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Outline for this morning

1. Crash course in quantum computing
2. Impacts on existing cryptosystems

3. An overview of post-quantum cryptography
- New cryptographic assumptions
- New security proofs
- New definitions



1. A crash course in quantum computing



Classical Probabilistic Systems: Modeling Uncertainty

State of system
= probability vector
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Classical Probabilistic Systems
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W(path p) := T[(probabilities along path) = Pr|[p]

Pr[x] = Z W(p)

p:s=2X



Quantum Systems

State of system
= amplitude vector

—
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unitary matrices = measurements
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Quantum Systems

O Y
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Conceptual Diffs Between Quantum and Classical

Quantum states are physical (do not model uncertainty)
(density matrix formalism for uncertain quantum states)

Paths can “interact”, or interfere:

Constructive interference: | z W(p) |2 >> z | W(p) |2
Destructive interference: | ZW(p) |2<< z | W(p) |2



Verifying Quantum States

For any state v, 3 unitary U, such that

o —

Can verify if a state

‘ is v by applying U,
and then measuring

U,.v=

© O O O O ¥

Equivalent statement for stochastic processes: given sample
from distribution, decide if that distribution is v. Impossible!



Intermediate Observation in Classical Process
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Intermediate Observation in Quantum Process

bserver effect: looking at a
guantum system changes it

-
i
PrixAyl= | 3 W(p) |* 2

p:S2X2Y

2 PrixAyl=2 | 2 W(p) |* # Pry]



Quantum No Cloning

Sample from unknown

distribution

N—"
Classical “no cloning”: given unknown stochastic state,

impossible to produce two copies of that state

_— 7

Two iid samples from same distribution

Ill

Actual physical state

N—
Quantum “no cloning”: given unknown quantum state,

impossible to produce two copies of that state




Using constructive interference to
get answer with higher probability

Quantum computing = I

Get answer faster



Ket Notation

Typically denote quantum state vectors with “ket” notation

v) = ) axlw) 0) 1)

All amplitudeon 0  All amplitude on 1



Quantum 2 Classical

. n m
= {O’ 1} — {O’ 1} If f is efficiently computable
1 by classical circuit, Os is
efficiently computable by
szax,y‘xjw _ Z&x,y‘%y@f@?» quantum circuit
T,y T,y

N

Needed to ensure unitarity, regardless of f




Quantum Fourier Transform (QFT)
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Quantum Fourier Transform (QFT)

N—-1

1
Uniform superposition: QFTy|0) = —— Z )
VN =
1
Subspaces: |S) = Z\ZIZ St) = —— Z 1Y)
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Quantum Period-Finding
(aka Abelian Hidden Subgroup Problem)

Suppose given function f with promise that
there exists (hidden) subspace S s.t.:

flx+y) = flx)Vy e S
flx+y) # f(x)Vy ¢ S

Goal: find S

Easy Thm: Any classical algorithm that treats f
as black box requires exponential time




Quantum Period-Finding
(aka Abelian Hidden Subgroup Problem)

An efficient quantum algorithm [Simon’94,Shor’94]

(1) Prepare > |z, 0)

(2) Apply Oy: ) |z, f(2))

T

(3) Measure f(x): obtain y, state collapses to

> =)

r:f(x)=Yy



Quantum Period-Finding
(aka Abelian Hidden Subgroup Problem)

An efficient quantum algorithm [Simon’94,Shor’94]

(4) Discardy: > lz)=) | +azo)

o f (z)=y zeS Xo arbitrary s.t. f(xg)=y

(5) Apply QFT: 2 ¢ z)

zeS-L1

(6) Measure z to obtain random vector in S+

Repeat O(dimension) times to learn S+, and hence S



2. Impacts on existing cryptosystems

For this morning, will only consider classical
cryptosystems, but allow adversary quantum attacks



Discrete Log as Period Finding [Shor’94]

Discrete log: given g,h=g? (over some group G), find a
Define f(x,y) = g*hY
Observe f( (x,y) + (-a,1) ) = f(x,y)

Period finding =2 find (-a,1) =2 a



Factoring as Period Finding [Shor’94]

Factoring: given N=pq, find p,q

Define f(x) = g*mod N
Observe f( x + (p-1)(g-1) ) = f(x)

Period finding = find (p-1)(q-1) =2 p,q

(Not actually how it works. Some annoying details to get it totally right)



