a random oracle h : X → Y, and output the
oracle that maps x to (f(x), h(x)).

• D2: generate a random oracle f : X → [r] and a random oracle g : [r] → Y, and output the
oracle that maps x to (f(x), g(f(x))).

Then the probability that any q-quantum query algorithm distinguishes D1 from D2 is at most
O(q3/r).

Proof. Consider the following distributions on oracles (f(m), h(m)):

1. f and h are uniformly random oracles. This is the distribution D1.

2. Let O : X → [r], f ′ : [r] → [r] and h′ : [r] → Y be random oracles. Let f(x) = f ′(O(x)) and
h(x) = h′(O(x)). Think of (f, h) as a single random oracle from X into [r] × Y, (f ′, h′) as a
single random oracle from [r] into [r]×Y, and (f, h) = (f ′, h′)◦O. We therefore have that (f, h)
itself is a small-range distribution. Thus, Corollary 4.15 shows that this is indistinguishable
from (1), except with probability O(q3/r).

3. Let O, h′, f, h be as in 1, except let f ′ be a random permutation on [r]. Theorem 4.9 shows
that this distribution is indistinguishable from (2) except with probability O(q3/r).

4. Let f ′, h′, h be as in (3), except now draw f as a random function from X to [r], and set
O(m) = f ′

−1(f(x)). This is the same distribution on oracles (f, h) as in (3). The oracle seen
by the adversary is (f(m), h(m) = h′(f ′−1(f(m))) where f, h are random and f ′ is a random
permutation. Now define P (x) = h′(f ′−1(x)) so that h(x) = P (f(m)). Since h′ is random and
f ′ is a permutation, this distribution on P is random. Therefore, this is distribution D2

It follows that D1 and D2 are indistinguishable, except with probability O(q3/r) as desired.

4.5.2 An Optimal Attack on Small-Range Distributions

In this section, we give a quantum distinguisher that distinguishes SRYR from a random function with
probability (asymptotically) matching the bound of Corollary 4.15. Our algorithm is basically the
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collision finding algorithm of Brassard, Høer, and Tapp [BHT97], with a check at the end to verify
that a collision is found. The algorithm has oracle access to a function O from X to Y, which is
either SRYr or a random function. It is given as input the integer r, the number of queries q, and
operates as follows:

• Let p = (q−1)/2. Pick a set S of p points in X at random, and check that there is no collision
on S by making p classical queries to O. Sort the elements of S, and store the pairs (s,O(s))
as a table for efficient lookup.

• Construct the oracle O′(x) =

1 if x /∈ S and O(x) = O(s) for some s ∈ S

0 otherwise

• Run Grover’s algorithm [Gro96] on O′ for p iterations to look for a point x such that O′(x) = 1.

• Check that there is an s ∈ S such that O(x) = O(s) by making one more classical query to O.

Before analyzing this construction, we explain what Grover’s algorithm does. It takes as input an
oracle O′ mapping some space X into {0, 1}, and tries to find an x such that O′(x) = 1. Specifically,
if N points map to 1, then after q queries to O′, Grover’s algorithm will output an x such that
O′(x) = 1 with probability Θ(q2N/|X |)

We now analyze this construction. The first step takes p queries to O. If we find a collision, we
are done. Otherwise, we have p points that map to p different values. Call this set of values T . The
oracle O′ outlined in the second step makes exactly one query to O for each query to O′. The number
of points in x such that O′(x) = 1 is the number of points x in X \ S (which is |X| − p) such that
O(x) ∈ T . In the random oracle case, the probability that O(x) is one of p random values is p/|Y|,
so the expected number of such x is (|X |− p)p/|Y|. Thus, after p iterations, Grover’s algorithm will
output such an x with probability Θ(p3(|X | − p)/|X ||Y|)). In the SRYr case, since there are only
r possible outputs, the probability that x maps to T is p/r, so the expected number of such x is
p(|X | − p)/r. Thus, Grover’s algorithm will output such an x with probability Θ(p3(|X | − p)/r|X |).

The difference in these probabilities is Θ(p3(1/r − 1/|Y|)(|X | − p)/|X |. If we let |Y| be at least
2r and |X | at least 2p + 1 = q, we see that we distinguish SRYr from random with probability
Ω(p3/r) = Ω(q3/r), thus matching the bound of Corollary 4.15. This shows that the corollary is
optimal, and hence Lemma 4.3 is optimal for the case ∆ = 0.

4.6 Application 6: An Oracle Indistinguishability Theorem

In this section, we prove a general theorem about the indistinguishability of oracles by quantum
queries. The setup is as follows: there is a set Y and two distributions D0, D1 on Y. We consider
two cases, where either (1) D0 and D1 are statistically indistinguishable, or (2) where D0 and D1

are computationally indistinguishable. We now consider the oracles DX0 and DX1 for arbitrarily large
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sets X , and ask whether they are statistically (resp. computationally) indistinguishable. If they are,
we call the distributions D0 and D1 statistically (resp. computationally) oracle indistinguishable.

We show that oracle indistinguishability is actually equivalent to regular indistinguishability:

Theorem 4.17. Let D0 and D1 be efficiently sampleable distributions on a set Y, and let X be
some other (potentially exponential-sized) set. Suppose A is a computationally unbounded (resp.
efficient) quantum algorithm that uses q quantum queries to distinguish oracles DX0 from DX1 with
advantage ε. Then there is a computationally unbounded (resp. efficient) quantum algorithm B that
distinguishes D0 from D1 with advantage ε2/216q3.

In particular, if D0 and D1 are statistically (resp. computationally) indistinguishable, then they
are also statistically (resp. computationally) oracle indistinguishable.

If allowing only classical queries, then Theorem 4.17 is straightforward to prove. Since the
adversary only makes q classical queries to the oracle H drawn from DXb , its view can be simulated
efficiently using only q samples from Db. Essentially, every classical query is answered using a new
sample. We thus obtain an algorithm distinguishing q samples from D0 from D1 with probability
ε. A simple hybrid argument then shows how to distinguish a single sample of D0 from D1 with
probability ε/q. The reduction is very efficient, and therefore works in both the computational and
statistical settings.

In the quantum query case, however, the above argument fails because the adversary can query
on a superposition of all exponentially-many inputs. Thus perfect simulation of DXb would require
exponentially-many samples of Db. The result would be a distinguisher that has advantage ε/|X |,
which is negligible even for large ε. Moreover, it is not clear how to carry out the reduction efficiently.

In the statistical setting, it is straightforward to prove a weaker version of Theorem 4.17 using
the hybrid method of [BBBV97]. However, the argument inherently uses the statistical closeness
of D0 and D1, and it is not clear how ot extend the argument to the computational setting, which
requires a reduction. We now show how to give such a reduction using small range distributions.

Proof of Theorem 4.17. Let B be an (efficient) quantum adversary A that distinguishes DX0 from
DX1 with probability ε, for distributions D0 and D1 over Y. That is, there is some set X such that∣∣∣∣∣ Pr

O←DX0
[B|O〉() = 1]− Pr

O←DX1
[B|O〉() = 1]

∣∣∣∣∣ = ε .

Our goal is to construct an (efficient) quantum algorithm B that distinguishes a single sample of
D0 from a sample of D1. To this end, choose r so that `(q)/r = ε/4, where `(q) is the polynomial from
Corollary 4.15 (namely `(q) = 27q3). That is, r = 4`(q)/ε. No quantum algorithm can distinguish
SRDbr (X ) from DXb with probability greater than `(q)/r = ε/4. Thus, it must be that∣∣∣∣∣ Pr

O←SRD0
r (X )

[A|O〉() = 1]− Pr
O←SRD1

r (X )
[A|O〉() = 1]

∣∣∣∣∣ ≥ ε/2



CHAPTER 4. OTHER NEW TECHNIQUES 56

We now define r+ 1 hybrids Hi as follows: For j = 0, ..., i− 1, draw yj from D0. For j = i, ..., r− 1,
draw yj from D1. Then give B the oracle O where for each x, O(x) is a randomly selected yi. Hr is
the case where O ← SRD0

r , and H0 is the case where O ← SRD1
r . Hence H0 and Hr are distinguished

with probability at least ε/2. Let

εi = Pr
O←Hi+1

[
A|O〉() = 1

]
− Pr
O←Hi

[
A|O〉() = 1

]
be the probability that B distinguishes Hi+1 from Hi. Then |

∑r
i=1 εi| ≥ ε/2.

We construct an algorithm B that distinguishes between D1 and D2 with probability ε/2r. B,
on inputs y, does the following:

• Choose a random i ∈ [r].

• Construct a random oracle O0 ← [r]X .

• Construct random oracles O1 ← D
{0,...,i−1}
0 and O2 ← D

{i+1,...,r−1}
1 .

• Construct the oracle O where O(x) is defined as follows:

– Compute j = O0(x).

– If j = i, output y.

– Otherwise, if j < i, output O1(j) and if j > i, output O2(j).

• Simulate A with the oracle O, and output the output of A.

Let Bi be the algorithm B using i. If y ← D0, A sees hybrid Hi+1. If y ← D1, A sees Hi.
Therefore, we have that

Pr
y←D0

[Bi(y) = 1]− Pr
y←D1

[Bi(y) = 1] = εi .

Averaging over all i, we get that B’s distinguishing probability is

∣∣∣∣ Pr
y←D0

[B(y) = 1]− Pr
y←D1

[B(y) = 1]
∣∣∣∣ =

∣∣∣∣∣1r
r∑
i=1

εi

∣∣∣∣∣ ≥ ε

2r = ε2

8`(q) .

Thus, B is an (efficient) algorithm that distinguishes D0 from D1 with non-negligible probability.
Hence, it breaks the indistinguishability of D0 and D1. We note that the above conversion from A to
B is efficient, meaning the proof works equally well in the computational and statistical settings.

4.6.1 A Strengthening of Theorem 4.17 in the Statistical Setting

Here, we generalize Theorem 4.17 to the case where the oracles the adversary is distinguishing have
different distributions for every output. That is, the adversary is given an oracle O from either of
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two distributions on oracles. The oracle distributions are such that each output is independently
(though not necessarily identically) distributed, where Dx is the distribution of outputs for input
x for the first oracle distribution, and D′x is the corresponding output distribution for the second
oracle distribution. We further require that Dx and D′x are statistically close, and want to argue
that the resulting oracle distributions are statistically indistinguishable by quantum queries.

Theorem 4.18. Let X and Y be sets, and for each x ∈ X , let Dx and D′x be distributions on Y
such that |Dx − D′x| ≤ ε for some value ε that is independent of x. Let O : X → Y be a function
where, for each x, O(x) is drawn from Dx, and let O′(x) be a function where, for each x, O′(x) is
drawn form D′x. Then any quantum algorithm making at most q queries to either O or O′ cannot
distinguish the two, except with probability at most

√
216q3ε.

We note that if all the Dx are the same and all the D′x are the same, then Theorem 4.18 follows
immediately form the statistical case of Theorem 4.17. We now explain how to prove the more
general case..

We first suppose that each of the probabilities in each of the distributions Dx and D′x are rational.

Claim 4.19. If each of the probabilities in Dx and D′x are rational, then any quantum algorithm
making q quantum queries can only distinguish O from O′ with probability

√
216q3ε.

Before proving this claim, we explain how it proves Theorem 4.18. Fix any quantum algorithm
A. The distinguishing probability for any rational collection of distributions Dx and D′x is bounded
by
√

216q3 maxx |Dx −D′x|. But the distinguishing probability of A is a continuous function of the
probabilities in the distributions Dx and D′x, and the pairs of rational distributions are dense in the
set of all pairs of distributions. Therefore, the bound of

√
216q3 maxx |Dx −D′x| applies for all pairs

of distributions.
Now we prove the claim:

Proof. Let r be the smallest integer such that each of the probabilities in each of the distributions
Dx and D′x can be represented as a rational number with denominator r. Observe that we can take
ε to be an integer times 2/r, say 2s/r. Let Z = [s+ r]. Let E be the uniform distribution on [r] and
E′ the uniform distribution on [r]+s = {s+1, ..., s+r}. The probabilities in E and E′ are the same
on [s] + (r− s) = {s, ..., r}, and are 1/r on[s] and [s] + r respectively. Therefore |E−E′| = 2s/r = ε.
We now construct functions fx such that if z ← E, fx(y) is distributed according to Dx and if
z ← E′, fx(y) is distributed according to D′x. For each y ∈ Y, let p/r be the probability under Dx

and p′/r the probability under D′x. Suppose p ≤ p′. Then we will choose p elements of [s] + (r − s)
that have not been chosen before, and let fx evaluate to y on those elements. We will also choose
p′ − p elements of [s] + r and let fx be y on those elements as well. We treat the p′ < p case
similarly. Then fx evaluates to y with the desired probabilities, so it remains to show that we never
run out elements. Since |Dx − D′x| ≤ 2s/r, we will never run out of elements in [s] + r or [s]. If
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|Dx −D′x| < 2s/r, we will run out of elements in [s] + (r − s). When we run out, however, instead
of picking an element in [s] + (r − s), we can pick two elements, one in each of [s] and [s] + r, and
still have the correct probability.

Now that we can generate Dx = fx ◦E and D′x = fx ◦E′, we can generate O and O′ differently.
Let P be the set of oracles from X to Z where each output is drawn according to E, and let P ′

be the set of oracles where each output is drawn from E′. Then letting O(x) = fx(P (x)) and
O′(x) = fx(P ′(x)) gives the correct distributions for O and O′. Suppose A distinguishes O from O′

with probability σ. Then we can easily construct an algorithm B that distinguishes P and P ′ with
probability σ.

Let ` be some integer to be chosen later. We replace P and P ′ with small-range distributions on `
samples of E and E′ respectively. Applying Corollary 4.15 twice shows that B must still distinguish
P and P ′ with probability at least σ − 2× 27q3/`. But now the difference between the distribution
P and P ′ is only ` samples of either E or E′, so the distinguishing probability is at most `ε. Thus
σ ≤ `ε + 2 × 27q4/` for any `. Setting ` =

√
2× 27q3/ε minimizes this quantity, yielding

√
216q3ε

as desired.



Chapter 5

The Quantum Random Oracle
Model

In this chapter, we explore the quantum random oracle model.

The classical random oracle model. The random oracle model was introduced by Bellare and
Rogaway [BR93] as a way to analyze protocols that had so far resisted security proof. In the random
oracle model, a hash function h is modeled as a truly random function H that can only be evaluated
— either in the protocol or by the adversary — by making oracle queries to H. Most protocols using
hash functions only make black-box use of the function1, and so these protocols can be rewritten as
protocols making oracle queries to H. Then the security of the scheme is analyzed in this setting.
The random oracle model intuitively captures adversaries that do not exploit any particular structure
of the hash function h, and instead only evaluate h on arbitrarily chosen inputs.

The advantage of the random oracle model is that many of the most efficient schemes only can
be proved secure in this model. The disadvantage is that a security proof in the random oracle
model does not give a formal proof in the plain model (without random oracles), and therefore only
provides a heuristic security argument.

Modeling random oracles in a quantum world. When the adversary is equipped with a
quantum computer, the most efficient schemes will still likely still lack standard model proofs, and
therefore the random oracle heuristic remains important. How should the oracle be modeled? One
solution is to simply model the random oracle as a classical oracle. In this setting, many classical
security proofs carry through, assuming the underlying primitives are quantum resistant. However,
when implementing the protocol in the standard model, the random oracle H is replaced with a

1Some exceptions would be protocols using non-black-box tools such as zero knowledge proofs and program obfus-
cation

59
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hash function h, which the adversary knows the code for. Thus, in the real world, the adversary can
evaluate h on a quantum superposition of inputs. Such an evaluation is not exploiting any particular
structure of h: it is simply using the fact that the adversary can evaluate any classical function on
a superposition. Therefore, to maintain the intuition of capturing quantum attacks that do not
exploit the structure of h, we need to model the random oracle H as a quantum accessible oracle.

Unfortunately, many classical random oracle security proofs fail when quantum queries are al-
lowed. A couple potential issues arise:

• In a security reduction in the classical random oracle model, the reduction algorithm can see
the adversary’s queries, and try to use the query inputs to solve some underlying problem.
If the adversary makes a quantum query, the reduction algorithm can only learn anything
about the query by measuring it, which destroys the state. As a consequence of the no-cloning
theorem in quantum physics, the reduction will then be unable to give the correct state back to
the adversary when it answers the query. A quantum adversary can, for example, then detect
that the state was tampered with and abort, preventing the reduction from making further
use of the adversary.

• An efficient classical algorithm can only make a polynomial number of queries, and thus can
only see a polynomial number of outputs of the oracle. This fact is crucial in many classical
arguments. For example, if the reduction answers the queries with a distribution that are only
ε-close to random, the success probability of an algorithm that makes q classical queries will
only be affected by qε. If ε is negligible, so is qε.

However, a quantum adversary, given even one query, can query on a quantum superposition
of all possible inputs, and therefore “see” the entire oracle. In the ε-close setting above, the
straightforward argument bounds the affect on the adversary to 2nε, where n is the number
of input bits to the oracle. Even if ε is negligible, 2nε could be greater than 1, resulting in a
meaningless bound.

• A similar problem arises when a reduction embeds a challenge into a random oracle query. In
many classical proofs, the reduction picks a random oracle query, and embeds some challenge
into the answer for that query, and hopes that the adversary “uses” that query, which happens
with probability 1/q where q is the number of oracle queries made.

It is not clear how to translate this strategy to the case where the adversary can query on a
superposition. If the reduction embeds the challenge into all answers for a random query, the
answers will be inconsistent with previous and future queries. Moreover, the answer itself will
not consist of independent random responses. If the reduction embeds the challenge into just
a single output consistently across all queries, the adversary is exponentially unlikely to use
that output. The result is that the reduction is exponentially unlikely to succeed.
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Thus proving security in the quantum random oracle model will often require new proof strate-
gies specifically tailored to quantum adversaries that can make quantum queries to the oracle. In
this section, we present several such proofs. First, however, we show that the quantum random
oracle model is “stronger” that the classical model by exhibiting a scheme that is secure in the
classical random oracle mode (against quantum adversaries) but is insecure under quantum queries.
Moreover, implementing the random oracle with a specific type of concrete hash function results
in a classically secure protocol, but any instantiation of the random oracle results in a quantum
insecure protocol. Our separation gives concrete support for the claim that the quantum random
oracle model is the “right” model for quantum adversaries.

5.1 A Separation

Here, we formalize the above arguments. In particular, under appropriate computational assump-
tions, we give a two party protocol in the random oracle model such that:

• The protocol is secure against classical adversaries when the random oracle is instantiated with
an appropriate hash function.

• The protocol is secure against quantum and classical adversaries that only have classical access
to the random oracle.

• The protocol is insecure against quantum adversaries that are given quantum access to the
random oracle.

• The protocol is insecure against quantum adversaries when the random oracle is instantiated
with any hash function.

This highlights the need for defining allowing quantum access to random oracles in the quantum
setting, as classical access does not model the types of attacks the adversary can perform.

We note that our results rely on assumptions that are somewhat non-standard in the crypto-
graphic community. Nonetheless, we argue below that the assumptions are reasonable.

5.1.1 Preliminaries

Identification Schemes. An identification scheme consists of three efficient algorithms (Gen,
Prove,Ver) where Gen outputs a key pair (sk, vk). The joint execution of Prove(sk) and Ver(vk)
then defines an interactive protocol between the prover Prove and the verifier Ver. At the end of
the protocol Ver outputs a decision bit b ∈ {0, 1}. We assume completeness in the sense that for
any honest prover the verifier accepts the interaction with output b = 1. Security of identification
schemes is usually defined by considering an adversary A that first interacts with the honest prover
to obtain some information about the secret key. In a second stage, the adversary then plays the
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role of the prover and has to make a verifier accept the interaction. We say that an identification
scheme is sound if the adversary can convince the verifier with negligible probability only.

Assumptions. We will need to make several assumptions for our results. First, we will need
an identification protocol that is secure against quantum adversaries. Such protocols can be built
from any EUF-CMA secure signature scheme (that is, any signature scheme secure against quantum
adversaries making classical signing queries), which can in turn be built from any quantum-immune
one-way function by translating [Rom90] to the quantum setting.

We will also need to make some slightly non-standard assumptions. The first says that parallel
computation can only result in a bounded speedup.

Assumption 1 (Bounded Parallel Speed-Up). There is a constant α such that any computation
running in parallel time t can be computed sequentially using time αt.

Assumption 1 reflects the fact that in the real world there is only a concrete and finite amount
of equipment available that can contribute to such a performance gain. Indeed, if there are only α
processors available, any parallel-time t-time computation on the processors can be carried out in
time αt on a single processor.

For any integer k, let t = C2k/2 be the number of queries that Grover’s algorithm takes to find
pre-images with probability 1 − O(2−k/2) on functions of output size k. We will say a function f

is a quantum-gap one-way function with output size k if no classical algorithm running in parallel
time t · λO(1) can invert f on a random input, except with probability at most 1/2, where λO(1)

represents the running time of f .

Assumption 2 (Quantum-gap hash functions). For some k = O(log λ), there exist quantum-gap
gap one-way functions whose evaluation time is poly(λ) and have output length k.

To see why Assumption 2 is reasonable, consider an “ideal” one-way function f where finding
pre-images classically requires time essentially equal to a brute-force search. More precisely, for
output size of k bits (and input size much larger than k bits), and given classical (sequential) time
t, the probability of inverting f on a random input is at most approximately t/2k. Such ideal
behavior is commonly assumed from existing hash function candidates such as SHA-256. Using
Assumption 1, the probability of inverting f in parallel time t is at most αt/2k. Setting t = C2k/2,
we get a probability of Cα/2k/2, which is less than 1/2 for k ≥ 2 log(Cα) + 2, a constant (whereas
we allow k = O(log λ)). Of course, hash functions usually have k as big as the security parameter
(for example, SHA-256 has k = 256), whereas we need such hash functions even for very small k.
Such functions can be achieved by simply truncating the output of a longer function to k bits.
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5.1.2 Construction

We now present our identification scheme between a prover Prove and a verifier Ver. The main idea
is to augment a (quantum) secure identification protocol (Gen,Prove′,Ver′) by an inverting stage for
a function f . In the first stage, the verifier checks if the prover is able to invert f on random inputs
in a given amount of time. If inversion is successful, the verifier accepts. Otherwise, it reverts to
running protocol between Prove′ and Ver′, and accepts if only if the (Prove′,Ver′) accepts.

If f is a quantum-gap one-way function, and the verifier allows time t = C2k/2 ·λO(1) (where the
λO(1) represents the time required to evaluate the function) for inversion, then any classical adversary
has probability 1/2 of inverting. By having multiple inversion challenges, we can make a classical
adversary’s success probability arbitrarily small, and hence the soundness of the augmented protocol
reduces to the soundness of the underlying protocol. However, regardless of how f is instantiated,
a quantum adversary can, in time t, invert f with high probability, causing the verifier to accept
and thus breaking the protocol. Therefore, (Gen,Prove,Ver) is classically secure for some f , but
quantum insecure for any f .

We can extend this to the case where f is modeled as a random oracle H. Here, in time t, only
t sequential queries can be made to H, and by Assumption 1, only αt parallel queries can be made.
Then it is easy to see that with classical queries, an adversary can only invert f with probability
at most αt/2k. Again, setting t = C2k/2, this value is less than 1/2 for sufficiently large k, and by
having multiple inversion challenges, a classical adversary will fail with overwhelming probability.
However, using t quantum queries, H can be inverted with near certainty. Thus, the protocol is
secure in the classical random oracle model (even against quantum adversaries) but insecure in the
quantum random oracle model.

Construction 5.1. Let (Gen,Prove′,Ver′) be a quantumly secure identification protocol. Define
ProveH ,VerH as the following augmented random oracle protocols, where the domain of H is X and
the output size of H is k = O(log λ) bits for a security parameter λ. Let t = C2k/2 = λO(1) be the
number of queries required by Grover’s algorithm. Let n = O(λ) be some parameter.

Verification. The algorithm VerH works as follows.

• VerH first initializes a counter c.

• For i = 1, ..., n,

– choose a random xi ∈ X , compute yi = H(xi), and send yi to the prover.

– For j = 1, . . . , t, compute H(it+ j), and discard the result.

– If at any point prior to computing H(it+ t), VerH receives an x′i ∈ X , check if H(x′i) =
H(xi). If equality holds, set c← c+ 1.

– Otherwise, continue.
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• If c = n, terminate and accept.

• Otherwise, initiate the Ver′ protocol with the prover.

• If Ver′ accepts, VerH accepts. If Ver′ rejects, VerH rejects.

Proving. The algorithm ProveH works as follows. Upon receiving each yi from the verifier, ProveH

does nothing and waits. Then when the verifier moves to initiating Ver′, the prover initiates the
Prove′ protocol.

Completeness of the (Gen,Prove,Ver) protocol follows easily from the completeness of the un-
derlying (Gen,Prove′,Ver′) scheme. We now move to arguing (in)security. For simplicity, we will
consider evaluating H as taking unit time. Then each iteration of the inversion stage allows time
t = C2k/2. In time t, Grover’s algorithm can invert H on one of the yi with probability 1−O(2−k/2),
regardless of whether f is a quantum random oracle or implemented by a concrete hash function.
Thus it can invert all of the yi with probability at least 1−O(n2−k/2) = 1−O(n/λO(1)). Choosing
n to be a sufficiently small polynomial in λ, the next two Lemmas easily follow:

Lemma 5.2. (Gen,Prove,Ver) is insecure in the quantum random oracle model.

Lemma 5.3. (Gen,Prove,Ver) is insecure against quantum adversaries for any concrete instantia-
tion of the oracle H by a function f .