Consequences

Public Key Cryptography:
* All widely-used schemes rely on Factoring or Dlog
 — quantumly insecure

Private-key Cryptography:

* Typical schemes (SHA, AES) don’t have the needed periodic
structure = seem immune to Shor’s algorithm

* Quadratic speedups due to [Grover’96] = must double key sizes



3. An overview of post-quantum cryptography



Fundamental Formula of Modern Cryptography

Crypto security
“proof”

Formal Security
Model M

+

Computational
Assumption P

+

Reduction from
PtoM

Captures “realizable” attacks
E.g. EUF-CMA, IND-CCA

Must be realistic assumptions
Concrete: Factoring, Dlog, LWE
Generic: 3OWF, 3PKE

Breaking M at least as hard as P



Fundamental Formula of PQ Cryptography

Post-quantum
“proof”

Post-quantum
Model M

+

Post-quantum
Assumption P

+

Post-quantum
Reduction

Model should capture actual
guantum attack scenarios

Concrete: (quantum) LWE
Generic: 3 (quantum-immune)
OWEF, 4PKE

Quantumly breaking M at least
as hard as quantumly solving P



An Incorrect Formula!l

Post-quantum
“proof”

+

Classical
Model M

+

Post-quantum
Assumption P

+

Classical
Reduction

Must revisit all
three ingredients!



3a. Post-Quantum Assumptions



Group Actions
Only need exponentiation,

not group multiplication

Recall Classical Diffie-Hellman:

k = g*° = (g%)° = (g")?



Group Actions
[Brassard-Yung’90]

Group G acting on a set X via * : GxX =2 X

Key identity: (ab)*x = a*(b*x)

Exponentiation is a group action with
group G’ =Z," actingon set X=G



Group Actions

(Abelian) Group action Diffie-Hellman:

a*x b*x %‘

a< G b&<¢ G

k = (ab)*x =a*(b*x) = b*(a*x)



Group Actions

Analogs of traditional assumptions:

* Dlog: (x,g*x) 2> g

 CDH: (x, a*x, b*x) =2 (ab)*x

 DDH: (x, a*x, b*x, (ab)*x) vs (x, a*x, b*x, c*x)




Group Actions

[Couveignes’06, Rostovtsev-Stolbunov’06]: Shor’s algorithm
doesn’t seem to apply to group actions that are not also groups

Recall that Dlog attack finds

period of f(x,y) = g*xhY
T

No analog on group actions!

Therefore, group actions may be
plausible post-quantum candidates



Group Actions

Candidate post-quantum group actions:
* |sogenies over elliptic curves (abelian)
 Some non-abelian ones (e.g. McEliece)

General quantum hardness:
» [Ettinger-Hoyer-Knill’04]: Attack making polylog(|G|)
gueries to group action, but runs exponential time

 [Kuperberg’03]: For abelian case, attack with running
time and query complexity 20WIGI)



Group Actions

Problem: lack of structure breaks many applications

Schnorr signatures from groups:

Sign(sk, m) = (a=g%, c=H(a||m), r =s + sk c)

c == H(a| |m)

gr==axpke
/4

No analog on group actions!

Ver(pk=gs, m, (a,c,r)): Check



Group Actions

Problem: lack of structure breaks many applications

Group action Schnorr: n {0,1)

/

Sign(sk, m) =(a =s*x, b=H(a||m), r = skb/s)

b ==H(a| |m)
Ver(pk=sk*x, m, (a,b,r)): Check r*a==xif b==
r*a == pk if b==1

Can think of as testing r*a == pkbx1® ?




Group Actions

Problem: lack of structure breaks many applications

In order to get 2* soundness, must repeat A times

Can optimize to A / log(A) [De Feo-Galbraith’19], which is
optimal amongst large class of schemes [Boneh-Guan-Z2'23]

Results in much larger signatures than classical

(Note: SQISign [De Feo-Kohel-Leroux-Petit-Wesolowski’22] is based on isogenies and
achieves much better signature length. But departs from group action abstraction)



Lattices

Imagine dimension in the 100s



Lattices

Basis: minimal set of vectors that generate lattice



Lattices

(Approx.) shortest vector problem (SVP): given lattice
(described by some basis), find (approx.) shortest vector




Lattices
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(Approx.) closest vector problem (CVP): given lattice
and point off lattice, find (approx.) closest lattice point