On the positive side, we consider two possible scenarios. In the first, we implement H with
any quantum-gap one-way function f , and consider security against only classical adversaries. The
adversary has parallel time t to for each yi to invert f . By the quantum-gap property, the adversary
succeeds for each yi with probability at most 1/2. Therefore it inverts f on all the yi with probability
1/2λO(1) = negl. In the second case, we leave H as an oracle, consider both quantum and classical
adversaries, but only allow classical access to the random oracle. In this setting as well, the adversary
only succeeds at inverting every challenge with negligible probability. Therefore, the security of
(Gen,Prove,Ver) reduces to the security of (Gen,Prove′,Ver′). Thus, we obtain the following:

Lemma 5.4. If (Gen,Prove′,Ver′) is secure, then (Gen,Prove,Ver) is secure against classical adver-
saries when H is implemented by a quantum-gap one-way function f .

Lemma 5.5. If (Gen,Prove′,Ver′) is secure, then (Gen,Prove,Ver) is secure against both classical
and quantum adversaries that are limited to making classical queries to H.

Therefore, if we want the random oracle model to best represent the real world (in which quantum
algorithms can always break the scheme), we need the random oracle to be quantum accessible.
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5.2 Signatures in the QROM

Now we discuss how to build digital signatures that are secure in the quantum random oracle model
(QROM).

5.2.1 GPV Signatures

Here we show that the signature scheme of Gentry, Peikert, and Vaikuntanathan [GPV08] is secure
in the QROM. The GPV signature scheme is closely related to of the Full Domain Hash [BR93]
scheme, and is build from pre-image sampleable functions (PSFs), which can in turn be build from
lattices. We give a stateless deterministic variant — [GPV08] give a stateful randomized variant,
and the stateless randomized protocol is insecure.

Construction 5.6. Let PSF = (Genpsf ,Sample, F, F−1) be a pre-image sampleable function, PRF
be a pseudorandom function, and H a hash function. Let S = (Gen,Sig,Ver) where

Gen(λ) : (ik, fk) R←−Genpsf (λ), k R←−{0, 1}λ

output sk = (ik, k), vk = fk

Sig((ik, k),m) : r ← PRF(k,m) h← H(m), output σ = F−1(ik, h; r)

Ver(fk,m, σ) : h← H(m), h′ ← F (fk, σ), accept if and only if h = h′

Correctness of the scheme follows from the correctness of the PSF. For security, we have the
following theorem:

Theorem 5.7. If (Gen, F, F−1) is a PSF with pre-image min-entropy at least 1, and PRF is a
secure PRF, then (Gen,SigH ,VerH) in Construction 5.6 is strongly EUF-CMA secure in the quantum
random oracle model.

Proof. Let A be an EUF-CMA adversary for (Gen,SigH ,VerH) with non-negligible advantage ε.
First, notice that we can replace the PRF PRF with a random oracle R, and implement the signing
oracle as m 7−→ F−1(ik, H(m);R(m)). The security of PRF shows that A still has non-negligible
advantage ε′.

We use A to build an adversary B for the collision resistance of (Gen, F, F−1). Let qH be the
number of random oracle queries made by A, and let qS be the number of signing queries. We will
assume B as access to a random oracle O : M → X to which it can make 2qH quantum queries
and qS + 1 classical queries. Using Lemma 4.1 and the techniques of Section 4.1, we can simulate O
using a (4qH + qS + 1)-wise independent function. B works as follows:

• B, on input fk, sends fk to A.
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• B responds to signing queries on messages m with O(m). In other words, it treats O as the
signing oracle.

• B implements the random oracle H(m) as F (fk, H(m)). That is, when A queries H on the
superposition ∑

m∈M,y∈Y,z∈Z
αm,y,z|m, y, z〉

B responds with ∑
m∈M,y∈Y,z∈Z

αm,y,z|m, y ⊕ F (fk, H(m)), z〉

B can compute the response state using 2 quantum queries to H: first it queries H, XORing
the response into a new register initialized to 0. Then is compute F (fk, ·) in superposition over
the new register, XORing the response into the y register. Finally, it uncomputes the new
register my making an additional query to H.

• When A outputs m∗, σ∗, B outputs (H(m∗), σ∗) as a collision for F .

We now analyze the success probability of B. Let (mi, σi) be the message/signature pairs A ob-
tains through its signing queries (so σi = O(mi)). First, notice that the oracle H(m) = F (fk, O(m))
seen by A is a truly random oracle. Thus, H has the correct distribution. Next, since sig-
natures are computed as σ = O(m), F (fk, σ) = H(m), so the signatures computed by B are
valid. Moreover, the signatures are uniform, conditioned on F (fk, σ) = H(m), so the distribu-
tion on signatures is correct. Therefore, te view of A as a subroutine of B is identical to that
of A in the EUF-CMA experiment. This means that F (fk, σ∗) = H(m∗) = F (fk, O(m∗)) and
(m∗, σ∗) /∈ {(mi, O(mi))}i∈[qS ] with probability ε. Thus, we have a collision as long as O(m∗) 6= σ∗.
Notice that since (m∗, σ∗) /∈ {(mi, O(mi))}i∈[qS ], A never made a signing query on mi. This means
that the only information A has about O(m∗) is through the value H(m∗) = F (fk, O(m∗)). There-
fore from A’s perspective, O(m∗) is random conditioned on F (fk, O(m∗)) = H(m∗) = F (fk, σ∗).
Since F has pre-image min-entropy H∞ = 1, we therefore have that the probability O(m∗) = σ∗ is
1/2. Therefore, the probability that B outputs a collision is ε/2, which is non-negligible.

It remains to show that B did not make too many queries to O. Indeed, B makes 2 quantum
queries to O for every random oracle query A makes to H, giving 2qH in total. B additionally makes
a classical query for every signing query, as well as one final query at the end. Therefore, B makes
2qH quantum queries and qS + 1 classical queries, as desired.

Remark 5.8. The PSF constructed by Gentry, Peikert, and Vaikuntanathan [GPV08] actually
departs somewhat from the ideal notion described in Section 2.2. Namely, there is a distribution D
such that inputs to the PSF are sampled from D, and one-wayness is defined with respect to inputs
chosen from this distribution. Moreover, correctness is slightly relaxed - the pre-image sampler only
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outputs a distribution that is statistically-close to being the correct distribution. It is straightforward
to adapt the proof of Theorem 5.7 to handle non-uniform D. The fact that pre-image sampling is only
statistically correct is more challenging to handle. The result is that B’s answers to A’s queries are
only statistically close to the correct distribution, rather than being identically distributed (though
all signatures are still valid). We need to argue that A cannot tell the difference between the two
distributions. Fortunately, we have already proved Theorem 4.18, which shows that this is the case.
Therefore, using Theorem 4.18, it is straightforward to adapt the proof of Theorem 5.7 to handle
non-ideal PSFs.

In Section 6.3.3, we show that the GPV signatures are actually secure in an even stronger model,
where the adversary is allowed quantum signing queries.

Notice that the proof of Theorem 5.19 crucially relies on the PSF having high pre-image min-
entropy, and therefore is insufficient for proving that the Full Domain Hash signature scheme from
trapdoor permutations is secure. In Section 5.2.3 we show that the Full Domain Hash signature
scheme using trapdoor permutations is secure using more advanced techniques.

5.2.2 Signatures from Claw-Free Permutations

We show that two classical signature constructions using claw-free permutations are secure in the
quantum random oracle model. A claw-free permutation is a pair (Gen0, F0, F

−1
0 ), (Gen1, F1, F

−1
1 )

with the following properties:

• Gen0 = Gen1. Define Gen = Gen0 = Gen1.

• F0, F1 have the same domain (and range).

• Given only fk, no efficient quantum adversary can find a claw for F0, F1, that is, a pair x0, x1

such that F (fk, x0) = F (fk, x1).

We currently do not know of any trapdoor permutations secure against quantum adversaries, so
the results of this section are mostly of theoretical interest.

As noted by GPV [GPV08], claw-free permutations can be seen as a special case of pre-image
sampleable functions. That is, define F (fk, (b, x)) = Fb(fk, x). Then any claw (x0, x1) for F0, F1

corresponds to a collision ((0, x0), (1, x1)) for F . Moreover, F is exactly two-to-one, so the pre-
image min-entropy of F is exactly 1. Therefore, plugging into Construction 5.6, we obtain the
following signature scheme:

Construction 5.9. Let (Gen, F0, F
−1
0 ), (Gen, F1, F

−1
1 ) be a pair of claw-free permutations with

domain X . Let M be the desired message space, and let H : M → X be a random oracle. We
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define the signature scheme (Gen,SigH ,VerH) where:

SigH(ik,m) : y ← H(m), b R←−{0, 1}, σ ← F−1
b (ik, y)

Output (b, σ)

VerH(fk,m, (b, σ)) : y ← H(m)

Accept if and only if y = Fb(fk, σ)

Security follows immediately from Theorem 5.19:

Corollary 5.10. If (Gen, F0, F
−1
0 ), (Gen, F1, F

−1
1 ) is a pair of claw-free permutations, then (Gen,

SigH ,VerH) in Construction 5.9 is strongly EUF-CMA secure in the quantum random oracle model.

Katz-Wang signatures. The following signature scheme, due to Katz and Wang [KW03], can
be seen as a variant of Construction 5.9. An interesting feature of their scheme is that in the actual
protocol, only one of the permutations, say F0, is used. F1 only comes up in the analysis.

Construction 5.11. Let (Gen, F0, F
−1
0 ), (Gen, F1, F

−1
1 ) be a pair of claw-free permutations with

domain X . Let M be the desired message space, and let H :M× {0, 1} → X be a random oracle.
We define the signature scheme (Gen,SigH ,VerH) where:

SigH(ik,m) : b R←−{0, 1}, y ← H(m, b), σ ← F−1
0 (ik, y)

Output σ

VerH(fk,m, σ) : y0 ← H(m, 0), y1 ← H(m, 1)

Accept if and only if F0(fk, σ) ∈ {y0, y1}

Theorem 5.12. If (Gen, F0, F
−1
0 ), (Gen, F1, F

−1
1 ) is a pair of claw-free permutations, then (Gen,

SigH ,VerH) in Construction 5.11 is strongly EUF-CMA secure in the quantum random oracle model.

The proof is extremely similar to the proof of Theorem 5.19.

Full-Domain Hash with a Claw-Free pair. Coron [Cor00] shows that the Full-Domain Hash
(FDH) signature scheme, when implemented with a permutation that is part of a claw-free pair, ad-
mits a tighter security reduction that FDH when implemented with a generic trapdoor permutation.
Coron’s reduction has a form that permits us to prove security in the quantum random oracle model.
Like the Katz-Wang scheme above, the second permutation in the pair is only used for analysis. We
therefore describe the protocol in terms of an arbitrary trapdoor permutation, and only bring in the
claw-free property in the security statement and proof.
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Construction 5.13. Let (Gen, F, F−1) be a trapdoor permutation with domain X . Let M be the
desired message space, and let H :M× → X be a random oracle. We define the signature scheme
(Gen,SigH ,VerH) where:

SigH(ik,m) : Output σ ← F−1(ik, H(m))

VerH(fk,m, σ) : Accept if and only if F (fk, σ) = H(m)

Theorem 5.14. If (Gen, F, F−1) = (Gen, F0, F
−1
0 ) is part of a claw-free pair of trapdoor permuta-

tions (Gen, F0, F
−1
0 ), (Gen, F1, F

−1
1 ), then (Gen,SigH ,VerH) in Construction 5.13 is strongly EUF-

CMA secure in the quantum random oracle model.

Proof. Let A be an adversary with advantage ε. We prove security through a sequence of hybrid
games.

Game 0. This is the standard attack game for (Gen,SigH ,VerH), where A has advantage ε.

Game 1. Here, we modify the random oracle H and signing oracle are generated. Let O :M→
X × [p] for some integer p to be chosen later. Then we implement the oracles as follows:

• H, on input m, runs (a, b)← O(m). If b = 1, it returns F1(fk, a). If b > 1, it returns F0(fk, a).

• To sign a message m, compute (a, b) ← O(m). If b = 1, return F−1
0 (ik, F1(fk, a)). If b > 1,

return a = F−1
0 (ik, F0(fk, a))

Notice that the oracle H is a truly random oracle, and the signing oracle correctly computes the
pre-image under F0 of the oracle value. Therefore the view of A is unchanged, and A has advantage
ε in Game 1. Notice that, for all m, the b part of the output of O is information-theoretically
hidden from A.

Game 2. Now change the game so that the challenger aborts and reports failure if A ever asks for
a signature on m such that (a, b) ← O(m) with b = 1. Also, when A produces a forgery (m∗, σ∗),
the challenger computes (a∗, b∗)← O(m∗), and aborts if b∗ 6= 1.

The view of A is independent of b, b∗, so these abort conditions are independent of A’s success.
The probability of no abort is (1−1/p)qS/p. Setting p = qS , this probability is at least (e−1−o(1))/p.
Thus, A still outputs a valid forgery with no abort with probability at least ε(e−1 − o(1))/p.

Now notice that in Game 2, the challenger never needs to compute F−1
1 during a signing query,

because it aborts exactly when it would need to compute the inverse. Therefore, the challenger does
not need the master secret key.

This allows us to build the following claw-finding adversary B, which we assume has access to a
quantum accessible oracle O:
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• On input fk, simulate A on input fk.

• Simulate the oracle H and the signing oracle as in Game 2, aborting when the challenger
would abort.

• When A outputs a forgery m∗, σ∗, compute (a∗, 1)← O(m∗), and output (σ∗, a∗) as a claw.

With probability ε(e−1 − o(1))/p, B will succeed in outputting such a (σ∗, a∗), where (a∗, 1) ←
O(m∗), and VerH(fk,m∗, σ∗) accepts. But verification passing means that H(m∗) = F0(fk, σ∗).
Since O(m∗) = (a∗, 1), we have that H(m∗) = F1(fk, a∗). Thus F0(fk, σ∗) = F1(fk, a∗), meaning
(σ∗, a∗) is a claw. Thus B has non-negligible advantage, as desired.

5.2.3 Signatures from General Trapdoor Permutations

We now demonstrate that the plain Full-Domain Hash signature scheme (Construction 5.13) is
secure, given any arbitrary trapdoor permutation. Theorem 5.14 proves security assuming the
permutation is part of a claw-free pair, which are not known to exist in the quantum setting. In
contrast, this section shows that any trapdoor permutation suffices, such as the obfuscation-based
construction of Bitansky, Paneth, and Wichs [BPW15].

Theorem 5.15. If (Gen, F, F−1) is a trapdoor permutation, then (Gen,SigH ,VerH) in Construc-
tion 5.13 is strongly EUF-CMA secure in the quantum random oracle model.

Proof. Let A be a quantum adversary making qH hash queries, qS signing queries queries, that
breaks (Gen,SigH ,VerH) with advantage ε. We prove security through a sequence of hybrid games.

Game 0. This is the standard attack game for (Gen,SigH ,VerH): the challenger generates (ik, fk)
from Gen, and sends fk to the adversary. The adversary can make (classical) signing queries on
messages mi, to which the challenger responds with σi = SigH(ik,mi) = F−1(ik, H(mi)), and
(quantum) hash queries to the random oracle H. A then produces an message m∗, and forgery
σ∗. We will say that A “wins” if (m∗, σ∗) /∈ {(mi, σi)}i∈[qS ] and H(m∗) = F (fk, σ∗) (which means
(m∗, σ∗) is a valid message/signature pair). By definition, this happens with probability ε.

Game 1. Here, we modify the adversary’s oracles as follows. The signing oracle is implemented
by a random oracle O : M → X , and H is implemented as H(m) = F (fk, O(m)). Note that the
oracle H is a truly random oracle, and given H, the outputs of O are the correct pre-images of H
under F . Therefore, the distribution on oracles is identical to Game 1, and so A still wins with
probability ε.
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Game 2. In this game, we modify the random oracle O to be a small-range function. Let r =
2`(qH + qS + 1)/ε′, where `(·) is the polynomial from Corollary 4.15. At the beginning of the game,
choose r random values xi

R←−X . Also choose a random oracle P : M → [r]. Then let O be the
function O(m) = xP (m). O is then distributed as a small-range distribution on r uniformly random
samples. Notice that only qH + q + S + 1 queries are made to O (qH direct queries, qS queries to
answer A’s signing queries, and one additional query to check the forgery). By Corollary 4.15, the
advantage of A only decreases by at most `/r = ε′/2. Therefore, the adversary wins with probability
at least ε′/2.

Set yi = F (fk, xi). Notice that we can implement the oracle H as H(x) = yP (x).

Game 3. Here, we modify Game 2 as follows. At the beginning of the game, a random index
i∗ ∈ [r] is chosen. Then, for every signing query in message mj , if P (mj) = i∗, the game declares
A loses, and aborts. When A produces (m∗, σ∗), if P (m∗) 6= i∗, then the game declares A loses,
and aborts. Notice that the probability P (mj) = i∗ is 1/r, and the probability P (m∗) 6= i∗ is
1 − 1/r. Therefore, the probability of no aborts is (1 − 1/r)qS (1/r) ≥ 1/r − qS/r

2. The abort
condition is independent ofA success probability in Game 1. Therefore, A still wins with probability
(ε′/2)(1/r − qS/r

2). Since r > 2qS , A wins with probability at least (ε′/4r) = (ε′)2/4` where
` = `(qH + qS + 1).

Notice that the value xi∗ is never needed in Game 3. This observation allows to build an
adversary B for (Gen, F, F−1). B works as follows:

• On input a public fk, y, B chooses a random i∗ ∈ [r], and sets yi∗ = y. For i 6= i∗, B chooses
random xi ∈ X and computes yi = F (fk, xi). Then B simulates A on input fk.

• B implements random oracle as H(m) = yP (m) for a random oracle P :M→ [r].

• When A makes a signing query on message m, B checks that P (m) 6= i∗. If the check fails, B
aborts. If the check passes, B responds with xP (m).

• When A produces a forgery pair (m∗, σ∗), B checks that P (m∗) = i∗ and F (fk, σ∗) = H(m∗).
If the check fails, B aborts. If the check passes, B outputs σ∗. Notice that if the checks pass,
then F (fk, σ∗) = H(m∗) = yi∗ = y. Therefore, σ∗ is the correct pre-image and B wins.

Notice that B perfectly simulates the view of A in Game 4. Therefore, B wins with the same
probability as A in Game 4, namely (ε′)2/4`, which is non-negligible.

5.3 Encryption in the QROM

We now show how to build encryption in the quantum random oracle model.
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Construction 5.16. Let (GenPSF , F, F−1) be an injective trapdoor function. Let (EncS ,DecS)
be a symmetric-key encryption algorithm. Define (Gen,EncH ,DecH) as the following public key
encryption algorithm:

Gen() : (ik, fk) R←−GenPSF (), Output (dk = ik, ek = fk)

EncH(fk,m) : x R←−X , y ← F (fk, x), k ← H(x), c R←−EncS(k,m), Output (y, c)

DecH(ik, (y, c)) : x← F−1(ik, y), k ← H(x), m← DecS(k, c), Output m

Theorem 5.17. If (Gen, F, F−1) is an injective trapdoor function, and (EncS ,DecS) is a one-
ciphertext CCA-secure (resp. semantically secure) symmetric-key encryption scheme, then (Gen,
EncH ,DecH) is a CCA-secure (resp. CPA-secure) public key encryption scheme in the quantum
random oracle model.

We note that EncS(k,m) = k⊕m,DecS(k, c) = k⊕ c is a semantically secure encryption scheme

Proof. We prove the CCA case, the CPA case being similar. Let A be a CCA adversary for
(Gen,EncH ,DecH) with non-negligible advantage ε. We prove security through a sequence of hybrid
games:

Game 0. This is the standard attack game. The challenger runs (ik, fk) R←−Gen(), and gives fk
to A. The challenger also instantiates a random oracle H, which A can make queries to. When
A makes a challenge query on messages (m0,m1), the challenger chooses a random b ∈ {0, 1},
x∗

R←−X , computes y∗ ← F (fk), k∗ ← H(x∗), and c∗
R←−Enc(k∗,mb), and responds with (y∗, c∗).

When A makes a decryption query on ciphertext (y, c), if (y, c) 6= (y∗, c∗) the challenger computes
x ← F−1(ik, y), k ← H(x), and m ← DecS(k, c), and responds with m. If (y, c) = (y∗, c∗), the
challenger responds with ⊥. By definition, A has advantage ε, meaning it outputs b′ = b with
probability 1/2 + ε.

Game 1. Here the challenger implements the oracle H as O(F (pk, ·)) for a random oracle O : Y →
K. Since F is injective, H is still a random oracle, and so the view of A is unchanged. Therefore, A
still has advantage ε.

Notice that in Game 1, we can now answer decryption queries on (y, c) by computing k = O(y)
and decrypting c using k. Thus we do not need ik to simulate the view of A. Notice that we can
also determine x∗, b, y∗, k∗ = O(x∗) are the beginning of the experiment.

Let δi be the probability of obtaining x∗ in the following process: when A makes the ith random
oracle query in Game 1, halt, measure the query input, and output the result. Let δ =

∑
i ∈ [qH ]δi

be the sum of the probabilities. We refer to δ as the total query magnitude of x∗.
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We claim that δ is negligible. Indeed, we can construct an adversary B for (Gen, F, F−1) with
advantage δ: on input (fk, y), B simulates A in Game 1 setting y∗ = y (which it can do since
simulating Game 1 does not require ik). Then, at a randomly chosen oracle query i ∈ [qH ], B halts
the execution of A, measures the input register for the query, and outputs the resulting string x.
The probability x = x∗ = F−1(ik, y∗) is exactly δ. The security of (Gen, F, F−1) shows that δ is
negligible.

Game 2. Here we change Game 1 so that k∗ is chosen at random, independent of H(x∗) = O(y∗).
Alternatively, think of this change as changing the value of H(y∗) to a random value independent
of k∗ = O(y∗). For decryption queries of the form (y∗, c), decrypt c using key k∗ instead of H(x∗).
Queries of the form (y, c) for y 6= y∗ are still decrypted using key O(y).

Since the total query magnitude of x∗, the only point where we changed the output of H, is
negligible, it is known that the advantage of A is only changed by a negligible amount ([BBBV97]
Theorems 3.1 and 3.3). Thus A still has non-negligible advantage in Game 2.

We now build an adversary C for (EncS ,DecS). B works as follows:

• Run (ik, fk)← Gen(), and initialize a random oracle O : Y → X . Choose random x∗
R←−X and

set y∗ = F (pk, y∗). Simulate A on input fk.

• Implement the (quantum accessible) random oracle H seen by A as O(F (pk, ·)).

• When A makes a challenge query on message pair (m0,m1), C sends (m0,m1) as its own
challenge messages for EncS . In response, it receives c∗. C sends (y∗, c∗) to A.

• When A makes a decryption query in (y, c), there are two cases. If y = y∗, then to be a
valid decryption query we must have c 6= c∗, and therefore C can make a decryption query
to its challenger, obtaining m, which it sends to A. If y 6= y∗, then compute k = O(y),
m← Dec(k, c), and return m to A.

• Finally, when A outputs b′, C outputs b′.

C perfectly simulates the view of A in Game 2 with b being the same b as C’s challenger.
Therefore b′ = b with probability 1/2 + ε− negl, and so C has non-negligible advantage in breaking
(EncS ,DecS).

5.4 Identity-based Encryption in the QROM

Here we prove the security of the IBE scheme from Gentry, Peikert, and Vaikuntanathan [GPV08].
Their scheme is constructed from an encryption scheme (GenE ,EncE ,DecE), for which there exists
a trapdoor allowing the computation of secret keys from public keys.
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More specifically, let (GenPSF , F, F−1) be a pre-image sampleable function (PSF) with domain
X . Suppose GenE works as follows: generate (ik, fk)← GenPSF . Then, sample dk R←−X , and compute
ek = f(mpk, sk). Output (dk, (ek, fk)).

Gentry, Peikert, and Vaikuntanathan give such an encryption scheme based on the hardness of
lattice problems. Their security reduction treats the adversary as a black box, so their proof holds
in the quantum setting. They then prove the security of the following IBE scheme:

Construction 5.18. Let (GenPSF , F, F−1) be a PSF, and let (GenE ,EncE ,DecE) be an encryption
scheme with GenE as above. Let H : ID → Y be a random oracle. Let PRF be a pseudorandom
function with key space K. Define the IBE scheme (Gen,KeyGenH ,EncH ,Dec) where:

Gen() : (ik, fk) R←−GenPSF (), k R←−K, Output (msk = (ik, k),mek = fk)

KeyGenH((ik, k), id) : y ← H(id), r ← PRF(k, r), dkid ← F−1(ik, y; r), Output dkid

EncH(fk, id,m) : y ← H(id), Output EncE(y,m)

DecH(dkid, c) : DecE(dkid, c)

Theorem 5.19. Let (GenPSF , F, F−1) and (GenE ,EncE ,DecE) be as above, and suppose that (GenE ,
EncE ,DecE) is quantum IND-CPA-secure. Then (Gen,KeyGenH ,EncH ,Dec) in Construction 5.18 is
IND-ID-CPA-secure in the quantum random oracle model.

Proof. Let A be a quantum adversary making qH hash queries, qE keygen queries queries, that
breaks (Gen,KeyGenH ,EncH ,Dec) with advantage ε. We prove security through a sequence of hybrid
games.

Game 0. This is the standard attack game for (Gen,KeyGenH ,EncH ,Dec): the challenger generates
((ik, k), fk) from Gen, and sends fk to the adversary. The adversary can make (classical) keygen
queries on identities idi, to which the challenger responds with KeyGenH(msk, idi), and (quantum)
hash queries to the random oracle H. A then produces an identity id∗, along with messages m0 and
m1. The challenger chooses a random bit b, and responds with EncH(mek, id∗,mb). A is allowed to
make more keygen and hash queries, and produces a bit b′. We will say that A “wins” if b′ = b and
for all i, idi 6= id∗. By definition, this happens with probability 1

2 + ε.
Assume without loss of generality that A never asks for the secret key corresponding to id∗. We

can make this assumption because, in the event that A asks for a secret key for id∗, we abort the
game and the adversary has no advantage in this case. We also assume without loss of generality that
the adversary never performs an keygen query on the same identity twice: since the key generation
procedure is deterministic, A can simulate subsequent queries on the same identity for itself.
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Game 1. In this game, we modify keygen queries to be generated with fresh randomness. The
security of PRF shows that the adversary still wins with probability 1/2 + ε′ where ε′ = ε− negl.

Game 2. Here, we modify the adversary’s oracles as follows. The keygen oracle is implemented by
a random oracle O : ID → X , and H is implemented as H(id) = F (fk, O(id)). Note that the oracle
H is a truly random oracle, and given H, the outputs of O are random pre-images of H. Therefore,
the distribution on oracles is identical to Game 1, and so A still wins with probability 1/2 + ε.

Game 3. In this game, we modify the random oracle O to be a small-range function. Let r =
2`(qH + qE + 1)/ε′, where `(·) is the polynomial from Corollary 4.15. At the beginning of the game,
choose r random values xi

R←−X . Also choose a random oracle P : ID → [r]. Then let O be the
function O(id) = xP (id). O is then distributed as a small-range distribution on r uniformly random
samples. Notice that only qH + q + E + 1 queries are made to O (qH direct queries, qE queries to
answer A’s keygen queries, and one additional query for the challenge query). By Corollary 4.15, the
advantage of A only decreases by at most `/r = ε′/2. Therefore, the adversary wins with probability
at least 1

2 + ε′/2.
Set yi = F (fk, xi). Notice that we can implement the oracle H as H(id) = yP (id).

Game 4. Here, we modify Game 3 as follows. At the beginning of the game, a random index
i∗ ∈ [r] is chosen. Then, for every keygen query in identity idj , if P (idj) = i∗, the game declares
A wins with probability 1/2 and A loses with probability 1/2, and then aborts. For the challenge
query on id∗, if P (id∗) 6= i∗, then similarly the game declares A wins/loses with probability 1/2,
and then aborts. Notice that the probability P (idj) = i∗ is 1/r, and the probability P (id∗) 6= i∗

is 1 − 1/r. Therefore, the probability of no aborts is (1 − 1/r)qE (1/r) ≥ 1/r − qE/r2. The abort
condition is independent ofA success probability in Game 1. Therefore, A still wins with probability
1
2 + (ε′/2)(1/r − qE/r2). Since r > 2qE , A wins with probability at least 1

2 + (ε′/4r) = 1
2 + (ε′)2/4`

where ` = `(qH + qE + 1).
Notice that the value xi∗ is never needed in Game 4. This observation allows to build an

adversary B for (GenE ,EncE ,DecE). B works as follows:

• On input a public key (ek, fk), B chooses a random i∗ ∈ [r], sets fk to be the master public
key and yi∗ = ek. For i 6= i∗, B chooses random xi ∈ X and computes yi = F (fk, xi). Then B
simulates A on input fk.

• B implements random oracle as H(id) = yP (id).

• When A makes an extraction query on identity id, B checks that P (id) 6= i∗. If the check fails,
B outputs a random bit and aborts. If the check passes, B responds with xP (id).
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• When A makes the challenge query on identity id∗ and messages m∗0,m∗1, B checks that P (id) =
i∗. If the check fails, B outputs a random bit and aborts. If the check passes, B makes a
challenge query to the CPA challenger on m∗0,m

∗
1. Upon receiving c∗ from the challenger, B

sends c∗ to A.

• When A outputs a bit b′, B outputs b′.

Notice that B perfectly simulates the view of A in Game 4. Therefore, b′ = b with probability
1
2 + (ε′)2/4`. Thus, B has advantage (ε′)2/4`, which is non-negligible, as desired.

Remark 5.20. Similar to Construction 5.6, Gentry, Peikert, and Vaikuntanathan [GPV08] use PSFs
that are non-ideal to instantiate Construction 5.18. As in the proof of security for Construction 5.6
(namely, Theorem 5.7), it is straightforward to adapt the security proof proof in Theorem 5.19 above
to non-ideal PSFs by using Theorem 4.18.

5.4.1 Hierarchical IBE from Lattices

In this section, we show the general idea behind adapting the techniques above to proving the
security of the hierarchical identity-based encryption (HIBE) schemes of Agrawal et al. [ABB10b]
and Cash et al. [CHKP10]. Unfortunately, describing these schemes completely and giving a full
security proof would require a somewhat detailed explanation of lattices, the algorithms involved,
and the computational assumptions being made. Instead, we give a high-level overview of the proof
technique, and explain how our techniques can be applied to this setting.

In a HIBE scheme, identities are structured as a tree, with the identity of any node containing
the identity of its parent as a proper prefix. Any node on the tree can produce private keys for
any nodes in the subtree rooted at that node. We allow an adversary to adaptively take control of
an arbitrary number of nodes in the tree (and thus the subtrees rooted there). An HIBE scheme
is secure if the adversary cannot decrypt messages encrypted to an identity id∗ of the adversary’s
choice but not under its control.

In [ABB10b], the random oracle scheme has an oracle H that maps identities to some random
quantities. The reduction has the following high-level structure:

• Guess which level w of the tree contains the identity id∗.

• For each level i, generate some random quantities Ri.

• For each level i, simulate a separate random oracle for identities at that level. Also guess which
query number qi will contain the hash of the level-i parent of id∗.

• Answer the jth random oracle query at level i on idi,j as follows: if j = qi, output Ri.
Otherwise, output a random value.
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• Answer secret key queries on id in some special way, but fail if for all prefixes idi of id, idi = idi,qi .
That is, fail if H(idi) = Ri for all i.

• When the adversary generates the identity id∗, we succeed if both the adversary succeeds and
if id∗ is at level w and all prefixes id∗i of id∗ satisfy id∗i = idi,qi .

We now show how to prove security by repeatedly applying the arguments of Theorem 5.19.
Basically, we iterate over levels i, and for identities at the ith level, we replace H on those identities
with a small-range distribution on ri samples. Then, choose one of the ri samples at random, and
set the sample to be Ri. In iteration i, we say the adversary wins if it won in the previous iteration,
the level-i prefix of the chosen identity id∗ is in the λi fraction of distinguished identities (that is,
H(id∗i ) = Ri), and no extraction query is. Let ` = `(2qH + qE + 1) where ` is the polynomial from
Corollary 4.15. If the iteration i advantage is εi, then using the same techniques as in Theorem 5.19,
we can set ri so that

εi ≥
ε2i−1
4`

In iteration 0, we say the adversary wins if it wins the standard HIBE game and the reduction
correctly guessed which level id∗ belonged to. Since the reduction guesses the level at random,
independent of the adversary’s view, we have that ε0 = ε/d, where ε is the adversary’s advantage in
the standard game. This gives us a total advantage after iteration d of at least

(ε/d)2d

(4`)(2d−1) = 4`
( ε

4d`

)2d

Notice that the dependence on d is doubly-exponential, whereas in the classical proof it was
singly exponential. Thus, for the same security parameters, this proof only works for much smaller
depth than the classical proof.

These techniques apply as well to the random oracle HIBE of Cash et al. [CHKP10], though
their reduction is a bit more complicated, as there is a second random oracle G which needs to be
handled in a similar way.



Chapter 6

Fully Quantum Security Notions

In this chapter, we explore new quantum security definitions where the entire security game is a
quantum experiment. This models attacks where the adversary can interact with the cryptosystem
over a quantum channel. Even in the near future dominated by classical devices, such channels
may become relevant as microprocessor feature sizes continue to shrink and quantum affects become
more prevalent. Moreover, looking further out, it seems inevitable that quantum computers will be
ubiquitous, and such computers may intentionally or unintentionally support quantum interaction
channels. Implementing classical systems on a quantum device thus potentially exposes the system
to attacks over these quantum channels, which are not modeled by conventional security notions.
We therefore give new security definitions that capture these attacks and give new constructions
and security analyses for these enhanced security models.

6.1 Quantum Pseudorandom Functions

In this section, we define PRF security against quantum channel attacks, and show how to build
and analyze schemes satisfying this security definition. The definition is a natural extension of the
classical security definition:

Definition 6.1 (Quantum security for PRFs). A PRF PRF is quantum-secure if quantum queries
cannot distinguish it from a truly random function. That is, for any efficient quantum adversary A
with quantum access to an oracle,

Pr[A|PRF(k,·)〉() = 1]− Pr[A|O(·)〉() = 1] < negl

How do we build quantum-secure PRFs? Ideally, classical constructions of PRFs that are based
on quantum resistant primitives can be used. For example, one may ask if the construction of
Goldreich, Goldwasser, and Micali [GGM86] is quantum-secure if the underlying pseudorandom

78
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generator is secure against quantum adversaries. Unfortunately, as discussed in the introduction,
the classical security proof is insufficient for arguing quantum security. In this section, we rectify this
situation by giving the first security proof for the GGM construction that works when the adversary
is allowed quantum queries. We also show that two other classical constructions [NR95, BPR12] are
secure, assuming the quantum hardness of the underlying problems. We accomplish this using the
techniques developed in Chapter 4, specifically the small-range distributions of Section 4.5.

Before give our positive results, we first show that quantum security is strictly stronger than
standard (non-quantum) security. This demonstrates that quantum security is more difficult to
achieve, and therefore that the need for new proof techniques may be inherent.

6.1.1 Separation

Theorem 6.2. If standard secure PRFs exist, then there are standard secure PRFs that are not
QPRFs.

We will actually prove a slightly stronger theorem. We define a quantum-gap PRF as a standard
secure PRF that is quantum insecure in a very strong sense. Namely, a single quantum oracle query
suffices to distinguish the PRF from a random oracle with only negligible distinguishing error.

Theorem 6.3. If quantum secure PRFs exist, then so do quantum-gap PRFs

This theorem will be useful in proving further separation results in Sections 6.3 and 6.4.

Proof. Let PRF be a quantum secure pseudorandom function with key-space K, domain X , and co-
domain Y. We will construct a new pseudorandom function that is periodic with some large, secret
period. Classical adversaries will not be able to detect the period, and thus cannot distinguish this
new function from random. However, an adversary making quantum queries can detect the period,
and thus distinguish our new function from random.

Interpret X as [N ], where N is the number of elements in X . Assume without loss of generality
that Y contains at least N9 elements (if not, we can construct a new pseudorandom function with
smaller domain but larger range in a standard way). We now construct a new pseudorandom function
PRF′((k, p), x) = PRF(k, x mod p) where:

• x mod p means the unique integer x′ in [p] such that x− x′ is a multiple of p1.

• The key space of PRF′ is K′ = K × P where P is the set of primes between N −
√
N and N .

That is, a key for PRF′ is a pair (k, p) where k is a key for PRF, and p is a prime in the range
(N −

√
N,N ].

• The domain is X ′ = [N ′] where N ′ is the smallest power of 2 greater than N4.
1Note that this differs from the usual definition of mod where x′ is required to be in {0, . . . , p− 1}
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The following two claims together prove Theorem 6.3:

Claim 6.4. If PRF is standard secure, then so is PRF′.

Claim 6.5. If PRF is quantum secure, then PRF′ can be distinguished from random with overwhelm-
ing probability using only a single quantum query.

Thus one of PRF and PRF′ is standard secure but not quantum secure, as desired. In particular,
if PRF is quantum secure, then PRF′ is a quantum-gap PRF. We now prove Claims 6.4 and 6.5.

Proof of Claim 6.4. We prove that if PRF is standard-secure, so is PRF′. The idea is that, since
PRF is a standard-secure pseudorandom function, we can replace it with a truly random function
in the definition of PRF′, and no efficient adversary making classical queries will notice. But we are
then left with a function that has a large random period where every value in the period is chosen
randomly. This function will look truly random unless the adversary happens to query two points
that differ by a multiple of the period. But by the birthday bound, this will only happen with
negligible probability.

Suppose we have a quantum adversary A making classical queries that distinguishes PRF′ from
a random function with non-negligible probability ε. That is,∣∣∣∣ Pr

k←K,p←P
[APRF′((k,p),·)() = 1[]− Pr

O←YX
[AO() = 1]

∣∣∣∣ = ε

This is equivalent to∣∣∣∣ Pr
k←K,p←P

[APRF(k,· mod p)() = 1]− Pr
O←YX

[AO() = 1]
∣∣∣∣ = ε

Consider the quantity∣∣∣∣ Pr
O←YX ,p←P

[AO(· mod p)() = 1]− Pr
O←YX

[AO() = 1]
∣∣∣∣

The left hand side is the case where O is a random function in YX , a is a random prime in
(N −

√
N,N ], and we give A the oracle O′(x) = O(x mod p). As long as A never queries its oracle

on two points x and x′ such that x ≡ x′ mod p, this oracle will look random. If A makes q queries,
there are

(
q
2
)

possible differences between query points. Each difference is at most 2N4, so for large
N it can only be divisible by at most 4 different moduli p. Notice that |P| ∈ Ω(

√
N/ logN). Each

difference thus has a probability at most 4/|P| ∈ O(logN/
√
N) of being divisible by p, so the total

probability of querying x and x′ such that x ≡ x′ mod p is at most O(q2 logN/
√
N). Thus this

probability, and hence the ability of A to distinguish O′ from a random oracle, is negligible.
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A simple hybrid argument then shows that∣∣∣∣ Pr
k←K,p←P

[APRF(k,· mod p)() = 1]− Pr
O←YX ,p←P

[AO(· mod p)() = 1]
∣∣∣∣ ≥ ε−O(q2 logN/

√
N)

Define a quantum algorithm B which distinguishes PRF from a random oracle. B has an oracle
O, chooses a random prime p ∈ (N/2, N ], and simulates A with the oracle O′(x) = O(x mod p).
When O(·) = PRF(k, ·), we get the left side, and when O is random, we get the right side. Thus,∣∣∣∣ Pr

k←K
[BPRF(k,·)() = 1]− Pr

O←YX
[BO() = 1]

∣∣∣∣ ≥ ε−O(q2 logN/
√
N)

Since N is exponential, B breaks the standard security of PRF.

Proof of Claim 6.5. We now show that if PRF is quantum-secure, then we can distinguish PRF′

from random with overwhelming probability using a single quantum query. The idea is that, if we
allow quantum queries to PRF′, we can use quantum period finding [Sho94, BL95] to find p. With
p, it is easy to distinguish PRF′ from a random oracle. Unfortunately, the period finding algorithm
requires PRF′ to have some nice properties, but these properties are satisfied if PRF is quantum
secure.

Also unfortunately, the analyses from Shor [Sho94] and Boneh and Lipton [BL95] only recover
the period with non-negligible probability with one query, and thus require many queries to achieve
overwhelming probability. As we wish to obtain overwhelming probability with a single query, we
present a more refined analysis for our setup.

We first consider the case of distinguishing a truly random function from a periodic function that
is truly random on its period. That is, distinguishing a truly random oracle O : [N ′] → Y from an
oracle O(x) = O′(x mod p) where p is a random prime in P and O′ : [N ]→ Y is a random oracle.
Our distinguisher is as follows:

1. Initialize quantum registers to the state

|ψ1〉 = 1√
N ′

∑
x∈[N ′]

|x, 0〉

2. Now make a quantum PRF query on |ψ1〉. The result is the state

|ψ2〉 = 1√
N ′

∑
x∈[N ′]

|x,O(x)〉
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3. Now measure the second register, obtaining a value y and the state

|ψy〉 = 1√
|CO,y|

∑
x∈CO,y

|x〉

where CO,y is the set of x such that O(x) = y. The probability of obtaining state |ψy〉 is
|CO,y|/N ′

4. Now perform the quantum Fourier Transform on |ψy〉. The result is the state

|ψ′y〉 = 1√
N ′|CO,y|

∑
x∈CO,y,z∈[N ′]

ωxz|z〉

where ω is a primitive N ′th root of 1.

5. Measure the first register, obtaining an integer q ∈ [N ′].

6. Determine the (reduced) fraction d/p′ that is closest to q/N ′ with denominator p′ ≤ N . This
can be done using continued fractions. If p′ lies in the range (N−

√
N,N ], output 1. Otherwise,

output 0.

To analyze the success probability of our distinguisher, first consider the case where O is random.
Then since |Y| ≥ N9 ≥ (N ′)2O(N), O is with overwhelming probability injective. This means CO,y
is either 1 or 0 for all y ∈ Y. Therefore, the state |ψy〉 obtained in Step 3 above is equal to |x〉 for
some x ∈ [N ′]. Then a Fourier transform and measurement gives a random integer in [N ′]. It is
straightforward to argue that in this case the probability the algorithm outputs a p′ ∈ (N −

√
N,N ]

is O(1/
√
N), which is negligible. Therefore, our algorithm outputs 0 with overwhelming probability

in this case.

Next, consider the case where O(x) = O′(x mod p) for a random oracle O′ : [p]→ Y. We wish
to show that our attack computes p′ = p with overwhelming probability, meaning it almost always
outputs 1.

Since |Y| ≥ N9 ≥ (p)2 · Ω(N), O is injective on the interval [p] with overwhelming probability.
Moreover, CO,y is non-zero only for y = O′(x), x ∈ [p], and in this case, we can write CO,y = Cp,x

where Cp,x is the set of x′ ∈ [N ′] such that x′ − x is divisible by p. The state |ψy〉 in Step 3 can be
written as

|ψx〉 = 1√
|Cp,x|

∑
x′∈Cp,x

|x′〉 = 1√
|Cp,x|

∑
j∈[Cp,x]

|x− 1 + jp〉

The quantum Fourier transform gives us

|ψ′x〉 = 1√
N ′|Cp,x|

ωx−1
∑
z∈[N ′]

 ∑
j∈Cp,x

ωjpz

 |z〉
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Measuring gives z with probability 1
N ′Cp,x

∣∣∣∑j∈Cp,x ω
jz
∣∣∣2. Notice that |Cp,x| =

⌊
N ′−x
p + 1

⌋
and

therefore satisfies |Cp,x| − bN ′/pc ∈ {0, 1}. It is straightforward to show that the probability of
obtaining z is

1
N ′Cp,x

sin(πpCp,xN ′ z)2

sin( πpN ′ z)2

Now, an output when measuring z gives the right answer p when d/p for some d is the closest
rational approximation to z/N ′ with denominator at most N , and d 6= 0. This is happens if∣∣∣∣ zN ′ − d

p

∣∣∣∣ ≤ 1
2N2 ≤

1
2p2

We bound the total probability mass of z such that this inequality is unsatisfied. That is, z for
which z/N ′ is at least 1/2p2 away from d/p. For such z, we can bound their probability as

1
N ′Cp,x

1
sin(π/2p)2 ≤

16p2

π2N ′Cp,x
≤ 16p3

π2(N ′)2 ≤
16N3

π2(N ′)2

The total probability of such z is at most N ′ times this amount, or 16N3

π2N ′ , which is negligible by
our choice of N ′ ≥ N4. It is also possible to show that the total probability mass of z near 0 = 0/p
is at most O(1/p), which is negligible as well.

Therefore, the total probability of z for which our algorithm fails to output 1 is negligible.
Thus, our distinguishes O(x) from O′(x mod p) with overwhelming advantage. By the quantum
security of PRF, O′(x mod p) is indistinguishable from PRF(k, x mod p), and therefore our algo-
rithm successfully distinguishes PRF′((k, p), x) = PRF(k, x mod p) from O(x) with overwhelming
probability.

This completes the proof of Theorem 6.3.

6.1.2 Construction 1: The GGM Construction

We now prove the quantum security of the Goldriech, Goldwasser, and Micali [GGM86] PRF con-
struction in a new way that makes sense in the quantum setting. Recall that the GGM construction
builds a PRF out of any length-doubling pseudorandom generator (PRG). Our approach is as fol-
lows. We re-interpret the classical GGM proof as consisting of two stages: in the first, the security
of the PRF is proved assuming a seemingly stronger security notion for the underlying PRG. In the
second stage, the seemingly stronger PRG security notion is proved to be equivalent to the standard
PRG security notion.

In the quantum setting, the for an appropriate strengthening of the PRG security notion —
namely that the distribution of PRG outputs is oracle indistinguishable from uniform, in the sense
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of Section 4.6 — the first phase of the GGM security proof caries through to the quantum setting.
The difficulty is then in proving the equivalence of the stronger notion and weaker notion of PRG
security. However, this is now easily handled by Theorem 4.17. Thus, we obtain the first proof of
security for the GGM construction under quantum queries.

Construction 6.6 (GGM-PRF). Let G : K → K2 be a length-doubling pseudorandom generator.
Write G(x) = (G0(x), G1(x)) where G0, G1 are functions from K to K. Then we define the GGM
pseudorandom function PRF : K × {0, 1}n → K where

PRFk(x) = Gx1(...Gxn−1(Gxn(k))...) .

That is, the function PRF takes a key k in K and an n-bit input string. It first applies G to k.
It keeps the left or right half of the output depending on whether the last bit of the input is 0 or
1. What remains is an element in K, so the function applies G again, keeps the left or right half
depending on the second-to-last bit, and so on.

As described in the introduction, the standard proof of security fails to prove quantum-security.
We first define a stronger notion of security for pseudorandom generators, which we call oracle-
security:

Definition 6.7 (Oracle-Security). A pseudorandom generator G : X → Y is oracle-secure if the
distributions G ◦ X and Y are oracle-indistinguishable.

G◦X is efficiently sampleable since we can sample a random value in X and apply G to it. Then,
G ◦ X and Y are both efficiently sampleable, so Theorem 4.17 gives:

Corollary 6.8. If G is a secure PRG, then it is also oracle-secure.

We now can prove the security of Construction 6.6.

Theorem 6.9. If G is a standard-secure PRG, then PRF from Construction 6.6 is a QPRF.

Proof. We adapt the security proof of Goldreich, Goldwasser, and Micali [GGM86] to convert any
adversary for PRF into an adversary for the oracle-security of G. Then Corollary 6.8 shows that this
adversary is impossible under the assumption that G is standard-secure.

Suppose a quantum adversary A distinguishes PRF from a random oracle with probability ε.
Define hybrids Hi as follows: Pick a random function P ← K{0,1}n−i (that is, random function from
(n− i)-bit strings into K) and give A the oracle

Oi(x) = Gx1(...Gxi(P (x[i+1,n]))...) .

H0 is the case where A’s oracle is random. When i = n, P ← K{0,1}n−i is a random function
from the set containing only the empty string to K, and hence is associated with the image of the
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empty string, a random element in K. Thus Hn is the case where A’s oracle is PRF. Let εi be the
probability A distinguishes Hi from Hi+1. That is,

εi = Pr
[
A|Oi〉() = 1

]
− Pr

[
A|Oi+1〉() = 1

]
.

Notice that there is no absolute value in the definition of εi. A simple hybrid argument shows
that |

∑
i εi| = ε.

We now construct a quantum algorithm B breaking the oracle-security of G. B is given quantum
access to an oracle P : {0, 1}n−1 → K2, and distinguishes P ←

(
K2){0,1}n−1

from P ← G◦K{0,1}n−1 .
That is, B is given either a random function from (n − 1)-bit strings into K2, or G applied to a
random function from (n− 1)-bit strings into K, and distinguishes the two cases as follows:

• Pick a random i in {0, ..., n− 1}

• Let P (i) : {0, 1}n−i−1 → K2 be the oracle P (i)(x) = P (0ix)

• Write P (i) as (P (i)
0 , P

(i)
1 ) where P (i)

b : {0, 1}n−i−1 → K are the left and right halves of the
output of P (i).

• Construct the oracle O : {0, 1}n → K where

O(x) = Gx1(...Gxi(P (i)
xi+1

(x[i+2,n]))...) .

• Simulate A with oracle O, and output whatever A outputs.

Notice that each quantum query to O results in one quantum query to P , so B makes the same
number of queries that A does.

Fix i, and let Bi be the algorithm B using this i. In the case where P is truly random, so is P (i),
as are P (i)

0 and P
(i)
1 . Thus O = Oi, the oracle in hybrid Hi. When P is drawn from G ◦ K{0,1}n−1 ,

then P (i) is distributed according to G ◦K{0,1}n−i−1 , and so Pb ← Gb ◦K{0,1}
n−i−1 . Thus O = Oi+1,

the oracle in hybrid Hi+1. For fixed i, we then have that the quantity

Pr
P←(K2){0,1}n−1

[
B
|P 〉
i () = 1

]
− Pr
P←G◦K{0,1}n−1

[
B
|P 〉
i () = 1

]
is equal to εi. Averaging over all i and taking the absolute value, we have that the distinguishing
probability of B, ∣∣∣∣∣ Pr

P←(K2){0,1}n−1

[
B|P 〉() = 1

]
− Pr
P←G◦K{0,1}n−1

[
B|P 〉() = 1

]∣∣∣∣∣ ,
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is equal to ∣∣∣∣∣ 1n∑
i

εi

∣∣∣∣∣ = ε/n .

Thus B breaks the oracle security of G with probability only polynomially smaller than the proba-
bility A distinguishes PRF from a random oracle.

6.1.3 Construction 2: The Synthesizer Construction

In this section, we show that the construction of pseudorandom functions from pseudorandom syn-
thesizers due to Naor and Reingold [NR95] is quantum-secure.

Definition 6.10 (Synthesizer). A pseudorandom synthesizer is a function S : X 2 → Y. X and Y
are implicitly indexed by the security parameter n.

Definition 6.11 (Standard-Security). A pseudorandom synthesizer S : X 2 → Y is standard-secure
if, for any set Z, no efficient quantum algorithm A making classical queries can distinguish a random
function from O(z1, z2) = S(O1(z1), O2(z2)) where Ob ← XZ . That is, for any such A and Z, there
exists a negligible function ε such that∣∣∣∣∣∣∣ Pr

O1←XZ

O2←XZ

[AS(O1,O2)() = 1]− Pr
O←YZ×Z

[AO() = 1]

∣∣∣∣∣∣∣ < ε ,

where S(O1, O2) means the oracle that maps (z1, z2) into S(O1(z1), O2(z2)).