Lattices
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Trapdoor: Give out large basis as public key,
keep short basis as secret key / trapdoor




Lattices

Lattice rounding: Solving (approx.) CVP using short basis
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Shorter bases give closer rounding



Lattices
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Encrypt m:

(1) Map m to lattice point
(2) Output close non-lattice point




Lattices

SIS [Ajtai’96]: Distribution over hard approx. SVP instances
LWE [Regev’05]: Distribution over hard approx. CVP instances

Lattices are periodic, but lattice/period
typically known (bad basis); SVP/SIS asks to
find short description (good basis) of period

4

Period-finding doesn’t seem relevant;
presumed quantum hardness

Note: many applications of lattices (e.g. FHE) beyond presumed quantum resistance



Other types of post-quantum assumptions

Concrete assumptions:

* From coding theory (e.g. McEliece)
e LPN

* Non-abelian groups

* Most symmetric crypto

Can also make generic assumptions
* JPQ-PKE, PQ-PRG, etc



Open Questions

Better understanding of quantum hardness of group actions, lattices, etc.

More techniques for using group actions / impossibilities
* Especially using non-abelian group actions

Exact security of symmetric cryptography

* Non-trivial quantum algorithms for SHA, AES?

e Know time-hardness of inversion ( ©(2"2) ) and collision-finding ( ©(2"/3) ),
but space-time-hardness of collision still open

[Brassard-Hgyer-Tapp’98]: O(2"/3) time and space, but unknown if space is necessary



3b. Post-quantum Security Proofs



Example: PRG Length Extension

x€{0,1}"

. Def: G is a secure pseudorandom generator
n (PRG) if, VPPT A, Inegligible € such that

} | Pr[A(y)=1] — Pr[A(G(x))=1] | < €

ye{0,1}™

Non-triviality: (m>n)



Example: PRG Length Extension

Suppose m=n+1. How to get larger stretch?

x€{0,1}" X
.

A

Non-triviality: (m>n) 7

v
ye{0,1}™

Solution: G, =

Thm: If G is secure, then so is G,




Example: PRG Length Extension

Proof: Suppose G, insecure. Then IPPT A, non-negl € such that
| Pr[A(y)=1] — Pr[A(G,(x))=1] | 2 €

Hybrid O Hybrid 1 Hybrid 2

v
v : v \ v Y

A b A *b A ‘b
po:=Pr[b=1] p,;:=Pr[b=1] p,:=Pr[b=1]




Example: PRG Length Extension

Proof: Suppose G, insecure. Then 3PPT A, non-negl € such that

CTpa=pol 2

Hybrid O Hybrid 1 Hybrid 2

Either: Or:
|P1-Po|2€/2 ;| P2-p1l2€/2

v
' 3
ﬂ B(yo,Y1)= B(Yo,Y1)=
' ' . AGlvoyl) ©Alyoys9)

A b A - lb A - ’b In either case, B has

o _ _ _ _ _ advantage €/2 against
po:=Pr[b=1] p,;:=Pr[b=1] p,:=Pr[b=1] security of G




Example: PRG Length Extension

What about quantum?

Def: G is a post-quantum secure PRG if,
VQPT A, dnegligible € such that
| Pr[A(y)=1] - Pr[A(G(x))=1] | < €

Thm: If G is post-quantum secure, then so is G,




Example: PRG Length Extension

Proof: Suppose G, is PQ insecure. Then IQPT A, non-negl € s.t.
| p,— Pl 2 €

Hybrid 0 Hybrid1  Hybrid2 , cener o On

1P1-Pol2€/2 | |py-p;|2¢/2

v
' 3
ﬂ B(yo,Y1)= B(Yo,Y1)=
' ' . AGlvoyl) ©Alyoys9)

A b A - lb A - ’b In either case, B has

o _ — _ — _ advantage €/2 against
po:=Pr[b=1] p,;:=Pr[b=1] p,:=Pr[b=1] PQ security of G




Example: PRG Length Extension

Proof for G, doesn’t care how A works internally,
as long as it has non-negligible advantage

That is, proof treats A as “black box”



Example: Random Oracle Model

Consider cryptosystem using hash function H

H

I

Cryptosystem

Examples: OAEP, Fujisaki-Okamoto, Full-Domain Hash, ...