Construction 6.12 (NR-PRF). Given a pseudorandom synthesizer S : X 2 → X , let ` be an integer
and n = 2`. We let PRFk(x) = PRF(`)

k (x) where PRF(i) :
(
X 2×2i

)
× {0, 1}2

i

→ X is defined as

PRF(0)
a1,0,a1,1

(x) = a1,x

PRF(i)
A

(i−1)
1 ,A

(i−1)
2

(x) = S(PRF(i−1)
A

(i−1)
1

(x[1,2i−1]),

PRF(i−1)
A

(i−1)
2

(x[2i−1+1,2i])) ,

where

A
(i−1)
1 = (a1,0, a1,1, a2,0, a2,1, ..., a2i−1,0, a2i−1,1)

A
(i−1)
2 = (a2i−1+1,0, a2i−1+1,1, a2,0, a2,1, ..., a2i,0, a2i,1)

That is, PRF takes a key k consisting of 2 × 2` elements of X , and takes bit strings x of length
2` as input. It uses x to select 2` of the elements in the key, and pairs them off. It then applies S
to each of the pairs, obtaining 2`−1 elements of X . Next, PRF pairs these elements and applies S
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to these pairs again, and continues in this way until there is one element left, which becomes the
output.

Theorem 6.13. If S is a standard-secure synthesizer, then PRF from Construction 6.12 is a QPRF.

The proof is very similar to that of the security of the GGM construction: we define a new notion
of security for synthesizers, called quantum-security, and use the techniques of Naor and Reingold
to prove that quantum-security implies that Construction 6.12 is quantum secure. Unlike the GGM
case, the equivalence of quantum- and standard-security for synthesizers is not an immediate con-
sequence of Theorem 4.17. Nevertheless, we prove the equivalence, completing the proof of security
for Construction 6.12.

Recall the definition of standard-security for a synthesizer S : X 2 → Y from Definition 6.11: for
all sets Z, no efficient quantum algorithm A making classical queries to an oracle O from Z2 → Y
can tell if O(z1, z2) = S(O1(z1), O2(z2)) for random oracles Oi ← XZ or if O is truly random.

Since all queries are classical, and only a polynomial number of queries are possible, a simple
argument shows that Definition 6.11 is equivalent to the case where |Z| ∈ nO(1). Further, if Z is
polynomial in size, we can query the entire set classically, so there is no advantage in having quantum
queries. Therefore, Definition 6.11 is equivalent to the following:

Definition 6.14 (Standard-Security). A pseudorandom synthesizer S : X 2 → Y is standard-secure
if, for any set Z where |Z| ∈ nO(1), no efficient quantum algorithm A making quantum queries can
distinguish O(z1, z2) = S(O1(z1), O2(z2)) where Ob ← XZ from O ← YZ×Z .

Before proving security, we define the quantum-security of a pseudorandom synthesizer. The
definition is similar to Definition 6.14, except that there is no bound on the size of Z:

Definition 6.15 (Quantum-Security). A pseudorandom synthesizer S : X 2 → Y is quantum-
secure if, for any set Z, no efficient quantum algorithm A making quantum queries can distinguish
O(z1, z2) = S(O1(z1), O2(z2)) where Ob ← XZ from O ← YZ×Z

We now show that the two definitions are equivalent:

Lemma 6.16. If S is standard-secure, then it is also quantum-secure.

Proof. Let’s define a new oracle distribution, which we will denote ARs, which stands for almost
random. ARs is defined as follows:

• Pick random oracles P1 and P2 from [s]Z .

• Pick a random oracle Q from Z [s]2 .

• Output the oracle O(z1, z2) = Q(P1(z1), P2(z2)).
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Notice that as s goes to ∞, P1 and P2 become injective with probability approaching 1, and thus
AR∞ is the uniform distribution.

Now, let B be an adversary breaking the oracle-security of S with non-negligible probability ε.
Define ε(s) as the following quantity:

ε(s) =
∣∣∣∣ Pr
O1←XZ ,O2←XZ

[BS(O1,O2)() = 1]− Pr
O←ARs

[BO() = 1]
∣∣∣∣

Then ε = lims→∞ ε(s). Let r be an integer such that `(q)/r = ε/8 where q in the number of queries
made by B. We now replace Oi with SRXr , and the Pi (as a part of ARs) with SR[s]

r . Each of these
changes will only change the behavior of A by ε/8. Thus, a simple argument shows that∣∣∣∣∣ Pr

Oi←SRXr
[BS(O1,O2)() = 1]− Pr

Pi←SR[s]
r ,Q←Y[s]2

[BQ(P1,P2)() = 1]

∣∣∣∣∣ ≥ ε(s)− ε/2
Notice that we can think of the oracle Q(P1, P2) as the oracle

O′(z1, z2) = Q(S1 ◦R1(z1), S2 ◦R2(z2)) = O(R1(z1), R2(z2))

Where Si ← {0, 1}[s]{0,1}[r], Ri ← [r]Z , and O(w1, w2) = Q(S1(w1), S2(w2)). As s goes to ∞,
Si become injective with probability converging to one, so O approaches a random function from
[r]2 → Y.

We now describe a new algorithm A which tries to break the standard-security of S accord-
ing to Definition 6.14. A takes as input a quantum-accessible oracle O from {0, 1}[r]2 to Y. A

constructs two random oracles R1 ← {0, 1}[r]Z and R2 ← [r]Z , gives B the oracle O′(z1, z2) =
O(R1(z1), R2(z2)), and simulates B. If O = S(T1, T2) for random oracles Ti ← X {0,1}[r], then the
oracle seen by A is O′(z1, z2) = S(O1(z1), O2(z2)), where O1 and O2 are drawn from SRXr . If O is
a random oracle, then the oracle seen by A is O′(z1, z2) = O(R1(z1), R2(z2)), where Ri[r]Z . This
corresponds to the case where s =∞, and thus the advantage of A in distinguishing these two cases
is ε(∞) − ε/2 = ε/2. If ε is non-negligible, then there is a polynomial bounding r infinitely often,
and in these cases, A breaks the standard-security of S.

We are now ready to prove that Construction 6.12 is quantum-secure:

Proof of Theorem 6.13. Let A be a quantum adversary breaking the quantum-security of PRF
with probability ε. That is,∣∣∣∣ Pr

k←X 2n
[APRFk() = 1]− Pr

O←X{0,1}n
[AO() = 1]

∣∣∣∣ = ε

Let hybrid Hi be the game where the oracle seen by A is PRF, except that each instance of PRF(i)
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is replaced with a truly random function from {0, 1}2
i

into X . Since PRF(0) is already a random
function, H0 is equivalent to the case where the oracle is PRF. Similarly, H` is by definition the case
where the oracle is truly random. Thus a simple hybrid argument shows that there is an i such that
A can distinguish Hi from Hi−1 with probability at least ε/`.

We now describe an algorithm B which breaks the quantum-security of S. B is given an oracle
from P from

(
X × [2`−i]

)2 into X , which is either S(Q1, Q2) for random oracles Qb ← XX×[2`−i] or
a truly random oracle. It then constructs oracles

Py(x1, x2) = P ((x1, y), (x2, y))

Notice that there are 2`−i possible y values, and that for fixed y, Py is either a random oracle from
X 2 into X , or it is S(Qy,1, Qy,2) for random oracles Qy,b from X to X . We then construct the oracle
O which is PRF, except that we stop the recursive construction at PRF(i). There are 2`−i different
instances of PRF(i), so we use the 2`−i Py oracles in their place. If P is S(Q1, Q2), this corresponds
to hybrid Hi−1, whereas if P is a random oracle, this corresponds to Hi. Thus, B distinguishes the
two cases with probability ε/`.

However, under the assumption that S is standard-secure, Lemma 6.16 shows that it is quantum-
secure, meaning the algorithm B is impossible. Therefore, PRF is quantum-secure.

6.1.4 Construction 3: A direct construction from lattices

In this section, we present the construction of pseudorandom functions from Banerjee, Peikert, and
Rosen [BPR12]. We show that this construction is quantum-secure.

Let p, q be integers with q > p. Let bxep be the map from Zq into Zp defined by first rounding x
to the nearest multiple of q/p, and then interpreting the result as an element of Zp. More precisely,
bxep = b(p/q)xe mod p where the multiplication and division in (p/q)x are computed in R.

Construction 6.17. Let p, q,m, ` be integers with q > p. Let K = Zn×mq × (Zn×n)`. We define
PRF : K × {0, 1}` → Zm×np as follows: For a key k = (A, {Si}), let

PRFk(x) =
⌊
At
∏̀
i=1

Sxii

⌉
p

.

The function PRF uses for a key an n ×m matrix A and ` different n × n matrices Si, where
elements are integers mod q. It uses its `-bit input to select a subset of the Si, which it multiplies
together. The product is then multiplied by the transpose of A, whose result is rounded mod p.

Next we prove that Construction 6.17 is secure when the secret key (A, {Si}) is drawn from an
appropriate distribution. First, we need to define the Learning With Errors (LWE) problem:
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Definition 6.18 (Learning With Errors). Let q ≥ 2 an integer, n a security parameter, and m =
poly(n) and w = poly(n) be integers. For a distribution χ over Z and a secret matrix S ∈ Zn×wq , the
LWE distribution LWES,χ is the distribution over Zm×nq × Zm×wq defined as follows:

• Choose a random matrix A← Zn×mq .

• Choose a random error matrix E← χm×w

• Output (At,Bt = AtS + E mod q)

The LWE problem is then to distinguish between a polynomial number of samples from LWES,χ for a
fixed S← χn×w mod q from the same number of samples from the uniform distribution. The LWE
problem is hard if, for all efficient quantum adversaries A, the probability A distinguishes these two
cases is negligible in n.

We now define the oracle-LWE problem:

Definition 6.19 (Oracle-LWE). The oracle-LWE problem is to distinguish an oracle O whose outputs
are generated by LWES,χ (where the same S ← χn×w mod q is used for all points) from a truly
random oracle O. We say that LWE is oracle-hard if, for all efficient adversaries A making quantum
queries, A cannot distinguish these two distributions with more than negligible probability.

Lemma 6.20. If LWE is hard, it is also oracle-hard.

Proof. The proof is very similar to that of Theorem 4.17. Let A be an adversary breaking the
oracle-hardness of LWE using q quantum queries with probability ε. Let r be an integer such that
`(q)/r ≈ ε/4. We then construct an algorithm B, which takes as input r pairs (At

i,Bt
i), and

distinguishes when the pairs come from LWES,χ for some fixed S ← χn×w from when the pairs are
random. B works as follows:

• Construct the oracle O where O(x) is selected at random from (At
i,Bt

i)

• Simulate A with oracle O, and output the output of A.

Using the same analysis as in the proof of Theorem 4.17, we get that B distinguishes the two
cases with probability ε/2. If ε is non-negligible, then there is a polynomial that bounds r infinitely
often, and in these cases, the number of samples received by B is a polynomial, and hence B breaks
the hardness of LWE.

Next, we need to define the discrete Gaussian distribution:

Definition 6.21 (Discrete Gaussian). Let DZ,r denote the discrete Gaussian distribution over Z,
where the probability of x is proportional to e−πx2/r2 .

We are now ready to state and prove the security of Construction 6.17:
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Theorem 6.22. Let χ = DZ,r, and q ≥ p · `(Cr
√
n+ `)`nω(1) for some suitable universal constant

C. Let PRF be as in Construction 6.17, and suppose each Si is drawn from χn×n. If the LWE
problem is hard for modulus q and distribution χ, then PRF from Construction 6.17 is a QPRF.

Proof. The proof is very similar to that of Banerjee et al. Notice that our theorem requires q ≥
p · `(Cr

√
n+ `)`nω(1) whereas the original only requires q ≥ p · `(Cr

√
n)`nω(1). We will explain

why this is later. We first define a class of functions G : K × {0, 1}k → Zm×nq to be PRF without
rounding. That is,

Gk(x) = At
∏̀
i=1

Sxii

Then PRFk(x) = bGk(x)ep. We also define a related class of functions G̃ where G̃ = G̃(`) and

• G̃(0) is a function from {0, 1}0 into Zm×nq defined as follows: pick a random A ∈ Zn×mq , and
set G̃(0)(ε) = At.

• G̃(i) is a function from {0, 1}i into Zm×nq defined as follows: pick a random G̃(i−1), pick
Si ← χn×n and for each x′ ∈ {0, 1}i−1, pick Ex′ ← χm×n. Then

G̃(i)(x = x′xi) = G̃(i−1)(x′) · Sxii + xi ·Ex′ mod q

Let A be an adversary that distinguishes PRF from a random function with probability ε.
First, consider the case where A sees a truly random function U : {0, 1}k → Zm×np . Replace U

with bU ′ep where U ′ is a truly random function from {0, 1}k → Zm×nq . For each input, the bias
introduced by this rounding is negligible because q ≥ pnω(1). Thus, by Theorem 4.17, the ability of
A to distinguish these two cases is negligible.

Now, let B = `(Cr
√
n+ k)`. Let BAD(y) be the event that

⌊
y + [−B,B]m×n

⌉
p
6= {byep}

That is, BAD(y) is the event that y is very close to another element in Zq that rounds to a different
value in Zp. Banerjee et al. show that for each x, the probability that BAD(U ′(x)) occurs is negligi-
ble. Therefore, according to Theorem 4.17, BAD(U ′(x)) as an oracle with outputs in {True,False} is
indistinguishable from the oracle that always outputs False. Hence, it is impossible for an algorithm
making quantum queries to U ′ to find an x such that BAD(U ′(x)) occurs, except with negligible
probability.

The next step is to prove that U ′ and G̃ are oracle-indistinguishable. Once we have accom-
plished this, we replace U ′ with G̃. Then the probability that A detects this change is negligible.
Additionally, it is also impossible to find an x such that BAD(G̃(x)) occurs, except with negligible
probability.
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Lastly, we replace G̃ with G. Banerjee et al. show that as long as BAD(G̃(x)) does not occur,⌊
G̃(x)

⌉
p

= bGk(x)ep = PRFk(x) with all but negligible probability. Our modification to the pa-
rameters of the theorem (replacing

√
n with

√
n+ k) allows us to choose C so that this probability

is actually 2−`σ for some negligible σ. Summing over all 2` different x, we get that, except with
negligible overall probability, PRFk(x) =

⌊
G̃(x)

⌉
p

whenever BAD(G̃(x)) does not occur.
Thus, ifA distinguishes PRFk(x) from

⌊
G̃(x)

⌉
p

with non-negligible probability, it must be that the
sum over all queries made by A of the sum of the query magnitudes of all the x such that BAD(G̃(x))
occurs is non-negligible (Theorems 3.1 and 3.3 of [BBBV97]). But this means we can find an x such
that BAD(G̃(x)) occurs with non-negligible probability (simply run A, and at a randomly chosen
query, halt and sample the query). But, as we have already shown, this is impossible.

Hence, we have shown that PRF is indistinguishable from a random function.
It remains to show that U ′ and G̃ are oracle-indistinguishable. We show that this is true given

that the LWE problem is oracle-hard. Using Lemma 6.20, we reach the same conclusion assuming
LWE is hard, thus completing the theorem.

Let B be an adversary that distinguishes U ′ from G̃ with probability ε. Define hybrid Hi as the
case where B is given the oracle Oi where Oi = G̃, except that, in the recursive definition of G̃, G̃(i)

is replaced with a truly random function. H0 corresponds to the correct definition of G̃, and Hk

corresponds to U ′. Thus, there exists an i such that B distinguishes Hi from Hi−1 with probability
ε/`.

Construct an adversary C with access to an oracle P : {0, 1}i−1 → Zm×nq × Zm×nq . P is either
a random function or each output is chosen according to the LWE distribution. In other words,
P (x) = (At,Bt), where either A(x) and B(x) are chosen at random for all x, or there is a secret
S← χn×n and B(x)t = A(x)tS + E(x) mod q where E(x)← χm×n.

For each j > i, C constructs random oracles Qj : {0, 1}j−1 → Zm×n where Qj(x) ← χm×n. C
also generates Sj ← χn×n for j > i. Then C works as follows:

• Let G̃(i)(x = x′xi) =

A(x′)t if xi = 0

B(x′)t if xi = 1

• Let G̃(j)(x = x′xj) = G̃(j−1)(x′) · Sxjj + xj ·Qj(x′) mod q for j > i.

• Let O(x) = G̃(k)(x)

• Run B with oracle O.

When P is a random oracle, this corresponds to Hi. When P is the LWE oracle, this corresponds
to Hi−1. Thus, C distinguishes these two cases with probability at least ε/`. Under the assumption
that LWE is oracle hard, this quantity, and hence ε, are negligible. We then use Lemma 6.20 to
complete the theorem.
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6.2 Quantum-secure MACs

In this section, we define quantum security for message authentication codes (MAC), and show how
to build schemes meeting this definition. Informally, we wish to capture quantum chosen message
attacks, where the adversary submits a superposition of messages

∑
m

αm|m〉

and the challenger responds with a superposition of tags on those messages:

∑
m

αm|m,Sig(K,m)〉

However, there are several subtleties with actually defining security under this type of attack:

• Randomness. When using a randomized MAC scheme, there are several choices for how
the randomness is used. One option is to choose a single randomness value for each chosen
message query, and sign every message in the superposition with that randomness. Another
approach is to choose fresh randomness for each message in the superposition. The drawback
of the second approach is that whomever is implementing the scheme on a quantum device
needs to guarantee that every message in the superposition is signed with fresh independent
randomness.

The first approach, where the same randomness is used to sign all messages in a superposition,
is much simpler for implementers and we therefore design MAC schemes secure in this setting.
Fortunately, there is a simple transformation that converts a scheme requiring independent
randomness for every message into a scheme that is secure when a single randomness value
is used for an entire query: when signing, choose a fresh random key k for a quantum pseu-
dorandom function (QPRF). This will be the single per-query randomness value. To sign a
superposition of messages, sign each message m in the superposition using randomness ob-
tained by applying the QPRF to m using the key k. From the adversary’s point of view, this is
indistinguishable from choosing independent randomness for each message. Using Lemma 4.1,
we can replace the QPRF with a function drawn from a pairwise independent function family,
which is far more efficient than using a QPRF. Hence, requiring global randomness per query
does not complicate the MAC scheme much, but greatly simplifies its implementation.

• Forgeries. Each quantum chosen message query can be a superposition of every message in
the message space. Sampling the returned superposition will result in a single message/tag
pair for a random message. Therefore, the classical notion of existential forgery being a tag on
a new message is ill-defined when we allow quantum access. Instead, for security we require
that the adversary cannot produce q + 1 valid message/tag pairs with q quantum chosen
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message queries. Security definitions in this style were previously used in the context of blind
signatures [PS96].

Definition 6.23 (Quantum security for message authentication codes). We define several variants
of security for a MAC system (Sig,Ver):

• (Sig,Ver) is strongly existentially unforgeable under a quantum chosen message attack (strongly
EUF-qCMA secure) if all efficient quantum adversaries A have negligible advantage in the
following experiment. A random key k ∈ K is chosen. A makes a polynomial number q of
adaptive quantum signing queries on superpositions

∑
m,x,z

αm,x,z|m,x, z〉

and in response the challenger chooses a random string r and applies the deterministic proce-
dure m 7−→ Sig(k,m; r) to the superposition. That is, it returns the state

∑
m,x,z

αm,x,z|m,x⊕ Sig(k,m; r), z〉 .

Then, the adversary produces q + 1 message/tag pairs {(m∗i , σ∗i )}i∈[q+1]. The advantage of A
is defined as the probability that Ver(k,m∗i , σ∗i ) accepts for all i, and that (m∗i , σ∗i ) 6= (m∗j , σ∗j )
for all i 6= j.

• (Sig,Ver) is q-time strongly EUF-qCMA secure if it is strongly EUF-CMA secure for adversaries
limited to making q signing queries.

• We can also make weak variants of the above definitions by requiring that the forged messages
are all distinct: that is m∗i 6= m∗j for all i 6= j.

Relationship between classical and quantum security. Changing classical queries to quan-
tum queries only enhances the adversaries power, and therefore one would naturally expect that
quantum security is stronger than standard security against quantum adversaries. Indeed, in the
following sections, we demonstrate protocols that are EUF-CMA secure against quantum adver-
saries, but EUF-qCMA insecure. However, our definition of quantum security also makes a stronger
requirement on the adversary’s output: namely he has to produce q + 1 forgeries, whereas a stan-
dard security adversary only needs to produce one. Hence, it may be that the two definitions are
incompatible.

We can “classicalize” the EUF-qCMA security definition by allowing only classical queries, but
still requiring the adversary to output q+1 valid message/tag pairs. The resulting security definition,
which we call EUF-CMA’ security, is clearly implied by both EUF-qCMA and EUF-CMA security.
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For several settings, the two classical security definitions, EUF-CMA and EUF-CMA’, are actually
equivalent. Combined with the results in the following sections, for these settings quantum security
is strictly stronger than classical security. The settings are the following:

• Deterministic schemes. For deterministic schemes, we can assume without loss of generality
that an adversary making classical queries never queries the same message twice, as he could
just have recorded the signature on that message for later use. In this case, the q message/tag
pairs received from signing queries plus the forgery message/tag pair will constitute q + 1
distinct message/tag pairs. Thus, for deterministic schemes, EUF-CMA and EUF-CMA’ are
equivalent, and therefore quantum security is strictly stronger than classical security.

• High min-entropy schemes. For schemes where the signing algorithm has high min-entropy
on each message, repeated queries on the same message will most likely give different tags. As
a result, q message/tag pairs received from signing queries will be distinct, and therefore the
strong notions of the two classical security definitions are again equivalent.

The two cases above handle most reasonable schemes, and therefore for most schemes quantum
security is strictly stronger than classical security.

Constructing quantum-secure MACs. Just like the the PRF setting, we may hope that clas-
sical MAC constructions are actually quantum-secure. Classically, for example, any PRF with
sufficiently large output is a secure MAC. What about quantumly? It turns out that, even assuming
a quantum-secure PRF, proving its quantum security is non-trivial. In the following sections, using
the techniques built in Chapters 3, we show that quantum-secure PRFs actually do give quantum-
secure MACs. We also analyze several other classical MAC constructions; in some cases the classical
constructions are actually quantum insecure, and in others the classical scheme or a slight variant
can be proved quantum secure.

6.2.1 q-time MACs

We begin by discussing quantum one-time MACs, which are MACs secure against a single quantum
query. More generally, we will discuss quantum q-time MACs.

Classically, any pairwise independent function is a one-time MAC. In the quantum setting,
Corollary 3.4 shows that when the range is much larger than the domain, this still holds. However,
such MACs are not useful since we want the tag to be short. We first show that when the range is
not larger than the domain, pairwise independence is not enough to ensure security:

Theorem 6.24. For any set Y of prime-power size, and any set X with |X | ≥ |Y|, there exist
(q + 1)-wise independent functions from X to Y that are not q-time MACs.
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Thus there are classical one-time MACs that are not quantum 1-time MACs, giving an uncon-
ditional separation between the two notions. To prove this theorem, we treat Y as a finite field,
and assume X = Y, as our results are easy to generalize to larger domains. We use random degree
q polynomials as our (q + 1)-wise independent family, and show in Theorem 6.25 below that such
polynomials can be completely recovered using only q quantum queries. It follows that the derived
MAC cannot be q-time secure since once the adversary has the polynomial it can easily forge tags
on new messages.

Theorem 6.25. For any prime power n, there is an efficient quantum algorithm that makes only
q quantum queries to an oracle implementing a degree-q polynomial F : Fn → Fn, and completely
determines F with probability 1−O(qn−1).

The theorem shows that a (q + 1)-wise independence family is not necessarily a secure quantum
q-time MAC since after q quantum chosen message queries the adversary extracts the entire secret
key. The case q = 1 of Theorem 6.25 is particularly interesting.

The problem of recovering the coefficients of a polynomial by quantum queries was previously
studied by Kane and Kutin [KK11], where they show that q quantum queries cannot recover all
the coefficients of a degree 2q polynomial, and conjecture that q queries cannot even recover the
coefficients of a degree q polynomial. Theorem 6.25 refutes this conjecture.

The following lemma will be used to prove Theorem 6.25:

Lemma 6.26. For any prime power n, and any subset X ⊆ Fn of size n − k, there is an efficient
quantum algorithm that makes a single quantum query to any degree-1 polynomial F : X → Fn, and
completely determines F with probability 1−O(kn−1).

Proof. Write F (x) = ax+ b for values a, b ∈ Fn, and write n = pt for some prime p and integer t.
We design an algorithm to recover a and b.

Initialize the quantum registers to the state

|ψ1〉 = 1√
n− k

∑
x∈X
|x, 0〉

Next, make a single oracle query to F , obtaining

|ψ2〉 = 1√
n− k

∑
x∈X
|x, ax+ b〉

Note that we can interpret elements z ∈ Fn as vectors z ∈ Ftp. Let 〈y, z〉 be the inner product
of vectors y, z ∈ Ftp. Multiplication by a in Fn is a linear transformation over the vector space Ftp,
and can therefore be represented by a matrix Ma ∈ Ft×tp . Thus, we can write

|ψ2〉 = 1√
n− k

∑
x∈X
|x,Max + b〉
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Note that in the case t = 1, a is a scalar in Fp, so Ma is just the scalar a.
Now, the algorithm applies the Fourier transform to both registers, to obtain

|ψ3〉 = 1
n
√
n− k

∑
y,z

(∑
x∈X

ω〈x,y〉+〈Max+b,z〉
p

)
|y, z〉

where ωp is a complex primitive pth root of unity.
The term in parenthesis can be written as(∑

x∈X
ω
〈x,y+MT

a z〉
p

)
ω〈b,z〉p

We will then do a change of variables, setting y′ = y + MT
a z.

Therefore, we can write the state as

|ψ3〉 = 1
n
√
n− k

∑
y′,z

(∑
x∈X

ω〈x,y
′〉

p

)
ω〈b,z〉p |y′ −MT

a z, z〉

For z 6= 0 and y′ = 0, we will now explain how to recover a from (−MT
a z, z). Notice that the

transformation that takes a and outputs −MT
a z is a linear transformation. Call this transformation

Lz. The coefficients of Lz are easily computable, given z, by applying the transformation to each of
the unit vectors. Notice that if t = 1, Lz is just the scalar −z. We claim that Lz is invertible if z 6= 0.
Suppose there is some a such that Lza = −MT

a z = 0. Since z 6= 0, this means the linear operator
−MT

a is not invertible, so neither is −Ma. But −Ma is just multiplication by −a in the field Fn.
This multiplication is only non-invertible if −a = 0, meaning a = 0, a contradiction. Therefore, the
kernel of Lz is just 0, so the map is invertible.

Therefore, to compute a, compute the inverse operator L−1
z and apply it to −MT

a z, interpreting
the result as a field element in Fn. The result is a. More specifically, for z 6= 0, apply the computation
mapping (y, z) to (L−1

z y, z), which will take (−MT
a z, z) to (a, z). For z = 0, we will just apply the

identity map, leaving both registers as is. This map is now reversible, meaning this computation
can be implemented as a quantum computation. The result is the state

|ψ4〉 = 1
n
√
n− k

∑
y′

(∑
x∈X

ω〈x,y
′〉

p

)∑
z6=0

ω〈b,z〉p |L−1
z y′ + a, z〉+ |y′, 0〉


We will now get rid of the |y′, 0〉 terms by measuring whether z = 0. The probability that z = 0

is 1/n, and in this case, we abort. Otherwise, we are left if the state

|ψ5〉 = 1√
n(n− 1)(n− k)

∑
z6=0,y′

(∑
x∈X

ω〈x,y
′〉

p

)
ω〈b,z〉p |L−1

z y′ + a, z〉
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The algorithm then measures the first register. Recall that X has size n − k. The probability
the outcome of the measurement is a is then (1− k/n). In this case, we are left in the state

|ψ6〉 = 1√
n− 1

∑
z6=0

ω〈b,z〉p |z〉

Next, the algorithm performs the inverse Fourier transform to the second register, arriving at
the state

|ψ7〉 = 1√
n(n− 1)

∑
w

∑
z6=0

ω〈b−w,z〉
p

|w〉
Now the algorithm measures again, and interpret the resulting vector as a field element. The

probability that the result is b is 1−1/n. Therefore, with probability (1−k/n)(1−1/n)2 = 1−O(k/n),
the algorithm outputs both a and b.

Now we use this attack to obtain an attack on degree-d polynomials, for general d:

Proof of Theorem 6.25. We show how to recover the q + 1 different coefficients of any degree-q
polynomial, using only q − 1 classical queries and a single quantum query.

Let a be the coefficient of xq, and b the coefficient of xq−1 in F (x). First, make q − 1 classical
queries to arbitrary distinct points {x1, ..., xq−1}. Let Z(x) be the unique polynomial of degree q−2
such that r(xi) = F (xi), using standard interpolation techniques. Let G(x) = F (x)−Z(x). G(x) is
a polynomial of degree q that is zero on the xi, so it factors, allowing us to write

F (x) = Z(x) + (a′x+ b′)
q−1∏
i=1

(x− xi)

By expanding the product, we see that a = a′ and b = b′ − a
∑
xi. Therefore, we can implement an

oracle mapping x to a(x+
∑
xi) + b as follows:

• Query F on x, obtaining F (x).

• Compute Z(x), and let G(x) = F (x)− Z(x).

• Output G(x)/
∏

(x− xi) = a(x+
∑
xi) + b.

This oracle works on all inputs except the q − 1 different xi values. We run the algorithm from
Lemma 6.26 on X = Fn \ {xi}, we will recover with probability 1 − O(q/n) both a and b + a

∑
xi

using a single quantum query, from which we can compute a and b. Along with the F (xi) values,
we can then reconstruct the entire polynomial.
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Sufficient Conditions for a One-Time Mac

We use Lemma 4.1 to show that (3q + 1)-wise independence is sufficient for q-time MACs. We note
that finding q+1 input/output pairs is an easier problem than recovering the coefficients for a degree
d polynomial in the case d > q (and in the case d ≤ q, both problems are easy given q quantum
queries). Therefore, the results of Kane and Kutin [KK11] are insufficient for proving MAC security.

Theorem 6.27. Any (3q + 1)-wise independent family with domain X and range Y is a quantum
q-time secure MAC provided (q + 1)/|Y| is negligible.

Proof. Let D be some (3q + 1)-wise independent function. Suppose we have an adversary A that
makes q quantum queries to an oracle H, and attempts to produces q + 1 input/output pairs. Let
εR be the probability of success when H is a random oracle, and let εD be the probability of success
when H is drawn from D. We construct an algorithm B with access to H as follows: simulate A
with oracle access to H. When A outputs q+ 1 input/output pairs, simply make q+ 1 queries to H
to check that these are valid pairs. Output 1 if and only if all pairs are valid. Therefore, B makes q
quantum queries and c = q + 1 classical queries to H, and outputs 1 if and only if A succeeds: if H
is random, B outputs 1 with probability εR, and if H is drawn from D, B outputs 1 with probability
εD. Now, since D is (3q + 1)-wise independent and 3q + 1 = 2q + c, Lemma 4.1 shows that the
distributions of outputs when H is drawn from D is identical to that when H is random, meaning
εD = εR.

Thus, when H is drawn from D, A succeeds with the same probability that it would if H was
random. But we already know from Theorem 3.6 that if H is truly random, A success probability
is less than (q+ 1)/|Y|. Therefore, when H is drawn from D, A succeeds with probability less than
(q + 1)/|Y|, which is negligible. Hence, if H is drawn from D, H is a q-time MAC.

6.2.2 Many-time MACs

In this section, we show how to build quantum many-time MACs.

Quantum-secure PRFs are Quantum-secure MACs

Using Theorem 3.6 we show that a quantum secure pseudorandom function gives rise to the quantum-
secure MAC, namely Sig(k,m) = PRF(k,m). We prove that this mac is secure.

Theorem 6.28. If PRF : K × X → Y is a quantum-secure pseudorandom function and 1/|Y| is
negligible, then (Sig,Ver) where Sig(k,m) = PRF(k,m) and Ver(k,m, σ) checks that σ = F (k,m) is
a EUF-qCMA-secure MAC.

Proof. Let A be an efficient quantum adversary that makes q quantum queries to Sig(k, ·) and
produces q + 1 valid input/output pairs with probability ε. Let Game 0 be the standard quantum
MAC attack game. By definition, A’s success probability in this game is ε.
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Let Game 1 be the same as Game 0, except that Sig(k, ·) is replaced with a truly random
function O : X → Y, and define A’s success probability as the probability that A outputs q + 1
input/output pairs of O. Since PRF is a quantum-secure PRF, A’s advantage in distinguishing
Game 0 from Game 1 is negligible.

Now, in Game 1, A makes q quantum queries to a random oracle, and tries to produce q + 1
input/output pairs. However, by Theorem 3.6 and Eq. (3.1.1) we know that A’s success probability
is bounded by (q + 1)/|Y| which is negligible. It now follows that ε is negligible and therefore,
(Sig,Ver) is a EUF-qCMA-secure MAC.

Carter-Wegman MACs

In this section, we show how to modify the Carter-Wegman MAC so that it is secure in the quantum
setting. Recall that H is an XOR-universal family of hash functions from X into Y if for any two
distinct points x and y, and any constant c ∈ Y,

Pr
h
R←−H

[H(x)−H(y) = c] = 1/|Y|

The Carter-Wegman construction uses a pseudorandom function family PRF with domain X and
range Y, and an XOR-universal family of hash functions H from M to Y. The key is a pair (k,H),
where k is a key for PRF and H is a function drawn from H. To sign a message, pick a random
r ∈ X , and return (r, PRF(k, r) +H(m)).

This MAC is not, in general, secure in the quantum setting. The reason is that the same
randomness is used in all slots of a quantum chosen message query. That is the signing oracle
computes: ∑

m

αm|m〉 −→
∑
m

αm|m, r,PRF(k, r) +H(m)〉

where the same r is used for all classical states of the superposition. For example, suppose H is
the set of functions H(x) = ax + b for random a and b. With even a single quantum query, the
adversary will be able to obtain a and PRF(k, r) + b with high probability, using the algorithm from
Theorem 6.25 in Section 6.2.1. Knowing both of these will allow the adversary to forge any message.

We show how to modify the standard Carter-Wegman MAC to make it secure in the quantum
setting.

Construction 6.29 (Quantum Carter-Wegman). The Quantum Carter-Wegman MAC (QCW-
MAC) is built from a pseudorandom function PRF, an XOR-universal set of functions H, and a
pairwise independent set of functions R.

Keys: The secret key for QCW-MAC is a pair (k,H), where k is a key for PRF and H :M→ Y is
drawn from H
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Signing: To sign a message m choose a random R ∈ R and output the pair
(
R(m), PRF(k,R(m)) +

H(m)
)

as the tag. When responding to a quantum chosen message query, the same R is used
in all classical states of the superposition.

Verification: To verify that (r, s) is a valid tag for m, accept iff PRF(k, r) +H(m) = s.

Theorem 6.30. The Quantum Carter-Wegman MAC is a EUF-qCMA secure MAC.

Proof. We start with an adversary A that makes q tag queries, and then produces q + 1 valid
message/tag pairs with probability ε. We now adapt the classical Carter-Wegman security proof to
our MAC in the quantum setting.

When the adversary makes query i on the superposition

∑
m,y,z

α(i)
m,y,z|m, y, z〉 ,

the challenger responds with the superposition

∑
m,y,z

α(i)
m,y,z|m, y + Si(m), z〉

where Si(m) = (Ri(m),PRF(k, (Ri(m)) + H(m)) for a randomly chosen Ri ∈ R, where R is a
pairwise independent set of functions.

The adversary then creates q + 1 triples (mj , rj , sj) which, with probability ε, are valid mes-
sage/tag tuples. That means H(mj) + PRF(k, rj) = sj for all j.

We now prove that ε must be small using a sequence of games:

Game 0. Run the standard MAC game, responding to query i with the oracle that maps m to
(Ri(m),PRF(k,Ri(m)) + H(m)), where Ri is a random function from R. The advantage of A in
this game is the probability is produces q + 1 forgeries. Denote this advantage as ε0, which is equal
to ε.

Game 1. Replace PRF(k, ·) with a truly random function F , and denote the advantage in this
game as ε1. Since PRF is a quantum-secure PRF, ε1 is negligibly close to ε0.

Game 2. Next we change the goal of the adversary. The adversary is now asked to produce a triple
(m0,m1, s) where H(m0)−H(m1) = s. Given an adversary A for Game 1, we construct an adversary
B for Game 2 as follows: run A, obtaining q+ 1 forgeries (mj , rj , sj) such that H(mj) +F (rj) = sj

with probability ε1. If all rj are distinct, abort. Otherwise, assume without loss of generality that
r0 = r1. Then

H(m0)−H(m1) = (s0 − F (r0))− (s1 − F (r1)) = s0 − s1



CHAPTER 6. FULLY QUANTUM SECURITY NOTIONS 102

so output (m0,m1, s0 − s1). Let ε2 be the advantage of B in this game. Let p be the probability
that all rj are distinct and A succeeds. Then ε2 ≥ ε1 − p.

We wish to bound p. Define a new algorithm C, with oracle access to F , that first generates H,
and then runs A, playing the role of challenger to A. When A outputs q + 1 triples (mj , rj , sj), C
outputs q+1 pairs (rj , sj−H(mj)). IfA succeeded, then H(mj)+F (rj) = sj , so F (rj) = sj−H(mj),
meaning the pairs C outputs are all input/output pairs of F . If all the rj are distinct, then C will
output q + 1 input/output pairs, which is impossible except with probability at most (q + 1)/|Y|.
Therefore, p ≤ (q + 1)/|Y|. Therefore, as long as |Y| is super-polynomial in size, p is negligible,
meaning ε2 is negligibly close to ε1.

Game 3. Now modify the game so that we draw Ri uniformly at random from the set of all oracles.
Notice that each Ri is queried only once, meaning pairwise-independent Ri look exactly like truly
random Ri, so Game 3 looks exactly like Game 2 from the point of view of the adversary. Thus
the success probability ε3 is equal to ε2.

Game 4. For this game, we answer query i with the oracle that maps m to (Ri(m), F (Ri(m)).
That is, we ignore H for answering MAC queries. Let ε4 be the success probability in this game. We
show that ε4 is negligibly-close to ε3 using a sequence of sub-games. Game 3a is the game where
we answer query i with the oracle that maps m to (Ri(m), Pi(m) + H(m)) where Pi is another
random oracle. Notice that we can define oracles R(i,m) = Ri(m) and P (i,m) = Pi(m), which
are random oracles. Thus we can simulate Game 3 with the oracle (R(i,m), F (R(i,m))) where
F and R are random functions. Thus F (R(i,m)) is a small-range function from Section 4.5, and
Lemma 4.16 shows that F (R(i,m)) is indistinguishable from a truly random function P (i,m) except
with probability O(q3/|X |) = negl, even when given oracle access to R(i,m). Replacing F (R(i,m))
with P (i,m) moves us to Game 3a, showing that Game 3a is negligibly close to that of Game 3.
Notice that since Pi is random, P ′i (m) = Pi(m) +H(m) is also random, so Game 3a is equivalent
to the game were we answer query i with the oracle that maps m to (Ri(m), Pi(m)). Using the
above lemma again, the success probability of B in this game is negligibly close to that of Game 4.

Now, we claim that ε4, the success probability in Game 4 is negligible. Indeed, the view of B is
independent of H, so the probability that H(m0)−H(m1) = s is 1/|Y|. Since ε4 is negligibly close
to ε = ε0, the advantage of A, we have that A’s advantage is also negligible.

6.3 Quantum-secure Signatures

In this section, we study the quantum security of signature schemes, which are essentially a public
key version of message authentication codes. Like in the MAC case, we ask for security even when
the adversary can make signing queries on arbitrary superpositions of messages. Unsurprisingly, the
security definitions for signatures are very similar to the MAC definitions in Section 6.2.
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Definition 6.31 (Quantum security for signatures). We define several variants of security for a
signature scheme (Gen,Sig,Ver):

• (Gen,Sig,Ver) is strongly existentially unforgeable under a quantum chosen message attack
(strongly EUF-qCMA secure) if all efficient quantum adversaries A have negligible advantage
in the following experiment. A signing and verification key pair (sk, vk) R←−Gen() is generated.
A receives vk, and then makes a polynomial number q of adaptive quantum signing queries on
superpositions ∑

m,x,z

αm,x,z|m,x, z〉

and in response the challenger chooses a random string r and applies the deterministic proce-
dure m 7−→ Sig(sk,m; r) to the superposition. That is, it returns the state

∑
m,x,z

αm,x,z|m,x⊕ Sig(sk,m; r), z〉 .

Then, the adversary produces q+ 1 message/tag pais {(m∗i , σ∗i )}i∈[q+1]. The advantage of A is
defined as the probability that Ver(vk,m∗i , σ∗i ) accepts for all i, and that (m∗i , σ∗i ) 6= (m∗j , σ∗j )
for all i 6= j.

• (Gen,Sig,Ver) is q-time strongly EUF-qCMA secure if it is strongly EUF-CMA secure for
adversaries limited to making q signing queries.

• We can also make weak variants of the above definitions by requiring that the forged messages
are all distinct: that is m∗i 6= m∗j for all i 6= j.

Constructing quantum-secure MACs. As in the MAC case, we may hope that classical signa-
ture constructions from the literature actually give rise to quantum-secure constructions. Unfortu-
nately, our techniques seem insufficient for proving the quantum security of most existing signatures.
Instead, we give three generic transformations from standard signatures into quantum secure signa-
tures. Our transformations have small computational overhead compared to the original schemes.
One existing scheme that we are able to prove quantum security for is the GPV signature scheme
from Section 5.2.1. First, however, we show a separation between quantum and standard security.
Similarly to MACs, quantum and standard security may in general be incompatible. However, for
determinstic signatures or signatures with high min-entropy, our separation shows that quantum
security is strictly stronger than standard security.
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6.3.1 Separation

Next we show that quantum chosen message queries give the adversary more power than clas-
sical chosen message queries. In particular, we present a signature scheme that is secure un-
der classical queries, but completely insecure once an adversary can make quantum queries. Let
(Genc,Sigc,Verc) be a signature scheme that is secure under classical chosen message queries. We
augment (Genc,Sigc,Verc) as follows. Let t be the bit-length of the secret key skc. Let PRF0 be
a quantum secure PRF, and let PRF1 be a quantum-gap PRF from Section 6.1. That is, PRF1

is (standard) secure against quantum adversaries, but quantum queries can distinguih PRF1 from
random with all but negligible error. Assume for simplicity that PRF0 and PRF1 share the same key
space K, domain X , and range Y; the key spaces can be always be padded so that this is the case,
and the domain and random can easily be modified as well. The secret key will consist of a Sigc
secret key skc, as well as t PRF keys ki ∈ K. The message space M of the signature scheme will be
X t. Then the signature on m = (x1, . . . , xt) will consist of an Sigc signature, as well as the values
PRFski(ki, xi) for each i, where ski is the ith bit of skc. For verification, the augmented part of the
signature will be ignored.

Under classical queries, PRF0 and PRF1 are both indistinguishable from random functions, so
the auxiliary parts of the signature reveal nothing about skc. Therefore, the scheme inherits EUF-
CMA security from the underlying signature. Under quantum queries, PRF0 and PRF1 can be
distinguished almost perfectly (since PRF0 is indistinguishable from a random oracle, but PRF1 is
almost perfectly distinguishable from a random oracle). Thus, quantum queries can reveal bits of
the secret key, leading to a total break.

Construction 6.32. Let PRF0,PRF1 be PRFs with key space K, domain X , and co-domain Y. Let
(Genc,Sigc,Verc) be a signature scheme where secret keys have bit length t and the message space
is M = X t × Yt2. We construct a new signature scheme (Gen,Sig,Ver) with message space X t as
follows:

Gen() : (skc, vkc)
R←−Genc(), k = (k1, . . . , kt)

R←−Kt, Output (sk = (skc, k), vk = vkc)

Sig((skc, k),m) : Write skc = (sk1, . . . , skt) ∈ {0, 1}t, m = (m1, . . . ,mt), k = (k1, . . . , kt)

yi ← PRFski(ki,mi)∀i ∈ [t], σ = Sig(skc, (m1, . . . ,mt, y1, . . . , yt))

Output σ = (σc, y1, . . . , yt)

Ver(vkc,m, σ) : Write σ = (σc, y1, . . . , yt)

Output Verc(skc, (m, y1, . . . , yt), σc)

2We can always make the message space arbitrarily large by hashing. This can be done using only one-way
functions, which are implied by the existence of signature schemes. Therefore, requiring this large message space does
not add any assumptions
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Theorem 6.33. If (Genc,Sigc,Verc) is (strongly) existentially unforgeable under a classical chosen
message attack, PRF is a quantum-secure PRF, and PRF1 is a quantum-gap PRF, then (Gen,Sig,Ver)
is also (strongly) existentially unforgeable under a classical chosen message attack, but a single
quantum chosen message query suffices to recover the secret key with overwhelming probability.

Using the fact that classical signatures can be build from one-way functions [Rom90], using
Theorem 6.9 to build quantum-secure PRFs from any PRG, Theorem 6.3 to builds quantum-gap
PRFs from quantum-secure PRFs, and finally the fact that PRGs can be built from one-way func-
tions [HILL99], we get the following corollary:

Corollary 6.34. Assuming the existence of one-way functions, there are (strongly) EUF-CMA
signatures that for which the secret key can be recovered with a single quantum chosen message
query with overwhelming probability. In particular, the signatures are not even one-time EUF-qCMA
secure.

Proof. We first prove that (Gen,Sig,Ver) is EUF-CMA secure against classical queries. Suppose we
have an adversary A for (Gen,Sig,Ver) with advantage ε. We define k + 1 hybrid experiments:

Game j. In Game j, signature queries are answered as in the standard game, except that
PRF0 is used for the first j of the yi. That is, to sign a message m, the challenger sets yi =PRF0(ki,mi) If i ≤ j

PRFski(ki,mi) If i > j
.

Game 0 is the normal EUF-CMA security game. We wish to show that Game 0 is indistin-
guishable from Game t. We do this by showing Game j − 1 is indistinguishable from Game j for
all j ∈ [t]. We do this through an intermediate hybrid, where yj = O(m) for a random oracle O,
which is simulated on the fly. The standard security of PRF0 or the quantum-gap security of PRF1

(which in particular implies standard security) mean that this change is undetectable. Then we can
move to yj = PRF0(kj ,m) using the standard security of PRF0.

Thus A has non-neligible advantage in Game t. We can use A to build a forger B for (Genc,Sigc,
Verc). On input vkc, B chooses t keys k1, . . . , k1, and simulates A on input vkc. When A makes a
signing query on m, B computes the yi as in Game t, and makes a signing query on (m, y1, . . . , yt),
obtaining a signature σc. It then gives the signature (σc, y1, . . . , yt) to A. When A produces a mes-
sage/forgery pair (m∗, (σ∗, y∗1 , . . . , y∗t )) for Sig, B outputs the message/forgery pair ((m∗, y∗1 , . . . , y∗t ),
σ∗) for Sigc. If A’s forgery is new and valid, so will B’s. Moreover, B simualtes the view of A in
Game t, and therefore has non-negligible advantage in breaking the EUF-CMA security of Sigc.

We now give a quantum attack on Sig. From the signing oracle, we can easily implement the
oracle that maps (m1, . . . ,mt) 7−→ (PRFsk1(k1,m1),PRFsk2(k2,m2), . . . , (PRFskt(kt,mt) by ignoring
the σ part3. We can then treat this as t individual oracles mapping m 7−→ PRFski(ki,m). Since

3Technically, we cannot just ignore the σ part as quantum computation needs to be reversible. However, we can
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PRF0 is quantum secure, oracle access to PRF0 is indistinguishable from a random oracle. Since
PRF1 is a quantum-gap PRF, a single quantum query can distinguish it from a random oracle, and
hence from PRF0. Therefore,we can apply the quantum gap attack on PRF1 to each of the oracles
in parallel, using only a single quantum query. The result is that we recover all of the ski, and hence
skc. Now we can sign any message.

6.3.2 Construction 1: A conversion using Chameleon Hash Functions

Now we move to actually building signature schemes that are secure against quantum chosen message
attacks. In this section, we show a general transformation from classically secure signatures to
quantum secure signatures. The building blocks for our construction are chameleon hash functions
and signatures that are secure against a classical random message attack.

The idea behind our construction is to first hash the message with the chameleon hash function
and then sign the hash. In order to be secure against quantum queries, care has to be taken in
how the randomness for the hash and the signature scheme is generated. In what follows, for any
randomized algorithm A, we let A(x; r) denote running A on input x with randomness r.

Construction 6.35. Let (GenH ,H, Inv) be a chameleon hash function, and (Genc,Sigc,Verc) a
signature scheme. Let Q and R be families of pairwise independent functions mapping messages
to randomness used by H and Sigc, respectively. We define a new signature scheme (Gen,Sig,Ver)
where:

Gen(λ) : (ik, fk) R←−GenH(λ), (skc, vkc)
R←−Genc(λ)

output sk = (fk, skc), vk = (fk, vkc)

Sig((fk, skc),m) : Q R←−Q, R R←−R

r
R←−(m), s← Q(m), h← H(fk,m, r)

σ ← Sig(skc, h; s), output (r, σ)

Ver((fk, vkc),m, (r, σ)) : h← H(fk,m, r), output Ver(vkc, h, σ)

We note that the chameleon secret key is not used in Construction 6.35, though it will be used
in the security proof. Classically, this method of hashing with a chameleon hash and then signing
converts any non-adaptively secure scheme into an adaptive one. We show that the resulting scheme
is actually secure against an adaptive quantum chosen message attack.

Theorem 6.36. If (Genc,Sigc,Verc) is weakly (resp. strongly) EUF-RMA secure and (GenH ,H, Inv)
is a secure chameleon hash function, then (Gen,Sig,Ver) in Construction 6.35 is weakly (resp.

initialize the response register where σ is written to be a uniform superposition over all stings. Then writing σ to the
register just permutes the strings, which leaves the state unchanged. Then the state can be discarded
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strongly) EUF-qCMA secure. Moreover, if (Genc,Sigc,Verc) is only one-time secure, then (Gen,Sig,
Ver) is also one-time secure.

Theorem 6.36 shows that we can take a classically EUF-RMA secure signature scheme, combine
it with a a chameleon hash, and obtain a quantum-secure signature scheme. In particular, the
following constructions will be quantum secure, assuming SIS is hard:

• A slight modification to the signature scheme of Cash et al. [CHKP10], which combines their
chameleon hash function with an EUF-RMA secure signature scheme. The only difference in
their scheme is that the values r and s are sampled directly, rather than setting them to be
the outputs of pairwise independent functions.

• A modification of the signature scheme of Agrawal, Boneh, and Boyen [ABB10a], where we
hash the message using a chameleon hash before applying the signature.

We now prove Theorem 6.36:

Proof. We first sketch the proof idea. Given an Sigc signature σ on a random hash h, we can
construct an Sig signature on any given message m: use the chameleon secret key ik to compute a
randomness r such that H(fk,m, r) = h, and output the signature (r, σ). Thus, we can respond to a
classical chosen message attack, given only signatures on random messages.

If the adversary issues a quantum chosen message query, we need to sign each of the exponentially
many messages in the query superposition. Therefore, using the above technique directly would
require signing an exponential number of random hashes. Instead, we use small-range distributions
and Corollary 4.15 to reduce the number of signed hashes required to a polynomial. The problem is
that the number of hashes signed is still a very large polynomial, whereas the number of signatures
produced by our adversary is only q+1, so we cannot rely on the pigeon-hole principle to argue that
one of the Sig forgeries is in fact a Sigc forgery. We can, however, argue that two of the forgeries
must, in some sense, correspond to the same query. If we knew which query, we could perform a
measurement, observing which of the (polynomially many) random hashes were signed. Lemma 4.4
shows that the adversary’s advantage is reduced by only a polynomial factor. For this query, we
now only sign a single random hash, but the adversary produces two forgeries. Therefore, one of
these forgeries must be a forgery for Sigc. Of course, we cannot tell ahead of time which query to
measure, so we just pick the query at random, and succeed with probability 1/q.