Example: Random Oracle Model

[Bellare-Rogaway’93]: model H as random function

B
0 ”? ®

I

Cryptosystem




Example: Random Oracle Model

Hope: If 3ROM security proof, no “real world”
attacks on sufficiently well-designed hash function

Theoretical attacks known [Canetti-Goldreich-Halevi’98],
but heuristic has held up in practice. Basis for essentially
all of the most efficient cryptosystems.



Example: Random Oracle Model

Enter qguantum...



Example: Random Oracle Model

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z’11]:

Y
Concretely, can apply Q02 @wylw,y) =) awyle,y & O(x))
L,Y

L,Y



Example: Random Oracle Model

Consider Full Domain Hash Signatures

Building Block: Trapdoor Permutations

-
pk sk

Security: VPPT A, Pr[A(pk,y)=x] < negl

Sigs from TDPs

m—> H




Example: Random Oracle Model

ROM security proof: Assume toward contradiction
sk




Example: Random Oracle Model

ROM security proof:

Step 0: Assume m* queried to RO




Example: Random Oracle Model

ROM security proof:

Step 1: H > PoH’




Example: Random Oracle Model

ROM security proof:

y B H

Step 1: H > PoH’




Example: Random Oracle Model

ROM security proof:

m| ) K
b Ai ? H \
‘ \J
/ H = P y—|> A m*g{ml}l H’
; e
pk o 7

A computes H(m*), given only H{m*)=P(pk,H’(m*))




Example: Random Oracle Model

ROM security proof:

m| ) K
b Ai ? H \
‘ \J
/ H = P y—|> A m*g{ml}l H’
; e
pk o 7

B(y*): set H(x;)=y* for random query = advantage €/q




Example: Random Oracle Model

QROM Proof?

A m*&{m};

—

How does B(y*) insert challenge into H?

\J
HI




Example: Random Oracle Model

Attempt 1: Insert at random QUERY
20y [%y)
>0, | X,yDH(x)) Problem: repeated queries?
A 20,y 1%Y) Problem: distinguishing attack
Zax,ylxry@y*> ZlX,O) ZlX,O)
« > VS >
> %,y%) > |x,0(x))
Zax,y|X,V>> h <
Z?x,y | X;y@ H (X)>




Example: Random Oracle Model

Typical QROM reductions commit to entire function
H at beginning, remain consistent throughout

[Zhang-Yu-Feng-Fan-Zhang’19]: “Committed programming reductions”

Note: growing number of techniques exmploying non-committing reductions [Unruh’15,
2’19, Kuchta-Sakzad-Stehle-Steinfeld-Sun’20, Alagic-Carolan-Majenz-Tokat’25,...]



Example: Random Oracle Model

Take 2: Insert at random VALUE
H(m*) = y*
S0t I%,Y). H(x) = $ if x2m*

A 5o Ixy®HK) B

Problem: exp-many values
—> Pr[correctly guess m*] =negl




Example: Random Oracle Model

Solution: Small-Range Distributions [Z'12]

Random Random

\/

S|ze r

Domain Range




Example: Random Oracle Model

Thm [Z'12]: No q quantum query alg can distinguish
SR, from random, except with probability O(qg3/r).

Quantum collision finding = bound tight
[Brassard-Hgyer-Tapp’98]



Example: Random Oracle Model

Finishing the proof:
Pr[ Awins | H random ] 2 €

$

Pr[ Awins | H' =SR] 2 € -0(q3/r)

B(y*) inserts y* into random output
= Pr[Binvertsy]2¢€/r-0(qg3/r?) = /Q(ezlq?')

r=0(q>/€)




Example: Coin Tossing

| Def: Com is (computationally) binding if, VPPT A,
r -$ Com | | Anegligible € such that

myzm, A

Pr[ Com(mo’r0)=com(m1’r1) : (mOIrOImlrrl)éA() ] <E

Also want hiding, but we will ignore



Example: Coin Tossing

Simple protocol:

c =com(b,,r)

b,<{0,1}
cs @)

.
b, O

da
b,,r

>

Verify ¢ =

b, <{0,1}

= com(b,,r)

pass_~ \fall

b=b,Db,

b=1




Example: Coin Tossing

Proof that Alice can’t bias b:
Let A be supposed adversary

A . bg

@
bt

For both bg=0 and bg=1, good
chance b,=bg and Com(b,,r)=c

Pr[b=0] > Vo+g ==




Example: Coin Tossing

Proof that Alice can’t bias b:

Step 1 Step 2 Step 3
c

A<A7010 A‘) A Allrl

Prl Com(bAo:ro) Com(bAllrl) C

] 2 poly(g)




Example: Coin Tossing

What about quantum?