We now give the complete proof. There are four variants to the theorem (one-time vs many
time, strong vs weak). We will prove the many-time strong security variant, the other proofs being
similar. Let A be an adversary breaking the EUF-qCMA security of Sig in Construction 6.35 with
non-negligible probability ε. We prove security through a sequence of games.

Game 0. This is the standard attack experiment, where A receives vkc and fk, and is allowed
to make a polynomial number of quantum chosen message queries. For query i, the challenger
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produces pairwise independent functions R(i) and Q(i), and responds to each message in the query
superposition as follows:

• Let r(i)
m = R(i)(m) and s

(i)
m = Q(i)(m).

• Compute h(i)
m = H(fk,m, r(i)

m )

• Compute σ(i)
m = Sigc(skc, h

(i)
m ; s(i)

m )

• Respond with the signature (r(i)
m , σ

(i)
m ).

In the end, A must produce q+1 distinct triples (m∗k, r∗k, σ∗k) such that Ver(vkc,H(fk,m∗k, r∗k), σ∗k)
accepts. By definition, A wins with probability ε, which is non-negligible. Thus we can take 1/ε to
be a polynomial infinitely often.

Game 1. We make two modifications: first, we choose R(i) and Q(i) as truly random functions,
which amounts to generating r

(i)
m and s

(i)
m at random for each i,m. According to Lemma 4.1, the

view of the adversary is unchanged. Second, we modify the conditions in which A wins by requiring
that no two (m∗k, r∗k) pairs form a collision for H. The security of H implies that A succeeds in Game
1 with probability at least ε− negl.

Game 2. Generate s(i)
m as before, but now draw h

(i)
m uniformly at random. Additionally, draw

uniform randomness t(i)m for the Inv algorithm. We will sample r(i)
m from the set of randomness that

makes H(fk,m, r(i)
m ) = h

(i)
m . That is, let r(i)

m = Inv(ik, h(i)
m ,m; t(i)m ). The properties of the chameleon

hash ensure that the view of A is unchanged. Therefore, the success probability is at least ε− negl.

Game 3. Let w = 2`(1)q/ε where `(·) is the polynomial from Corollary 4.15. Then w is a poly-
nomial infinitely often. At the beginning of the game, for i = 1, ..., q and j = 1, ..., w, sample values
ĥ

(i)
j and let σ̂(i)

j = Sigc(skc, ĥ
(i)
j ). Also pick q random functions Oi mapping m to [w]. Then let

h
(i)
m = ĥ

(i)
Oi(m) and σ

(i)
m = σ̂

(i)
Oi(m). Let Ti be random functions, and let t(i)m = Ti(m). The only

difference between Game 2 and Game 3 is that the h(i)
m and σ(i)

m values were generated by q small-
range distributions on w samples. Each of the small-range distributions is only queried once, so
Corollary 4.15 implies that the success probability is only affected by ε/2q for each query. Thus, the
success probability is still at least ε/2− negl.

Game 4. Let the Oi and Ti be pairwise independent functions. The adversary cannot tell the
difference.

Notice that Game 4 can now be simulated efficiently, and A wins in this game with probability
ε/2 − negl. Let h∗k = H(fk,m∗k, r∗k) be the hashes of the forgeries. Since we have no collisions in H,
the pairs (h∗k, σ∗k) are distinct. Let H(i) = {ĥ(i)

j } be the set of ĥ values used to answer query i, and
H be the union of the H(i). There are two possibilities:
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• At least one of the h∗k is not in H, or two of them are equal. In this case, we can obtain a
forger B0 for Sigc, which is given vkc and simulates Game 4 exactly: To generate the (ĥ(i)

j , σ̂
(i)
j )

pairs, B0 asks its own challenger for signatures on q` random messages. When A responds with
forgeries (m∗k, r∗k, σ∗k), B0 computes h∗k = H(fk,m∗k, r∗k), and finds the k value such that h∗k /∈ H,
or the k0, k1 such that h∗k0

= h∗k1
. In the latter case, one of the σ∗kb was not the result of a

signing query, so let k = kb. It then outputs the pair (h∗k, σ∗k). Then B0 never received the
signature σ∗k on h∗k, so this is a valid forgery. Therefore, this event happens with negligible
probability.

• All of the h∗k values are distinct and lie in H. In this case, there is some i such that two h∗k
values are in H(i) for the same i. Notice that this event happens, and all the forgeries are
valid, with probability ε/2− negl.

Game 5. Now we guess a random query i∗ and add a check that all the h∗k values lie in H, and
that two of them are distinct and lie in H(i∗). Without loss of generality, assume these two h∗ values
are h∗0 and h∗1. A then wins in this game with probability ε/2q − negl. Let j∗b be the j such that
h∗b = ĥ

(i∗)
j∗
b

for b = 0, 1.

Game 6. On query i∗, measure the value of Oi(m), to get a value j∗. Oi takes values in [w], so
Lemma 4.4 says the adversary’s success probability is still at least ε/2qw − negl. Notice now that
for query i∗, the challenger only needs to sign ĥ

(i∗)
j∗ , and therefore, one of the h∗b = ĥ

(i∗)
j values was

never signed.

Game 7. Now guess at the beginning of the game the value of j∗, and at the end, check that the
guess was correct. The adversary still wins with probability ε/2qw2 − negl.

We now describe an adversary B1 that breaks the security of Sigc. Ask the RMA challenger for
(q− 1)w+ 1 random messages and corresponding signatures. For j 6= j∗, choose ĥ(i∗)

j randomly. Set
the rest of the ĥ(i)

j values to be the signed messages, and set σ̂(i)
j to be the corresponding signatures.

Now play the role of challenger to A in Game 7 using these values for ĥ(i)
j and σ̂(i). As discussed

above, B1 will never have to sign a message it does not have a signature for. Now if A wins, it means
that it produced an
sigc signature for some ĥ(i∗)

j with j 6= j∗. Since B1 never saw a signature on ĥ
(i∗)
j , this is a valid

forgery. Therefore, B1 breaks the security of Sigc with non-negligible probability ε/2qw2 − negl.

Remark 6.37. We note that for one-time security, this security reduction signs only a single mes-
sage, so we only need to rely on the one-time security of Sigc.

Remark 6.38. We note that the chameleon hash function built by Cash et al. [CHKP10] departs
from the ideal notion described in Section 2.2. Similar to the proofs of Theorems 5.7 and 5.19, this
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results A no longer having identical views in Games 1 and 2. Instead, the distributions on oracle
outputs seen in Games 1 and 2 are statistically close. We can then invoke Theorem 4.18 to argue
that the two views are still indistinguishable.

6.3.3 Construction 2: Quantum Random Oracle Model Conversion

In this section we present a generic conversion from any classical signature scheme to a scheme secure
against quantum chosen message attacks in the quantum random oracle model.

We demonstrate a simple generic conversion from a classical signature scheme to one that is
secure against an adaptive quantum chosen message attack in the quantum random oracle model.
The construction is quite simple: use the random oracle to hash the message along with a random
salt, and send the signature on the hash, together with the salt. This construction is very appealing
since messages are often hashed anyway before signing. The results in this section then show that
only minor modifications to existing schemes are necessary to make them quantum immune.

Construction 6.39. Let (Genc,Sigc,Verc) be a signature scheme, H be a random function, and Q
be a family of pairwise independent functions mapping messages to the randomness used by Sigc,
and k some polynomial in λ. Define (Gen,Sig,Ver) where:

Gen(λ) = Genc(λ)

Sig(sk,m) : Q R←−Q, r R←−{0, 1}k

s← Q(m), h← H(m, r), σ ← Sigc(sk, h; s), output (r, σ)

Ver(vk,m, (r, σ)) : h← H(m, r), output Verc(vk, h, σ)

We note that Construction 6.39 is similar to Construction 6.35: instead of the chameleon hash
H(fk, ·, ·) we have a random oracle H(·, ·), and instead of generating a different r for each message
in the superposition, we just generate a single r for the entire superposition. We can achieve
security for Construction 6.39, assuming only a very weak form of security for Sigc, namely, universal
unforgeability under a random message attack (UUF-RMA security):

Theorem 6.40. If (Genc,Sigc,Verc) is strongly (resp. weakly) UUF-RMA secure, then the scheme
(Gen,Sig,Ver) in Construction 6.39 is strongly (resp. weakly) EUF-qCMA secure in the quantum
random oracle model. Moreover, if (Genc,Sigc,Verc) is only one-time secure, then (Gen,Sig,Ver) is
also one-time secure.

Before proving Theorem 6.40, we explain how to realize the strong UUF-RMA notion of security.
We note that any strongly EUF-RMA or EUF-CMA secure signature scheme satisfies this security
notion. We also note that some weaker primitives do as well. The first is pre-image sampleable
functions (PSFs). One-wayness plus collision resistance for PSFs implies strong UUF-RMA security.
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Corollary 6.41. If PSF is a collision resistant and one-way PSF, then Construction 6.39 instan-
tiated with PSF is strongly EUF-qCMA secure in the quantum random oracle model.

The result is a slight variant of the GPV signature scheme of Gentry, Peikert, and Vaikun-
tanathan [GPV08], who construct PSFs based on the hardness of SIS. Therefore, we can construct
efficient quantum-secure signatures in the quantum random oracle model based on SIS. Later, we
also show that the basic GPV signature scheme is secure in the quantum random oracle model,
though the proof is very different.

We note also that PSFs give UUF-RMA signatures, even if they do not satisfy the pre-image
minentropy requirement. Thus, trapdoor permutaitons suffice:

Corollary 6.42. If F is a one-way trapdoor permutation, then Construction 6.39 instantiated with
F is strongly EUF-qCMA secure in the quantum random oracle model.

Next, we observe that any adversary A breaking the universal unforgeability of Sigc by mounting
a random message attack can easily be transformed into an adversary B breaking Construction 6.39
under a classical chosen message attack in the classical random oracle model:

• When B receives the public key vk for Sig in Consutrction 6.39, B forwards the public key to
A.

• A requests q message/signature pairs for random messages, and n additional random messages.
To respond, B queries its signing oracle on q arbitrary distinct points mi, obtaining q pairs
(ri, σi), where σi is a valid Sigc signature of hi = H(mi, ri). B queries its random oracle on
mi, ri to obtain hi, and sends the q pairs (hi, σi) as the message/tag pairs to A. Additionally,
B queries its random oracle on n additional arbitrary points m∗i , r∗i , obtaining h∗i , and sends
the h∗i to A as the n additional messages.

• Finally, A outputs a new signature σ∗i for one on the messages h∗i , or potentially one of the
hi if we are interested in strong security. B simply figures out which pre-image (m∗i , r∗i ) this
forgery corresponds to, and outputs the tuple (m∗i , r∗i , σ∗).

Together with Theorem 6.40, this roughly means that quantum chosen message queries and
quantum random oracle queries do not help the adversary break Construction 6.39. Therefore, if a
scheme matches the form of Construction 6.39, it is only necessary to prove classical security. This
is formalized by the following corollary:

Corollary 6.43. If (Gen,Sig,Ver) in Construction 6.39 is weakly (resp. strongly) existentially
unforgeable under a classical chosen message attack performed by a quantum adversary, then it is
also weakly (resp. strongly) existentially unforgeable under a quantum chosen message attack.

We now proof Theorem 6.40, which is very similar to the proof of Theorem 6.36
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Proof. Suppose we have an adversary A that breaks the security of S from Construction 6.39. Let
qS be the number of signing queries made by A, and qH be the number of hash queries (including
those used in signing). We will prove security through a sequence of games.

Game 0. This is the standard attack game. A makes qS quantum chosen message queries, and
succeeds if it produces qS+1 valid message/signature tuples (m∗j , r∗j , σ∗j ). Let ri be the random value
produced in the ith query, and Qi be the pair-wise independent functions. A’s success probability is,
by assumption, some non-negligible quantity ε. Thus, we can take 1/ε to be a polynomial infinitely
often.

Game 1. Replace the Ri with a truly random function, and abort if any of the ri values are
identical. Then the success probability is at least ε− q2/2k+1 ≥ ε− negl. Notice that if all the ri are
distinct, we can replace Qi(m) with Q(m, ri) for a random oracle Q that is fixed across all queries.
That is, we sign the ith query with the oracle that maps m to (ri,Sigc(sk, H(m, ri);Q(m, ri))).
Notice that the function H ′(m, r) = (H(m, r), Q(m, r)) is a random function.

Game 2. Let w = 6`(qH)/ε. Since ε is non-negligible, w is a polynomial infinitely often. We now
change how H ′ is generated. Pick three random oracles U , V and W , where the codomain of U and
V is [w] , and let H ′(m, r) = W (U(m,V (r)), V (r)). What this distribution represents is, for each
V (r) value, picking a random small-range function on w samples. In essence, we have a small-range
distribution on small-range distributions. A simple generalization of Corollary 4.15 shows that this
is indistinguishable from Game 1 except with probability ε/3.

Game 3. Pick the ri values up front, and let R be the set of ri values. Abort if V (ri) = V (rj) for
any i 6= j. We can assume without loss of generality that V (ri) = i. The probability of this abort
is at most q2

S/2w. We can assume that qS ≤ qH . Then q2
S ≤ `(qH), and so the abort probability is

at most ε/3. Therefore, A wins in Game 3 with probability at least ε/3.
The following modifications are indistinguishable to the adversary: before the start of the game,

draw w2 different ĥi,j values. Sign each of them with i ≤ qS using S to get σ̂i,j . Then let H(m, r) =
ĥV (r),U(m,V (r)) and sign the ith query my mapping m to (ri, σ̂i,U(m,i)). We can also generate V and
U from 2qH -wise independent functions, and the adversary cannot tell.

Game 4. Pick a random ri0 from R. Add the condition that if the r∗j all lie in R, that the two that
are equal must be ri0 . This condition is independent of the view of the adversary, so the adversary
wins with probability at least (ε/3)/qS .

Game 5. Measure the value of U(m, i0) for the i0th query. The adversary still wins with probability
at least (ε/3)/qSw.



CHAPTER 6. FULLY QUANTUM SECURITY NOTIONS 113

Game 6. Pick a random j0 ∈ [w], and abort if the result of the measurement in Game 5 does not
yield j0. We guess right with probability 1/w, so the adversary still wins with probability at least
(ε/3)/qSw2. Now, if we succeed, we never need the values of σ̂i0,j except for σ̂i0,j0 , so we don’t need
to ever sign the others.

We can now describe an adversary B that attacks the UUF-RMA security of Sigc. B simulates
the entire Game 6, except for generating the ĥi,j and σ̂i,j . For these, B asks its Sigc challenger for
q = (qS − 1)w+ 1 random message/signature pairs, and n = w2− q additional random messages. It
assigns the q message/signature pairs to ĥi,j and σ̂i,j for i ∈ [qS ] \ {i0} and σ̂i0,j0 . The rest of the
ĥi,j it sets to the n additional messages. When A outputs its qS + 1 forgery candidates, there are
several possibilities:

• r∗j1 lies outside R for some j1. In this case, since there are no collisions among the (m∗j , r∗j ),
h∗j1 = H(m∗j1 , r

∗
j1

) was never signed. Therefore, σ∗j1 is a signature on a fresh message, so B
wins.

• All of the r∗j lie in R, and two of them are equal. Assume without loss of generality that
r∗0 = r∗1 = ri0 . If m∗0 = m∗1, then we must have σ∗0 6= σ∗1 , so one of these is a fresh signature. If
m∗0 6= m∗1, then h∗0 6= h∗1, so one of h∗0 and h∗1 was never signed. Therefore, B also wins.

Therefore, B wins with non-negligible probability (ε/3)/qSw2.

Remark 6.44. We note that, for one-time security, q = 1, so we only need to rely on the one-time
security of Sc.

Deterministic GPV Signatures

Now we show that the basic (deterministic) signature scheme of Gentry, Peikert, and Vaikun-
tanathan [GPV08] (the GPV signature scheme) is secure in the quantum random oracle model.
For convenience, we re-state the GPV signature scheme:

Construction 5.6. Let PSF = (Genpsf ,Sample, F, F−1) be a pre-image sampleable function, PRF
be a pseudorandom function, and H a hash function. Let S = (Gen,Sig,Ver) where

Gen(λ) : (ik, fk) R←−Genpsf (λ), k R←−{0, 1}λ

output sk = (ik, k), vk = fk

Sig((ik, k),m) : r ← PRF(k,m) h← H(m), output σ = F−1(ik, h; r)

Ver(fk,m, σ) : h← H(m), h′ ← F (fk, σ), accept if and only if h = h′

We say that PSF has large pre-image min-entropy if, for all fk,

max
y∈Y

Pr[x← Sample(λ) : F (fk, x) = y] < 2−ω(logλ)
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We note that the PSF given by Gentry et al. [GPV08] has large pre-image min-entropy.

Theorem 6.45. If PSF is collision resistant and has large pre-image min-entropy, then S from
Construction 5.6 is EUF-qCMA secure.

Proof. We prove security via a sequence of games:

Game 0. This is the standard security game. The adversary wins with probability ε.

Game 1. Replace PRF with a truly random function. The security of PRF implies that the
adversary wins with probability at least ε− negl.

Game2. We change the way we answer signing queries and oracle queries as follows: Pick a
random function J that maps messages to the randomness used by Sample(λ). We implement
the signing oracle as S(m) = Sample(λ; J(m)). That is, signatures are random samples from Dλ,
where the randomness used in the sampling is obtained by J(m). We implement the random
oracle as H(m) = F (fk, S(m)). The adversary wins if he can produce q + 1 (mi, σi) pairs where
H(mi) = F (fk, σi). This corresponds to F (fk, S(mi)) = F (fk, σi). In other words, S(mi) and σi

form a collision. By the collision resistance of PSF, we must have S(mi) = σi for all i, except with
negligible probability. This means that we make q queries to the oracle S and a polynomial number
of queries to the oracle F (fk, S(·)), and output q+1 input/output pairs of S with probability ε−negl.

Even if the adversary is able to completely learn the oracle H(·) = F (fk, S(·)), the oracle S(·)
is unpredictable to the adversary. In particular, S(m) is a random pre-image of H(m), which has
minentropy at least H∞ = ω(log λ). Therefore, Game 2 satisfies the conditions of Theorem 3.8,
meaning the probability A wins in Game 2 is at most (q + 1)/

⌊
2H∞

⌋
< (q + 1)2−ω(logλ), which is

negligible. Therefore, A wins in Game 0 with negligible probability, as desired.

Remark 6.46. Again, we need to invoke Theorem 4.18 to adopt the above proof to handle non-ideal
PSFs.

6.3.4 Generic Constructions of Digital Signatures

In this section, we show how to construct signatures from generic assumptions. We first construct
one-time signatures from one-way functions using the basic Lamport construction [Lam79]. We
then show that by combining these signatures with standard-secure signatures in an online/offline
fashion [EGM90], we obtain quantum many-time signatures. As standard-secre signatures can be
built from any one-way function, the result is quantum many-time signatures from any one-way
function4.

4In Secure Signatures and Chosen Ciphertext Security, we showed how to obtain many-time signatures using
collision resistance, a stronger assumption that one-wayness. We would like to thank Andreas Hülsing for discussions
that helped realize the stronger version of the theorem.
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Theorem 6.47. If there exists a one-way function, then there exists a strongly EUF-qCMA secure
signature scheme.

Lamport Signatures. We now give the basic Lamport scheme [Lam79] and prove its security:

Construction 6.48. Let F be a one-way function. We define the following signature scheme for
n-bit messages:

Gen(λ) : for each i ∈ [n], b ∈ {0, 1} : xi,b
R←−{0, 1}λ, yi,b

R←−F (xi)

output sk = (xi,b)i∈[n],b∈{0,1}, vk = (yi,b)i∈[n],b∈{0,1}

Sig(sk,m) : write sk = (xi,b)i∈[n],b∈{0,1}

output (xi,mi)i∈[n]

Ver(vk,m, σ) : write vk = (yi,b)i∈[n],b∈{0,1}, σ = (x′i)i∈[n]

accept if and only if F (x′i) = yi,mi for all i ∈ [n]

Theorem 6.49. If F is one-way (resp. second pre-image resistant), then the Lamport signature
scheme built from F is weakly (resp. strongly) one-time EUF-qCMA secure.

Proof. We prove the weak security case; the strong security case is almost identical. Let A be an
adversary that makes a single quantum query to Sig and outputs a pair of valid message/signature
pairs for different messages with probability ε. We prove security through a sequence of games.

Game 0. This is the standard attack game, where A wins with probability ε.

Game 1. Pick a random value i∗ ∈ [n]. Abort if both messages in A’s forgery are the same for
index i∗. A still wins with probability ε/n.

Game 2. For the quantum chosen message query, measure the bit i∗ of the message superposition.
Lemma 4.4 shows that A still wins with probability ε/2n.

Game 3. At the beginning of the game, guess a bit b∗ at random, and abort if the outcome of the
measurement in Game 2 is b∗. A still wins with probability ε/4n.

We can now describe an adversary B that inverts F . On input y, B guesses i∗ ∈ [n] and
b∗ ∈ {0, 1}, and sets yi∗,b∗ = y. For (i, b) 6= (i∗, b∗), B picks xi,b at random, and lets yi,b = F (xi,b).
Now B simulates Game 3. With probability at least ε/4n, B is able to answer A’s query, and
A produces valid forgeries whose messages differ on bit i∗. This means A produces pre-images
x′i∗,0, x

′
i∗,1 for yi∗,0, yi∗,1. B outputs x′i∗,b∗ , which is a valid pre-image for yi∗,b∗ = y.
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Obtaining many-time security. The natural approach to obtaining many-time security is to
plug the construction above into the Merkle signature tree construction [Mer88]. To use in this
fashion, the one-time signature must be able to sign messages twice as long as its own public key.
Unfortunately, Lamport signatures necessarily can only sign messages much shorter than their own
public key. In the classical setting, this problem can be rectified in two ways. The first way is to
hash the message using a collision resistant hash function. While this solution is appealing due to
its simplicity, collision resistance is a stronger primitive than one-wayness, so the resulting scheme
requires stronger assumptions. The second option is to hash the messages with a target collision
resistant (TGR) function. A TGR function is a keyed function H : K ×M→ Y with the following
security property: any efficient quantum adversary A has negligible advantage in the following
experiment. A first commits to arbitrary message m0 ∈ M. Then a random key k

R←−K is chosen
and given to A. Then A chooses an arbitrary second message m1 ∈ M. A’s advantage is the
probability that m0,m1 form a collision for H using key k: H(k,m0) = H(k,m1).

Now, the modified one-time signature scheme is constructed as follows. To sign a message m,
first, choose a random key k

R←−K. Then compute h ← H(k,m). Then construct the signature
σ
R←−Sig(sk, (k, h)) by signing the pair (k, h). The overall signature is (k, σ). In the classical setting,

TGR security enough to argue security. However, when quantum queries are allowed, the proof no
longer works: it appears that the TGR security definition needs to be modified to allow A to commit
to a superposition of messages. However, it is not clear how exactly to define TGR security in this
setting to make the proof go through.

Online/offline signatures. We now explain our approach to obtaining many-time security from
one-way functions. We will have two signature schemes: (GenOT ,SigOT ,VerOT ) will be a quantum
one-time secure scheme, and (GenMT ,SigMT ,VerMT ) will be a (classical) many-time secure scheme.
Then we construct (Gen,Sig,Ver) following the online/offline signature protocol. That is, to sign a
message m, a random signing/verification key (skOT , vkOT ) is generated for the one-time scheme,
and skOT is used to sign m, obtaining the signature σOT . Then vkOT is signed using the many-
time schene, obtaining σMT . The full signature consists of vkOT , σOT , σMT . The point of using
this signature scheme is that, when signing a superposition of messages, only a single one-time
verification key vkOT needs to be signed, not an entire superposition. Thus the many-time signature
scheme only needs to be secure against classical signing queries. Such signature schemes can be build
from one-way functions as in the classical setting. Only the one-time scheme is used to sign the
actual superposition of messages, and therefore needs to be secure against quantum signing queries.
Putting this together proves Theorem 6.47.

Construction 6.50. Let F be a one-way function. We define the following signature scheme for
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n-bit messages:

Gen() : (skMT , vkMT ) R←−GenMT ()

output sk = skMT , vk = vkMT

Sig(skMT ,m) : (skOT , vkOT ) R←−GenOT (), σOT
R←−SigOT (skOT ,m), σMT

R←−SigMT (skMT , vkOT )

output σ = (vkOT , σOT , σMT )

Ver(vkMT ,m, σ) : write σ = (vkOT , σOT , σMT )

accept if both VerMT (vkMT , vkOT , σMT ) and VerOT (vkOT ,m, σOT ) accept

Theorem 6.51. If (GenOT ,SigOT ,VerOT ) is strongly (resp. weakly) one-time EUF-qCMA secure
and (GenMT ,SigMT ,VerMT ) is strongly (resp. weakly) many-time EUF-CMA secure, then the on-
line/offline signature protocol in Construction 6.50 is strongly (resp. weakly) manytime EUF-qCMA
secure.

Proof. We prove the strong case, the weak case being similar. Let A be an adversary for the strong
EUF-qCMA security of Construction 6.50 with non-negligible advantage ε. Let {(m∗i , σ∗i )}i∈[q+1]

denote the q + 1 message/signature pairs produced by A, and let {(vkj,OT , σj,MT )}j∈[q] denote the
q one-time verification keys and corresponding signatures on the verification keys received during
signing queries.

We define two quantities:

• ε1: This is the probability that A produces q + 1 valid distinct message/signature pairs
(m∗i , σ∗i = (vk∗i,OT , σ∗i,OT , σ∗i,MT )), and among the 2q + 1 verification key/signature pairs
(vk∗i,OT , σ∗i,MT ) and (vkj,OT , σj,MT ), at least q+ 1 of them are distinct. Then the q+ 1 distinct
pairs are valid message/signature pairs for (GenMT ,SigMT ,VerMT ) relative to verification key
vkMT , and hence constitute forgeries. It is therefore straightforward to construct from this a
strong EUF-CMA adversary for (GenMT ,SigMT ,VerMT ) with advantage ε1. Therefore, ε1 is
negligible.