Def: Com is post-quantum (computationally)
binding if, VQPT A, dnegligible € such that

myzm, A

Pr[ Com(my,r,)=Com(m,r.) : (mg,ro,m,,r)€A()]1<€

Define coin-tossing goal similarly



Example: Coin Tossing

Proof that quantum Alice can’t bias b?

Step 1 ep

e

A0

bA,or Io
—1

Observer effect: extracting b, ,r,
irreversibly altered A’s state




Example: Coin Tossing

Thm (Ambainis-Rosmanis-Unruh’14,Unruh’16, Shmueli-Z’25):
APQ binding Com s.t. Alice has a near-perfect strategy (either

relative to an oracle, or under appropriate computational
assumptions)

l.e., quantumly, ability to produce either of two values isn’t
the same as ability to produce both simultaneously



Key Takeaway: As long as reduction treats
A as a single-run black box (potentially w/
classical interaction), reduction likely
works in quantum setting

I But if idealized model (e.g. I But if rewinding A, must
0 RO), must be careful o be careful




Open Questions

Find other proof techniques that fail quantumly / show that they don’t exist
Some positive progress: [Chan-Freitag-Pass’22, Bitansky-Brakerski-Kalai’22]

Which RO results can be lifted to quantum world?
Numerous works lifting specific techniques;

No fully-general lifting theorem [Yamakawa-Z'21, ‘22]
Lifting for specific classes [Yamakawa-Z'21, Katz-Sela’24,
Cojocaru-Hhan-Liu-Yamakawa-Yun’25]

General conditions for lifting rewinding results?
Specific techniques [Watrous’06, Unruh’12,’16, Chiesa-Ma-Spooner-Z'21,...]



3c. Post-quantum Definitions



Collapsing Commitments unruhis)

Def: Com is collapsing if, VQPT A, Inegligible € such
that |p,— p,| < € where:

W)=3a, [Imr) = 3a, |mrc=Com(m,r))

b=0 gy : ) Lt
A ’ |
m RIQ
b’ vy 1 |W)

>

py = Pr[b’=1]b]

Also analogous notion of collapsing hash functions



Collapsing Commitments

Intuition: if Com is injective, then measuring input
and output result in same post-measurement state
- Perfectly collapse-binding

Computational collapse binding makes sense even if
Com is not injective (say, succinct commitments)



Proof that qguantum Alice can’t bias b

First, let’s remove all post-commitment measurements from A
| |
| |
| , |
|
: Z a,@ : I Z Q, | X ’@| Never touch again
! |
| |
! |
| I : |

Exercise: A and A’ behave identically




Proof that qguantum Alice can’t bias b

Step 1 Step 2

Step 3

4 O ) 4 ’
A Z|bAo:ro)A ) A ZIbAllrl)

Can now rewind since post-
commitment A’ is unitary

But, rewinding
also erased by o!!!




Proof that qguantum Alice can’t bias b

Step 1 Step 2 Step 3
c c c
I 0 AI 1
Z |b,, o:ro) Z | bA 1)

Q&

Lemma [Unruh’12]: both will be valid with probability = €3

Still don’t get a collision...




Proof that qguantum Alice can’t bias b

Step 1 Step 2 Step 3
c
A’ .0 A’
2|b, Da00f ro)

1,r, s.t. c=Com(1,r,)




Proof that qguantum Alice can’t bias b

0,r, s.t. c=Com(O,r,) 1,r, s.t. c=Com(1,r,)

If measuring step 1 causes step 3 to fail, contradicts collapsing




Collapsing Commitments

Constructions:

- Any injective commitment

- Random oracle [Unruh’16a]

- From lossy functions (LWE) [Unruh’16b]

- The SIS hash function [Liu-Z’19, Liu-Montgomery-Z'23]

- [Z’22] from many other assumptions, basically matching known
feasibility of plain PQ binding (constructions different)

Better rewinding techniques: [Chiesa-Ma-Spooner-Z’'21, Lombardi-
Ma-Spooner’22]



Collapsing not always necessary

Example: Hashing before signing
Sign’(sk, m) = Sign(sk, H(m))