• ε2: This is the probability that A produces q + 1 valid distinct message/signature pairs
(m∗i , σ∗i = (vk∗i,OT , σ∗i,OT , σ∗i,MT )), and among the 2q + 1 verification key/signature pairs
(vk∗i,OT , σ∗i,MT ) and (vkj,OT , σj,MT ), at most q of them are distinct. In particular, this means
two of the (vk∗i,OT , σ∗i,MT ) are identical. That is, (vk∗i0,OT , σ

∗
i0,MT ) = (vk∗i1,OT , σ

∗
i1,MT ) for dis-

tinct i0, i1. Moreover, each of the (vk∗i,OT , σ∗i,MT ) is equal to one of the (vkj,OT , σj,MT ), since
the (vkj,OT , σj,MT ) form q distinct pairs with overwhelming probability.

Then since A produces distinct pairs, it must be that (mi0 , σi0,OT ) 6= (mi1 , σi1,OT ). Hence,
(mi0 , σi0,OT ), (mi1 , σi1,OT ) constitute two valid message/signature pairs for (GenOT ,SigOT ,
VerOT ) relative to verification key vk∗OT = vk∗i0,OT = vk∗i1,OT . It is straightforward to construct
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from this a strong one-time EUF-qCMA adversary for (GenOT ,SigOT ,VerOT ) with advantage
ε2/q. The loss of a factor of q is from the adversary guessing which of the q queries made by
A will use vk∗OT (recall that each of the vk∗i,OT must have come from the signing queries made
by the adversary). Therefore, ε2/q, and hence ε2, must be negligible.

Thus ε = ε1 + ε2 is negligible, showing that Construction 6.50 is strongly EUF-qCMA secure.

6.4 Quantum-secure Encryption

We now turn to encryption schemes where we first discuss an adequate notion of security under
quantum queries. In what follows, we will discuss symmetric key schemes; the discussion for public
key schemes is similar. At a high level, our notion of security allows quantum encryption and
decryption queries, but requires challenge queries to be classical. One might hope for an entirely
quantum game, where challenge queries are quantum as well, but we show that such fully-quantum
security definitions are unsatisfiable.

We start by developing a notion of CPA security where encryption queries are allowed to be
quantum. Since finding an attainable definition is non-trivial we first present a few alternatives and
then converge to a workable definition (Definition 6.56). Once we arrive at a suitable definition for
CPA security we will also obtain a corresponding definition for CCA security. Our first attempt at
defining quantum CPA security is as follows:

Definition 6.52. A symmetric key encryption scheme (Enc,Dec) is indistinguishable under a fully
quantum chosen plaintext attack (IND-fqCPA secure) if no efficient adversary A can win the follow-
ing game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.

Encryption Queries A is allowed to make chosen message queries on superpositions of message
pairs. For each such query, the challenger chooses randomness r, and encrypts the appropriate
message in each pair using r as randomness:

∑
m0,m1,c

ψm0,m1,c

∣∣m0, m1, c
〉

−→
∑

m0,m1,c

ψm0,m1,c

∣∣m0, m1, c⊕ Enc(k,mb; r)
〉

Guess A produces a bit b′, and wins if b = b′.

Definition 6.52 captures a scheme where we can encrypt a superposition of messages by encrypting
each message in the superposition separately, and no efficient adversary can learn anything about
the plaintext superposition. Unfortunately, this definition is not achievable:

Theorem 6.53. No encryption scheme (Enc,Dec) satisfies the security notion of Definition 6.52.



CHAPTER 6. FULLY QUANTUM SECURITY NOTIONS 119

Proof. We construct a generic adversary A. A prepares three registers: two plaintext registers and
a ciphertext register. A puts a uniform superposition of all messages in the first register, and 0 in the
second plaintext and ciphertext registers. A submits these three registers as a chosen message query.
If b = 0, the ciphertext register will contain the encryptions of the messages in the superposition.
If b = 1, it will contain the encryption of 0. A then measures the ciphertext register. If b = 0, the
resulting state will be the purely classical state (m, 0,Enc(k,m)) for a random message m. If b = 1,
the measurement does nothing, so the first register still contains a superposition of all messages. A
now performs the quantum Fourier transform to the first message register and measures. If b = 0,
the transform will place a uniform superposition of all messages in the first register, and measuring
will give a random message. If b = 1, the transform will place 0 in the first register. Thus, A
distinguishes b = 0 from b = 1 with probability exponentially-close to 1.

The problem with Definition 6.52 is that the message query is entangled with the ciphertext
response, and this entanglement depends on which register gets encrypted. Another reasonable idea
is to encrypt both message registers, but flip which register each ciphertext is written to depending
on the value of b:

Definition 6.54. A symmetric key encryption scheme (Enc,Dec) is indistinguishable under a fully
quantum chosen left-right plaintext attack (IND-lrCPA secure) if no efficient adversary A can win
in the following game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.

Encryption Queries A is allowed to make chosen message queries. For each such query, the
challenger chooses randomness r0, r1, and responds with the encryptions of both messages in
the pair, but in an order determined by b:∑

m0,m1,c1,c2

ψm0,m1,c1,c2

∣∣m0, m1, c1, c2
〉

−→

∑
m0,m1,c1,c2

ψm0,m1,c1,c2

∣∣m0, m1, c1 ⊕ Enc(k,mb; r0), c2 ⊕ Enc(k,m1−b; r1)
〉

Guess A produces a bit b′, and wins if b = b′.

Unfortunately, this definition turns out to be at least as strong as Definition 6.52, and so it is
also unattainable:

Theorem 6.55. No encryption scheme (Enc,Dec) satisfies the notion of security in Definition 6.54.
In particular, any encryption scheme that is secure in the sense of Definition 6.54 is also secure in
the sense of Definition 6.52.

Proof. Suppose we have an adversary A for Definition 6.52. We will convert it into an adversary
B for Definition 6.54. B simulates A forwarding encryption queries as follows: When A makes an
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encryption query, B adds a second ciphertext register, and puts into it a uniform superposition over
all ciphertexts. B then sends the resulting state to its challenger as its encryption query. The answer
to this query does not affect the second ciphertext register, so B can uncompute it. B then passes
the resulting state back to A. B perfectly simulates A’s view, and therefore B breaks the security
of (Enc,Dec) under Definition 6.54.

Our attempts to make the entire security game quantum lead to an adversary that can always
win. Therefore, we must force encryption queries to be classical. We do, however, wish to allow the
adversary to encrypt superpositions of messages, but not have the response depend in any way on
b. Therefore, we propose separating encryption queries into classical challenge queries and quantum
encryption queries. This gives the following definition:

Definition 6.56. A symmetric key encryption scheme (Enc,Dec) is indistinguishable under a quan-
tum chosen message attack (IND-qCPA secure) if no efficient adversary A can win in the following
game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.

Queries A is allowed to make two types of queries:

Challenge queries A sends two messages m0,m1, to which the challenger responds with
c∗ = Enc(k,mb).

Encryption queries For each such query, the challenger chooses randomness r, and encrypts
each message in the superposition using r as randomness:

∑
m,c

ψm,c
∣∣m, c〉 −→

∑
m,c

ψm,c
∣∣m, c⊕ Enc(k,m; r)

〉
Guess A produces a bit b′, and wins if b = b′.

This definition has another advantage: since challenge queries are classical, when we move to
CCA security, we can check if a ciphertext was the result of a challenge query and reject decryption
queries for these ciphertexts. This gives us the following notion of CCA security:

Definition 6.57. A symmetric key encryption scheme (Enc,Dec) is indistinguishable under a quan-
tum chosen message attack (IND-qCCA secure) if no efficient adversary A can win in the following
game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b. It also creates a list C which
will store challenger ciphertexts.

Queries A is allowed to make three types of queries:

Challenge queries A sends two messages m0,m1, to which the challenger responds with
c∗ = Enc(k,mb). The challenger also adds c∗ to C.
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Encryption queries For each such query, the challenger chooses randomness r, and encrypts
each message in the superposition using r as randomness:

∑
m,c

ψm,c
∣∣m, c〉 −→

∑
m,c

ψm, c
∣∣m, c⊕ Enc(k,m; r)

〉
Decryption queries For each such query, the challenger decrypts all ciphertexts in the su-

perposition, except those that were the result of a challenge query:

∑
c,m

ψc,m
∣∣c, m〉 −→

∑
c,m

ψc,m
∣∣c, m⊕ f(c)

〉
where

f(c) =

⊥ if c ∈ C

Dec(k, c) otherwise

Guess A produces a bit b′, and wins if b = b′.

In the above definition, we need to define the operation m ⊕ ⊥. Since the query responses will
xor ⊥ with different messages, we need a convention that makes this operation reversible. Taking ⊥
to be some bit string that lies outside of the message space, and ⊥⊕m to be bitwise xor will suffice.

Note that we implicitly assume that the decryption algorithm is deterministic. This will be true
of our encryption schemes. We note that this is not a limiting assumption since one can always
make the decryption algorithm deterministic by deriving the randomness for decryption from a PRF
applied to the ciphertext. Also, as in the classical case, a simple hybrid argument shows that the
above definition is equivalent to the case where the number of challenge queries is limited to 1.
Lastly, it is straightforward to modify the above definition for public key encryption schemes.

6.4.1 Separation

Here we show that quantum chosen ciphertext queries give the adversary more power than classical
queries. In particular, we present a public key encryption scheme that is secure under classical
queries, but completely insecure once an adversary can make quantum queries. Let (Genc,Encc,Decc)
be a public key encryption scheme that is secure under classical chosen ciphertext queries. The idea
of our construction is similar in spirit to that for signatures. The construction is as follows:

Construction 6.58. Let (Genc,Encc,Decc) be an encryption scheme and PRF0,PRF1 be pseudoran-
dom functions with key space K, domain X , and range Y. Let t be the bit length of decryption key for
Encc. Assume that the message space of Encc is Yt (potentially using one of various message-space
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extending techniques). We build a new encryption scheme (Gen,Enc,Dec) as follows:

Gen(λ) : (dkc, ekc)
R←−Genc(λ), k = (k1, . . . , kt)

R←−Kt

output dk = (dkc, k), ek = ekc

Enc(ekc,m) : c← Encc(ek,m)

output (c, 0 ∈ {0, 1})

Dec((dkc, k), (c, a, x)) : Write dkc = (dk1, . . . , dkt) ∈ {0, 1}t, yi ← PRFdki(ki, x)

Output


Decc(dkc, c) if a = 0 and x = 0

⊥ if a = 0 and x 6= 0

(y1, . . . , yt) if a = 1

Theorem 6.59. If (Genc,Encc,Decc) is secure under a classical chosen ciphertext attack, PRF0 is
secure against quantum queries, and PRF1 is a quantum-gap PRF, then (Gen,Enc,Dec) in Con-
struction 6.58 is secure under a classical chosen ciphertext attack, but the secret key can be recovered
using only a single quantum chosen ciphertext query.

Proof. The proof is very similar to the signature case in Theorem 6.33. To argue the classical secu-
rity of (Gen,Enc,Dec), we note that under classical queries PRF0 and PRF1 are both indistinguishable
from a random function; in particular, they are indistinguishable from each other. Therefore, a = 1
decryption queries reveal no information about sk. Then the security of the protocol follows from
the security of (Genc,Encc,Decc).

To argue the insecurity, we note that we can use a decryption query to simulate an oracle query
to the oracle (x1, . . . , xt) 7−→ (PRFsk1(k1, x1),PRFsk2(k2, x2), . . . , (PRFskt(kt, xt). Then using the
attack from Theorem 6.33, we can recover the secret key skc.

6.4.2 Symmetric CCA Security

In this section, we construct symmetric-key CCA secure encryption. We will follow the encrypt-then-
MAC paradigm. Ideally, we would like to show that encrypt-then-MAC, when instantiated with any
IND-qCPA-secure encryption scheme and any EUF-qCMA MAC, would be CCA secure. However, it
is not obvious how to prove security, as the reduction algorithm has no way to tell which ciphertexts
the adversary received as the result of an encryption query, and no way to decrypt the ciphertexts
if it has received them. To remedy these problems, we choose a specific encryption scheme and
MAC and leave the general security proof as an open question. The encryption scheme allows us to
efficiently check if the adversary has seen a particular ciphertext as a result of an encryption query,
and to decrypt in this case. The construction is as follows:
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Construction 6.60. Let F and G be pseudorandom functions. We construct the following encryp-
tion scheme E = (Enc,Dec) where:

Enc((k1, k2),m) : r R←−{0, 1}λ

c1 ← F (k1, r)⊕m, c2 ← G(k2, (r,m))

output (r, c1, c2)

Dec((k1, k2), (r, c1, c2)) : m← c1 ⊕ F (k1, r), c′2 ← G(k2, (r,m))

if c2 6= c′2, output ⊥

otherwise, output m

For security, we require F and G to be quantum secure — secure against queries on a superpo-
sition of inputs, such as those that we built in Section 6.3.

Theorem 6.61. If F and G are quantum-secure pseudorandom functions, then E in Construc-
tion 6.60 is qCCA-secure.

As demonstrated in Section 6.3, quantum-secure pseudorandom functions can be built from any
one-way function. Therefore, Theorem 6.61 shows that quantum chosen ciphertext security can be
obtained from the minimal assumption that one-way functions exist. We now give the proof of
Theorem 6.61:

Proof. We first sketch the proof: we can replace F and G with random functions and only negligibly
affect the success probability. Since each encryption query receives a single r for the entire query
superposition, we can answer any encryption query by making a single query to F on r. It is easy
to check if a ciphertext (r′, c1, c2) was computed during an encryption query: just check if r = r′.
We can also decrypt such a ciphertext, since we have seen F (k1, r). Including c2 = G(k2, (r,m)) in
the ciphertext guarantees with overwhelming probability that the adversary can only submit valid
ciphertexts if they were ciphertexts received during an encryption query, so we might as well reject
all ciphertexts (r′, c1, c2) where r′ was not the randomness used in any encryption query. Now, the
value of mb in the challenge query becomes perfectly hidden, which means that the distinguishing
probability is 0.

We now give the complete security proof: assume we have an adversary A that breaks the
indistinguishability of E in Construction 6.60 with probability ε. We prove security through a
sequence of games.

Game 0. This is the standard attack game where A makes qe encryption queries which are an-
swered using randomness values ri, qc challenge queries which are answered using randomness r∗i ,
and qd decryption queries. Let (m∗i,0,m∗i,1) denote the ith challenger query, and (r∗i , c∗i , d∗i ) be the
response.
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Game 1. Replace F and G with truly random functions. That is, answer the ith encryption query
by mapping m to (ri, F (ri)⊕m,G(ri,m)), the ith challenge query with (r∗i , F (r∗i )⊕m∗i,b, G(r∗i ,m∗i,b)),
and answer decryption queries accordingly. Since F and G are quantum-secure pseudorandom
functions, the advantage of A in Game 1 is at least ε− negl.

Game 2. Now we abort if there is a collision among any of the ri or r∗i . The probability of a
collision is at most (qe + qc)2/2|R| where R is the randomness space. This quantity is negligible, so
A’s advantage is still ε− negl.

Notice that we can pick the ri values and r∗i value at the start of the game, and query F on
these values. Let Ti = {rj : j ≤ i} and T ∗i = {r∗j : j ≤ i}. Also let T = Tqe and T ∗ = T ∗qc . Notice
that at any point, A never gets to see G(r,m) for any m if r /∈ Ti

⋃
T ∗j where i is the number of

encryption queries made so far and j is the number of challenge queries made so far. Note also that
A only gets to see G(r∗k,m) where m = m∗k,b).

Game 3. For a decryption query on a superposition of ciphertexts (r, c, d), let ne be the number
of encryption queries made so far and nc the number of challenge queries. Check that r ∈ Tne , and
respond with ⊥ for that slot otherwise. We now consider the ciphertexts that would be accepted in
Game 2 but rejected in Game 3. Such ciphertexts come in two forms:

• r ∈ T ∗nc : Then r = r∗i for some i. In order to not be rejected in Game 2, we must have c 6= c∗i

or d 6= d∗i . In the first case, (r, c, d) is an encryption of a message m 6= m∗i,b, so the value of
G(r∗i ,m) is hidden to the adversary. Therefore, the probability (r, c, d) is a valid ciphertext is
negligible. In the second case, (r, c, d) is an encryption of m∗i,b, but then d is not a valid MAC,
so decryption fails.

• r /∈ Tne
⋃
T ∗nc : Then the value of G(r,m) is completely hidden from the adversary, so the

probability d is a valid MAC is negligible.

Therefore, the probability of rejection for any ciphertext in Game 3 is only negligibly higher than
that in Game 2. This means that with overwhelming probability, we only changed the decryption
oracle on a negligible fraction of inputs, so A can only distinguish Games 2 and 3 with negligible
probability. Therefore, A’s advantage is still ε− negl.

Game 4. Now notice that F is never queried except on the points ri and r∗i . Therefore, at the
start of the game, we can pick random values fi and f∗i to correspond to F (ri) and F (r∗i ). We
can also pick random values g∗i that correspond to G(r∗i ,m∗i,b) (since we only query G on this point
once). The adversary’s view in this game is unchanged, so A’s advantage is at least ε− negl.

Notice that we answer the ith challenge query with (r∗i , f∗i ⊕ m∗i,b, g∗i ), and that the values of
f∗i and g∗i are never used again. This means that m∗i,b is statistically hidden from the adversary.
Therefore, A’s advantage in Game 4 is identically 0, so ε = negl.
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6.4.3 Public Key CCA Security

In this section, we construct CCA-secure signatures in the public-key setting. The basic idea is to
first build a selectively secure identity-based encryption scheme — whose security can be based on
the Learning With Errors (LWE) Problem — and then adapt the generic transformation to CCA-
security to the quantum setting:

Let Eibe = (Genibe,Encibe,Decibe,KeyGen) be an IBE scheme that is selectively secure against
quantum queries. It is straightforward to show that the basic IBE scheme of Agrawal, Boneh, and
Boyen [ABB10a] meets this security notion assuming LWE is hard. Let S = (Gens,Sig,Ver) be a
strongly EUF-CMA secure one-time signature scheme (quantum security is unnecessary). We now
construct an encryption scheme using the generic transformation from IBE to CCA security due to
Boneh et al. [BCHK07].

Construction 6.62. (Gen,Enc,Dec) where

Gen(λ) : Genibe(λ)

Enc(mek,m) : (sk, vk)← Gens(λ)

c← Encibe(mek, vk,m), σ ← Sig(sk, c)

output (vk, c, σ)

Dec(msk, (vk, c, σ)) : if Ver(vk, c, σ) rejects, output ⊥

skvk ← KeyGen(msk, vk), m← Decibe(skvk, c), output m

It is not difficult to adapt the classical security proof to the quantum setting, showing that the
above construction achieves quantum CCA security:

Theorem 6.63. If the LWE problem is hard for quantum computers, then there exists a public key
encryption scheme that is IND-qCCA secure.
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Missing Proofs

7.1 Proof of Lemma 3.2

The probability that A outputs a w such that R(H,w) = True is

Pr
H←D

w←|ψH〉

[R(H,w)] =
∑
H

Pr
D

[H]
∑

w:R(H,w)

|〈w|ψH〉|2 =
∑
w

∑
H:R(H,w)

Pr
D

[H]|〈w|ψH〉|2

Now, |〈w|ψH〉| is just the magnitude of the projection of |w〉 onto the space spanned by the
vector |ψH〉, that is, projspan|ψH〉(|w〉). This is at most the magnitude of the projection of |w〉 onto
the space spanned by all of the |ψH′〉 for H ′ ∈ H, or projspan{|ψH′ 〉}(|w〉). Thus,

Pr
H←D

w←|ψH〉

[R(z, w)] ≤
∑
w

 ∑
H:R(H,w)

Pr
D

[H]

∣∣∣projspan{|ψH′ 〉}(|w〉)
∣∣∣2

Now we can perform the sum over H, which gives PrH←D[R(H,w)]. We can bound this by the
maximum it attains over all w, giving us

Pr
H←D

w←|ψH〉

[R(H,w)] ≤
(

max
w

Pr
H←D

[R(H,w)]
)∑

w

∣∣∣projspan{|ψH′ 〉}(|w〉)
∣∣∣2

Now, let {|bi〉} be an orthonormal basis for span{|φH′〉}. Then∣∣∣projspan{|ψH′ 〉}(|w〉)
∣∣∣2 =

∑
i

|〈bi|w〉|2

126
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Summing over all w gives

∑
w

∣∣∣projspan{|ψH′ 〉}(|w〉)
∣∣∣2 =

∑
w

∑
i

|〈bi|w〉|2 =
∑
i

∑
w

|〈bi|w〉|2

Since the w are the possible results of measurement, the vectors |w〉 form an orthonormal basis
for the whole space, meaning

∑
w |〈bi|w〉|

2 = | |bi〉 |2 = 1. Hence, the sum just becomes the number
of |bi〉, which is just the dimension of the space spanned by the |ψH′〉. Thus,

Pr
H←D

w←|ψH〉

[R(H,w)] ≤
(

max
w∈W

Pr
H←D

[R(H,w)]
)

(dim span{|ψH′〉}) .

But dim span{|ψH′〉} is exactly rank(ΨA,H) = rank(A,H), which finishes the proof of the theo-
rem.

7.2 Proof of Theorem 3.3

Let |ψqH〉 be the final state of a quantum algorithm after q quantum oracle calls to an oracle H ∈ H.
We wish to bound the dimension of the space spanned by the vectors |ψqH〉 for all H ∈ H. We
accomplish this by exhibiting a spanning set for this space. Our basis consists of |ψqH′〉 vectors
where H ′ only differs from H0 at a maximum of q points in S. We need to show that two things:
that our basis consists of Ck,q,n vectors, and that our basis does in fact span the whole space.

We first count the number of basis vectors by counting the number of H ′ oracles. For each r,
there are

(
k
r

)
ways of picking the subset T of size r from S where H ′ will differ from H0. For each

subset T , there are nr possible functions H ′. However, if any value x ∈ T satisfies F (x) = H0(x),
then this is equivalent to a case where we remove x from T , and we would have already counted this
case for a smaller value of r. Thus, we can assume H ′(x) 6= H0(x) for all x in T . There are (n− 1)r

such functions. Summing over all r, we get that the number of distinct H ′ oracles is

q∑
r=0

(
k

r

)
(n− 1)r = Ck,q,n .

Next, we need to show that the |ψqH′〉 vectors span the entire space of |ψqH〉 vectors. We first
introduce some notation: let |ψ0〉 be the state of a quantum algorithm before any quantum queries.
Let |ψqH〉 be the state after q quantum oracle calls to the oracle H. Let

Mq
H = UqHUq−1H · · ·U1H .

Then |ψqH〉 = Mq
H |ψ0〉.

We note that since |ψ0〉 is fixed for any algorithm, it is sufficient to prove that the Mq
H matrices
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are spanned by the Mq
H′ .

For any subset T of S, and a function F : T → Y, let JT ,F be the oracle such that

JT ,F (x) =

F (x) if x ∈ T

H0(x) otherwise
.

Let Mq
T ,H denote Mq

JT ,H
. In other words, MT ,H is the transformation matrix corresponding to

the oracle that is equal to H on the set T , and equal to H0 elsewhere. We claim that any Mq
H for

H ∈ HS is a linear combination of the matrices Mq
T ,H for subsets T of S of size at most q. We will

fix a particular H, and for convenience of notation, we will let JT = JT ,H . That is, JT is the oracle
that is equal to H on the set T and H0 otherwise. We will also let Mq

T = Mq
T ,H and Mq = Mq

H .
That is, Mq is the transition matrix corresponding to the oracle H, and MT is the transition matrix
corresponding to using the oracle JT . For the singleton set {x}, we will also let Jx = J{x}.

We make the following observations:

H =
(∑
x∈S

Jx

)
− (k − 1)H0 (7.2.1)

JT =
(∑
x∈T

Jx

)
− (|T | − 1)H0 (7.2.2)

These identities can be seen by applying each side to the different inputs. Next, we take Mq
H

and Mq
T and expand out the H and JT terms using Equations 7.2.1 and 7.2.2:

Mq = Uq

((∑
x∈S

Jx

)
− (k − 1)H0

)
Uq−1 · · ·U1

((∑
x∈S

Jx

)
− (k − 1)H0

)
(7.2.3)

Mq
T = Uq

((∑
x∈T

Jx

)
− (|T | − 1)H0

)
Uq−1 · · ·U1

((∑
x∈T

Jx

)
− (|T | − 1)H0

)
(7.2.4)

Let J⊥ = H0. For a vector r ∈ (S ∪ {⊥})q, let

Pr = UqJrqUq−1 · · ·Jr2U1Jr1

For a particular r, we wish to expand the Mq and Mq
T matrices in terms of the Pr matrices. If

d of the components of r are ⊥, then the coefficient of Pr in the expansion of Mq is (−1)d(k − 1)d.
If, in addition, all of the other components of r lie in T , then the coefficient in the expansion of Mq

T

is (−1)d(|T | − 1)d (if any of the components of r lie outside of T , the coefficient is 0).
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Now, we claim that, for some values a`, we have

Mq =
q∑
`=0

a`
∑

T ⊆S:|T |=`

Mq
T

To accomplish this, we look for the coefficient of Pr in the expansion of the right hand side of
this equation. Fix an `. Let d be the number of components of r equal to ⊥, and let p be the number
of distinct component values other than ⊥. Notice that p + d ≤ q. Then there are

(
k−p
`−p
)

different
sets T of size ` for which all of the values of the components lie in T . Thus, the coefficient of Pr is

q∑
`=p

a`

(
k − p
`− p

)
(−1)i(`− 1)d

Therefore, we need values a` such that

q∑
`=p

a`

(
k − p
`− p

)
(`− 1)d = (k − 1)d (7.2.5)

for all d, p. Notice that we can instead phrase this problem as a polynomial interpolation problem.
The right hand side of Equation 7.2.5 is a polynomial P of degree d ≤ q− p, evaluated at k− 1. We
can interpolate this polynomial using the points ` = p, ..., q, obtaining

P (k − 1) =
q∑
`=p

P (`− 1)
q∏

j=p,j 6=`

k − j
`− j

.