Security proof works quantumly (no
rewinding), produces classical collision for H




Fully-Quantum Notions

So far, end goal (e.g. coin tossing) is still a classical game,
but we want security against local guantum computation

But in a quantum world, there may be
attacks that exploit quantum interaction



Example: PRFs

Def: F is a secure pseudorandom function
(PRF) if, VPPT A, 3 negligible € such that
| Pr[AFk-)()=1] — Pr[AR(")()=1] | < €

Notes:

- k random

- R uniformly random function

- A%") means A makes queries on x, receives O(x)



Example: PRFs

What is a post-quantum PRF?

Def: F is a PQ secure PRF if VQPT A, 3

1£() o
Alft) means can negligible € such that

query unitary O | Pr[AF(k-)()=1] - Pr[AR-)()=1] | < &
a, . |x, , :
2 """I v’ Def: F is a Fully Quantum secure PREF if,

Sa, | x,yDf(x)) VQPT A, 3 negligible € such that
"’ | Pr[A IF) ()=1] — Pr[A IR(D ()=1] | < €



Example: PRFs

Is there a difference? YES!

Proof: make periodic
PRF’( (k,z) , x ) = PRF( k, {x,x&Dz})



Example: PRFs

Ok. Which definition do we want? It depends...

PRFs = CPA-secure encryption

r< S

Enc(k,m) = c = (r, F(k,r)@©m)

Encrypter (honest) chooses r = always classical

PQ security suffices




Example: PRFs

Ok. Which definition do we want? It depends...

PRFs 2> MAC
MAC(k,m) = F(k,m)

Security model lets attacker choose m, but
signer (honest) actually computes MAC

Can attacker force signer to MAC superpositions? Consider
smartcard applications where adv has physical access to signer




Example: PRFs

Ok. Which definition do we want? It depends...

PRFs = Pseudorandom quantum states
[Ji-Liu-Song’18,Brakerski-Shmueli’19]

2 (-1)7%) | x)

Generation of state makes superposition query to F

Need full quantum security




Example: PRFs

So what do classical PRF proofs give us?



Example: PRFs

PRG—>PRF

F(k,000) F(k,001) F(k,010)

[Goldreich-Goldwasser-Micali’84]

yo
Pc/c
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F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)
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Example: PRFs

PRG—>PRF

[Goldreich-Goldwasser-Micali’84] k

A
Ab
AR

NS

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)




Example: PRFs

Classical proof, step 1: Hybrid
}

f c \
Hybrid O ( F(k, - ) ): h
P/ s W

— /N T




Example: PRFs

Classical proof, step 1: Hybrid

v
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Example: PRFs

Classical proof, step 1: Hybrid

Hybrid 2:




Example: PRFs

Classical proof, step 1: Hybrid

Hybridn (R(:) ):

— /N T




Example: PRFs

Classical proof, step 1: Hybrid

Jj s.t. | Pr[AHYeridi+1() = 1] - Pr[AHYPridi() = 1] | 2 €/n
W iiii
A V> A

Step 1 makes sense if A classical,
post-quantum, or fully quantum




Example: PRFs

Classical proof, step 2: Another hybrid

Ly
AAAA

Hybrid i.0 = i:




Example: PRFs

Classical proof, step 2: Another hybrid

Lk

Hybrid i.1:




Example: PRFs

Classical proof, step 2: Another hybrid

e

Hybrid i.2:




Example: PRFs

Classical proof, step 2: Another hybrid

Hybrid i.3:




Example: PRFs

Classical proof, step 2: Another hybrid

Wil

Hybrid i.2 = i+1:

Problem: 2! loss potentially exponential




Example: PRFs

Classical proof, step 2: Another hybrid

Solution: lazy/on-the-fly sampling

q queries = Only hybrid over q “active” positions




Example: PRFs

What about full quantum security?

Even single query touches everything

Solution: Small-range distributions! [2'12]



Open Questions

Efficient fully-quantum PRPs (e.g. Luby-Rackoff)
« [2'16] is rather inefficient

Build quantum ideal cipher from RO
Need “indifferentiable” PRP

The “right” definition for superposition attacks on signatures
e [Boneh-Z'13, Garg-Yuen-Z'17] have major limitations
 Unclear if [Alagic-Majenz-Russell-Song’18] captures everything