The numerator of the product evaluates to

(k − p)!
(k − `)(k − q − 1)!

while to evaluate the bottom, we split it into two parts: j = p, ..., `− 1 and j − `+ 1, ..., q. The first
part evaluates to (`− p)!, and the second part evaluates to (−1)q−`(q − `)!. With a little algebraic
manipulation, we have that

P (k − 1) =
q∑
`=p

P (`− 1)
((

k − `− 1
k − q − 1

)
(−1)q−`

)(
k − p
`− p

)

for all polynomials P (x) of degree at most q − p. Setting P (x) = xd for d = 0, ..., q − `, we see
that Equation 7.2.5 is satisfied if

a` =
(
k − 1− `
k − 1− q

)
(−1)q−` .
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7.3 Proof of Lemma 4.1

Recall the setup: A is a quantum algorithm making q quantum queries to an oracle H : X → Y, and
c classical queries, where H is drawn from an arbitrary distribution D. We wish to show that, for
every z, the quantity PrH←D[AH() = z] is a linear combination of the quantities PrH←D[H(xi) =
ri∀i ∈ [2q + c]] for all possible settings of the xi and ri.

Our approach is similar to the polynomial method, but needs to be adapted to handle classical
queries correctly. Let k = c + q be the total number of queries made by A, Q ⊆ [k] be the set of
queries that are quantum, and C ⊆ [k] be the set of queries that are classical.

Fix an oracle H. Let δx,y be 1 if H(x) = y and 0 otherwise. Let ρ(i) be the density matrix after
the ith query, and ρ(i−1/2) be the density matrix before the ith query. ρ(k+1/2) is the final density
matrix of the algorithm.

After any query i, let ki be twice the number of quantum queries made so far, plus the number
of classical queries made so far. We make the following claim:

Claim 7.1. ρ(i) and ρ(i+1/2) are polynomials of the δx,y of degree ki

We first show that Claim 7.1 implies Lemma 4.1. The probability of a particular output z is
obtained from the zth diagonal entry in ρ(k+1/2). For a fixed H, we know this to be a polynomial
p of degree at most k = 2q + c in the δx,y. First, observe that δ2

x,y = δx,y, so p is multilinear. Thus
p can be written as ∑

S⊆X×Y
|S|≤k

αS
∏

(x,r)∈S

δx,r

for some constants αS . The probability of outputting z when H is drawn from D is the expected
value of p for H R←−D. Thus the probability is

E
H

R←−D
p =

∑
S⊆X×Y
|S|≤k

αS E
H

R←−D

 ∏
(x,r)∈S

δx,r


Notice that E

H
R←−D

∏
(x,r)∈S [δx,r] is identical to PrH←D[H(xi) = ri∀i ∈ [k]] where S = {(xi, ri)}.

Thus the probability of outputting z is a linear combination of the PrH←D[H(xi) = ri∀i ∈ [k]] as
desired.

It remains to prove Claim 7.1. For i = 0, ρ(0) and ρ(0+1/2) are independent of H, so they are
not a function of the δx,y at all, meaning the degree is 0 = k0.

We now inductively assume our claim is true for i−1. That is, the entries of ρ(i−1) are polynomials
in the δx,y of degree at most ki−1. Notice that ρ(i−1/2) is obtained from ρ(i−1) by left- and right-
multiplying by matrices whose entries are independent of H. Thus, the entries of ρ(i−1/2) are linear
combinations of the entries in ρ(i−1) and are hence also polynomials of degree at most ki−1 in the
δx,y.
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Now we look at ρ(i). There are two cases:

• i is a quantum query. In this case, ki = ki−1 + 2. We can write

ρ
(i)
x,y,z,x′,y′,z′ = ρ

(i−1/2)
x,y−H(x),z,x′,y′−H(x′),z

An alternative way to write this is as

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r,r′

δx,y−rδx′,y′−r′ρ
(i−1/2)
x,r,z,x′,r′,z

By induction, each of the ρ
(i−1/2)
x,r,z,x′,r′,z are polynomials of degree ki−1 in the δx,y values, so

ρ
(i)
x,y,z,x′,y′,z′ is a polynomial of degree ki−1 + 2 = ki.

• i is a classical query. This means ki = ki−1 + 1. Let ρ(i−1/4) representing the state after
measuring the x register, but before making the actual query. This is identical to ρ(i−1/2),
except the entries where x 6= x′ are zeroed out. We can then write

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r,r′

δx,y−rδx′,y′−r′ρ
(i−1/4)
x,r,z,x′,r′,z =

∑
r,r′

δx,y−rδx,y′−r′ρ
(i−1/2)
x,r,z,x,r′,z

Now, notice that δx,y−rδx,y′−r′ is zero unless y − r = y′ − r′ (since δx,y = 1 means H(x) = y

and H is a function), in which case it just reduces to δx,y−r. Therefore, we can simply further:

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r

δx,y−rρ
(i−1/2)
x,r,z,x,(y−y′)+r,z

By induction, each of the ρ
(i−1/2)
x,r,z,x,(y−y′)+r,z values are polynomials of degree ki−1 in the δx,y

values, so ρ
(i)
x,y,z,x′,y′,z′ is a polynomial of degree ki−1 + 1 = ki

Therefore, after all q queries, final matrix ρ(k+1/2) is a polynomial in the δx,y of degree at most
k = 2q + c.

7.4 Proof of Lemma 4.2

By the assumptions of the theorem, for any 2q pairs (xi, ri), the quantity PrH←Dλ [H(xi) = ri∀i ∈
[2q]] is a polynomial of degree d in λ with the first ∆−1 derivatives at 0 being 0. By Theorem 4.1, for
a q-query quantum algorithm A, PrH←Dλ [AH() = z] is a linear combination of these values. Thus,
for any z, PrH←Dλ [AH() = z] is also a polynomial in λ of degree d with the first ∆− 1 derivatives
at 0 being 0.
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Now, suppose that A distinguishes Dλ from D0 with probability ε(λ). That is

∑
z

| Pr
H←Dλ

[AH() = z]− Pr
H←D0

[AH() = z]| = ε(λ) .

Let Zλ be the set of z such that z is a more likely output under Dλ than D0. That is,
PrH←Dλ [AH() = z] > PrH←D0 [AH() = z]. It is not difficult to show that

Pr
H←Dλ

[AH() ∈ Zλ]− Pr
H←D0

[AH() ∈ Zλ] = ε(λ)/2 .

Fix λ0, and consider the quantity

pλ0(λ) ≡ Pr
H←Dλ

[AH() ∈ Zλ0 ] =
∑
z∈Zλ0

Pr
H←Dλ

[AH() = z] .

Then pλ(λ) − pλ(0) = ε(λ)/2. Further, for each λ0, pλ0 is a degree-d polynomial in λ such that
p

(i)
λ0

(0) = 0 for i ∈ [∆− 1]. It also lies in the range [0, 1] for all λ ∈ [0, 1], so we can use an inequality
by Duffin and Schaffer [DS41] to bound the ∆-th derivative for all λ ∈ [0, 1]:

|p(∆)
λ0

(λ)| ≤ 4∆∆!
2(2∆)!d

2∆

Thus we can bound pλ0(λ) ≤ pλ0(0) + 4∆

2(2∆)!λ
∆d2∆. Setting λ0 = λ, we get

ε(λ) = 2(pλ(λ)− pλ(0)) ≤ 4∆

(2∆)!λ
∆d2∆ .

7.5 Proof of Lemma 4.3

Recall that we have a family of distributions Er over YX parametrized by r ∈ Z+⋃{∞}. For any
2q pairs (xi, ri), suppose the function p(λ) = PrH←E1/λ [H(xi) = ri∀i ∈ [2q]] satisfies:

• p is represented by a polynomial in λ of degree at most d.

• p(i)(0), the ith derivative of p at 0, is 0 for each i ∈ [∆− 1].

We will show that any q query quantum algorithm can only distinguish Er from E∞ with
probability at most 22−∆ζ(2∆)(1/r)∆(d)3∆.

Let λ = 1/r. By Lemma 4.1, for a q-query quantum algorithm A, PrH←Er [AH() = z] is a
linear combination of the PrH←Er [H(xi) = ri∀i ∈ [2q]]. Thus, for any z, PrH←E1/λ [AH() = z] is a
polynomial in λ of degree d with the first ∆− 1 derivatives at λ = 0 being 0.
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Now, suppose that A distinguishes E1/λ from E∞ with probability ε(λ). That is

∑
z

| Pr
H←E1/λ

[AH() = z]− Pr
H←E∞

[AH() = z]| = ε(λ) .

Let Zλ be the set of z such that z is a more likely output under E1/λ than E∞. That is,
PrH←E1/λ [AH() = z] > PrH←E∞ [AH() = z]. It is not difficult to show that

Pr
H←E1/λ

[AH() ∈ Zλ]− Pr
H←E∞

[AH() ∈ Zλ] = ε(λ)/2 .

Fix λ0, and consider the quantity

pλ0(λ) ≡ Pr
H←E1/λ

[AH() ∈ Zλ0 ] =
∑
z∈Zλ0

Pr
H←E1/λ

[AH() = z] .

Then pλ(λ) − pλ(0) = ε(λ)/2. Further, for each λ0, pλ0 is a degree-d polynomial in λ such that
p

(i)
λ0

(0) = 0 for i ∈ [∆ − 1]. It also lies in the range [0, 1] when λ = 0 or 1/λ ∈ Z+. Thus, we make
use of the following theorem:

Theorem 7.2. Let p(λ) be a polynomial in λ of degree d such that p(i)(0) = 0 for i ∈ [∆ − 1],
0 ≤ p(0) ≤ 1, and 0 ≤ p(1/r) ≤ 1 for all r ∈ Z+. Then |p(1/r)− p(0)| < 21−∆ζ(2∆)(1/r)∆d3∆ for
all r ∈ Z+, where ζ is the Riemann Zeta function.

Before proving this theorem, we use it to finish the proof of Lemma 4.3. For each λ0, pλ0 satisfies
the conditions of Theorem 7.2, so we must have that pλ0(λ)− pλ0(0) < 21−∆ζ(2∆)λ∆d3∆. But then
setting λ0 = λ, we get that

ε(λ) = 2(pλ(λ)− pλ(0)) < 22−∆ζ(2∆)λ∆d3∆ .

Replacing 1/λ with r, we have shown that the output distributions of any q query quantum
algorithm A under Er and E∞ are 22−∆ζ(2∆)(1/r)∆d3∆-close, as desired.

Proof of Theorem 7.2. We have a polynomial p of degree d with p(i)(0) = 0 for i ∈ [∆ − 1].
Further, for r ∈ Z+ ∩ {∞}, 0 ≤ p(1/r) ≤ 1. Now, let s(λ) = p(λ)−p(0)

λ∆ . Then s is a d − ∆-degree
polynomial. We will now interpolate this polynomial at d−∆ + 1 points: let

λi = 1⌊
(d−∆+1)3

2i2

⌋ .

Then we can use the Lagrange interpolating polynomials to interpolate s(λ). Let si = s(λi). Then:

s(λ) =
d−∆+1∑
i=1

si`i(λ)
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where `i(λ) is the Lagrange polynomial

`i(λ) =
d−∆+1∏
j=1,j 6=i

(
λ− λj
λi − λj

)

Then we get

p(λ)− p(0) = λ∆
d−∆+1∑
i=1

p(λi)− p(0)
λ∆
i

`i(λ)

=
d−∆+1∑
i−1

ai(λ)(p(λi)− p(0))

where

ai(λ) =
(
λ

λi

)∆
`i(λ) .

Now, observe that 1/λi are integers, so 0 ≤ p(λi) ≤ 1 by assumption. Since 0 ≤ p(0) ≤ 1 as well,
we must have that |p(λi)− p(0)| ≤ 1. Therefore,

|p(λ)− p(0)| =
d−∆+1∑
i=1

|ai(λ)| .

We now need to bound this sum.

Claim 7.3. If λ ≤ λi for all i, then
∑
i |ai(λ)| < 21−∆ζ(2∆)λ∆d3∆

Before proving this claim, we note that it proves Theorem 7.2 when λ ≤ λi for all i (equivalently,
λ ≤ λ1). If λ > λ1, then the bound we are trying to prove is at least

21−∆ζ(2∆)
(

(d−∆ + 1)3

b(d−∆ + 1)3/2c

)∆

> 2ζ(2∆) > 2 .

Which is already trivially satisfied by the assumption that p(1/r) ∈ [0, 1].

Proof of Claim 7.3. First, notice that

∣∣∣∣ai(λ)
λ∆

∣∣∣∣ =
(

1
λi

)∆ d−∆+1∏
j=1,j 6=i

(
|λ− λj |
|λi − λj |

)
≤
(

1
λi

)∆ d−∆+1∏
j=1,j 6=i

(
λj

|λi − λj |

)
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Now, observe that λi ≥ 2i2
(d−∆+1)3 and that

|λi − λj | = λiλj

∣∣∣∣⌊ (d−∆ + 1)3

2i2

⌋
−
⌊

(d−∆ + 1)
2j2

⌋∣∣∣∣
≥ 2i2

(d−∆ + 1)3λj

(∣∣∣∣ (d−∆ + 1)3

2i2 − (d−∆ + 1)3

2j2

∣∣∣∣− 1
)

Which can be simplified to

|λi − λj | ≥ λj

∣∣i2 − j2
∣∣− 2i2j2

(d−∆+1)3

j2

We notice that the numerator is minimized by making i and j as large as possible, which is when
they are d−∆+1 and d−∆. In this case, the quantity becomes λj

(
3− 2

d−∆+1

)
/j2, which is greater

than 0 as long as d−∆ + 1 ≥ 1 (if d−∆ < 0, then p(λ) is a constant, so the theorem is trivial).
Thus ∣∣∣∣ai(λ)

λ∆

∣∣∣∣ ≤ ( 1
λi

)∆ d−∆+1∏
j=1,j 6=i

(
j2

|i2 − j2| − 2i2j2
(d−∆+1)3

)

The (1/λi)∆ term is bounded by
(

(d−∆+1)3

2i2

)∆
. We now bound the other term:

Claim 7.4. For all integers D and i such that i ≤ D, αD,i ≤ 2 where

αD,i =
D∏

j=1,j 6=i

(
j2

|i2 − j2| − 2i2j2
D3

)

Proof. First, rewrite αD,i as

αD,i =
D∏

j=1,j 6=i

j2

|i2 − j2|

D∏
j=1,j 6=i

1
1− 2i2j2

|i2−j2|D3

= βD,iγD,i

Where

βD,i =
D∏

j=1,j 6=i

j2

|i2 − j2|
and γD,i =

D∏
j=1,j 6=i

1
1− 2i2j2

|i2−j2|D3
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We first bound βD,i:

βD,i =
D∏

j=1,j 6=i

j2

|i2 − j2|

=
i−1∏
j=1

j2

(i+ j)(i− j)

D∏
j=i+1

j2

(i+ j)(j − i)

=
(

((i− 1)!)2

(2i−1)!
i! (i− 1)!

) (
D!
i!
)2

(D+i)!
(2i)! (D − i)!


=
(

2(i!)2

(2i)!

)(
(D!)2(2i)!

(i!)2(D − i)!(D + i)!

)
= 2(D!)2/(D − i)!(D + i)! = 2

( 2D
D+i
)(2D

D

)
Now we compute the Taylor series expansion of ln

(
βD,i

2

)
= ln

( 2D
D+i
)
− ln

(2D
D

)
around i = 0:

ln
(
βD,i

2

)
=
∞∑
m=1

im

m!

((
d

dj

)m
ln
(

2D
D + j

)∣∣∣∣
j=0

We recall that (
d

dk

)m
ln
(
n

k

)
= −ψ(m−1)(k + 1)− (−1)mψ(m−1)(n− k + 1)

where ψ(m)(x) =
(
d
dx

)m ln Γ(x) is the polygamma function. This allows us to write:

ln
(
βD,i

2

)
=
∞∑
m=1

(−1− (−1)m)ψ(m−1)(D + 1) i
m

m! = −2
∞∑
`=1

ψ(2`−1)(D + 1) i2`

(2`)!

Next, we use the fact that ψ(m)(x) ≥ 0 for all odd m and non-negative x, and ψ(1)(x+1) ≥ 1
x−

1
2x2

to bound
ln
(
βD,i

2

)
≤ −ψ(1)(D + 1)i2 = −i2

(
1
D
− 1

2D2

)

We now bound the second term γD,i =
∏D
j=1,j 6=i

1
1− 2i2j2

|i2−j2|D3

First, let xi,j = 2i2j2
|i2−j2|D3 . Notice that xi,j = xj,i, and that for j < i, xi,j ≤ xi,i−1. Lastly, notice

that xi,i−1 ≤ xD,D−1. Therefore, for all i, j,

xi,j ≤
2(D − 1)2

D(2D − 1) ≤ 1− 1
D
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Now, we use the fact that 1
1−x ≤ e

x+x2 lnD for all x ≤ 1− 1/D to bound

ln γD,i ≤
D∑

j=1,j 6=i
xi,j + x2

i,j lnD

Much the same way as we analyzed the first term by breaking the product into cases where j < i

and j > i, we can do the same for this sum. To simplify notation, we use the generalized harmonic
numbers:

H(r)
n =

n∑
j=1

1
jr

and Hn = H
(1)
n . Evaluating the sum in terms of the harmonic number, we can write

ln γD,i ≤
i2

2D3 (1 + 4D − 8i+ 2i(HD−i −HD+i + 2H2i))

+ i4 lnD
4D6 (−3 + 16D + 12i(HD−i −HD+i) + 4i2(H(2)

D−i +H
(2)
D+i))

Putting together with βD,i, we have that

ln
(αD,i

2

)
≤ i2

2D3 (1 + 5D − 2D2 − 8i+ 2i(HD−i −HD+i + 2H2i))

+ i4 lnD
4D6 (−3 + 16D + 12i(HD−i −HD+i) + 4i2(H(2)

D−i +H
(2)
D+i))

=
[
−4D5 +

(
4D3i(HD−i −HD+i + 2H2i) + 10D4 − 16D3i+ 4i4(H(2)

D−i +H
(2)
D+i) lnD

)
+
(
2D3 + 16Di2 lnD + 12i3(HD−i −HD+i) lnD

)
− 3i2 lnD

]
× i2

4D6

In order to prove the claim, we need to show that the quantity ln (αD,i/2) on the left is less
than 0. We can already see that, for large enough D, since 1 ≤ i ≤ D and Hn = O(logn) and
H

(2)
n = O(1), that the −4D5 term will dominate, and therefore the whole quantity will indeed be

less than 0. However, this only shows that the claim holds for sufficiently large D, whereas we want
to prove the claim for all D. First, we will find for what D the expression on the right is less than
0, and then calculate by hand the rest of the values to show that αD,i ≤ 2 for all D, i.

Let’s first look at the quartic term of the right side (where powers of i and D sum to 4):

4D3i(HD−i −HD+i + 2H2i) + 10D4 − 16D3i+ 4i4(H(2)
D−i +H

(2)
D+i) lnD

Let r = i/D. We use the fact that, logn ≤ Hn ≤ logn+ 1 and H(2)
n ≤ π2/6 to bound this above

by:

D4
(

4r(3 + ln(1− r)− ln(1 + r) + 2 ln(2r) + 2 ln(2D)) + 10− 16r + 4
3π

2r4 lnD
)
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Rearranging gives

D4
(

4r(−1 + ln
(

16(1− r)r2

1 + r

)
+ 2 lnD) + 10 + 4

3π
2r4 lnD

)
In the range r ∈ [0, 1], 16(1 − r)r2/(1 + r) obtains a maximum value of 8(5

√
5 − 11) < 1.443 <

1.649 < e1/2. This means ln
(

16(1−r)r2

1+r

)
< 1

2 . We also use the fact that π2 ≈ 9.87 < 99/10.
Therefore, we upper bound the quantity as

D4
((

8 + 4
3π

2
)

lnD + 8
)
≤ D4

(
106
5 lnD + 8

)
We now bound the cubic term

2D3 +16Di2 lnD+12i3(HD−i−HD+i) lnD ≤ D3(2+16r2 lnD+12r3(1+ln(1−r)− ln(1+r)) lnD)

Now, using Taylor expansions, we see that 1 + ln(1− r)− ln(1 + r) ≤ 1− 2r − 2
3r

3, allowing us
to bound this as

2D3(1 + 2r2(4 + 3r − 6r2 − 2r4) lnD)

2r2(4 + 3r − 6r2 − 2r4) obtains a maximum value less than 3, meaning we can bound this as
2D3(1 + 3 lnD).

Putting this all together, we have that

ln
(αD,i

2

)
≤ r2

4D2

(
−4D3 +D2

(
106
5 lnD + 8

)
+ 2D(3 lnD + 1)

)
Define the function

f(D) = −4D3 +D2(106
5 lnD + 8) + 2D(3 lnD + 1)

so that ln
(αD,i

2
)
≤ r2

4D2 f(D). We now show that f(D) < 0 for D ≥ 18. We have the following
derivatives:

f ′(D) = −60D2 +D(186 + 212 lnD) + (30 lnD + 40)
5

f ′′(D) = −120D2 +D(212 lnD + 398) + 30
5D

f ′′′(D) = −120D2 + 212D − 30
5D2

Notice that −120D2 + 212D − 30 = 0 at 1
60 (53 ±

√
1909) which is approximately 0.155, 1.612.

For D between these two values, −120D2 + 212D− 30, and hence f ′′′(D), is greater than zero. For
D outside of these values (in particular, for D ≥ 2), f ′′′(D) < 0.
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Now notice that f ′′(7) ≈ −5.04 < 0. Since f ′′′(D) < 0 for D ≥ 2, this means f ′′(D) < 0 for
D ≥ 7. Next, notice that f ′(13) ≈ −107.2 < 0. Since f ′′(D) < 0 for D ≥ 8, this means f ′(D) < 0
for D ≥ 13. Finally, notice that f(18) ≈ −534.5 < 0. Since f ′(D) < 0 for D ≥ 13, we therefore have
that f(D) < 0 for D ≥ 18.

Therefore, we have proved αD,i ≤ 2 for D ≥ 18. The remaining 153 cases for D < 18 can easily
(though tediously) be verified manually. For completeness, the values are included in Table 7.1.
This completes the proof of Claim 7.4.

Table 7.1: The values of αD,i for D < 18, rounded to the nearest 0.01. Values in bold are exact.
i

D 1 2 3 4 5 6 7 8 9 10 11 12 13
17 1.9 1.64 1.27 0.9 0.58 0.34 0.18 0.09 0.04 0.01 0.01 0.00 0.00
16 1.9 1.62 1.25 0.87 0.54 0.31 0.16 0.07 0.03 0.01 0.00 0.00 0.00
15 1.89 1.6 1.21 0.83 0.51 0.28 0.14 0.06 0.02 0.01 0.00 0.00 0.00
14 1.89 1.58 1.18 0.79 0.47 0.25 0.12 0.05 0.02 0.01 0.00 0.00 0.00
13 1.88 1.56 1.15 0.75 0.44 0.23 0.10 0.04 0.02 0.00 0.00 0.00 0.00
12 1.87 1.53 1.11 0.71 0.40 0.20 0.09 0.03 0.01 0.00 0.00 0.00
11 1.86 1.51 1.07 0.66 0.36 0.17 0.07 0.03 0.01 0.00 0.00
10 1.85 1.48 1.02 0.61 0.32 0.15 0.06 0.02 0.01 0.00
9 1.84 1.45 0.97 0.57 0.28 0.12 0.05 0.02 0.00
8 1.83 1.41 0.92 0.52 0.25 0.10 0.04 0.00
7 1.82 1.37 0.87 0.47 0.22 0.10 0.01
6 1.81 1.33 0.82 0.43 0.22 0.01 i
5 1.79 1.30 0.79 0.46 0.04 D 14 15 16 17
4 1.79 1.29 0.86 0.10 17 0.00 0.00 0.00 0.00
3 1.82 1.43 0.23 16 0.00 0.00 0.00
2 2 0.5 15 0.00 0.00
1 1 14 0.00

With Claim 7.4 proved, we can now complete the proof of Claim 7.3.

∣∣∣∣ai(λ)
λ∆

∣∣∣∣ ≤ ( 1
λi

)∆ d−∆+1∏
j=1,j 6=i

(
j2

|i2 − j2| − 2i2j2
(d−∆+1)3

)
≤
(

(d−∆ + 1)3

2i2

)∆

× 2 ≤ 2
(
d3

2i2

)∆

This gives
|ai(λ)| ≤ λ∆d3∆21−∆ 1

i2∆

Summing over all i from 1 to d−∆ + 1 gives

d−∆+1∑
i=1

|ai(λ)| ≤ λ∆d3∆21−∆
d−∆+1∑
i=1

1
i2∆
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The sum on the right hand side is the truncated p series for p = 2∆. This series sums to ζ(p) where
ζ is the Riemann Zeta function, so the truncation is strictly less than this value. Therefore,

d−∆+1∑
i=1

|ai(λ)| < λ∆d3∆21−∆ζ(2∆)

7.6 Proof of Lemma 4.4

We prove Lemma 4.4, which states that performing a partial measurement obtaining one of k
outcomes during a computation only decreases any output’s probability by at most a factor of
k.

Proof. Let |ψ〉 be the final state of A, and let |ψy〉 be the final state of A′ when the outcome of
the partial measurement is y. Let Pr[y] be the probability that the partial measurement obtains y.
It is straightforward to show that |ψ〉 =

∑
y

√
Pr[y]αy|ψy〉 for some αy of unit norm. Then we have

Pr[x] = |〈x|ψ〉|2 =

∣∣∣∣∣∑
y

√
Pr[y]αy〈x|ψy〉

∣∣∣∣∣
2

≤ k
∑
y

Pr[y]|〈x|ψy〉|2 = kPr ′[x]
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