
THE RANK METHOD AND 

APPLICATIONS TO POST-

QUANTUM CRYPTOGRAPHY 

Mark Zhandry  -  Stanford University 

Joint work with Dan Boneh 



Classical Cryptography 



Post-Quantum Cryptography 

All communication stays classical 



Beyond Post-Quantum Cryptography 

Eventually, all computers will be quantum 

Adversary may use quantum channels 



Quantum Interactions 

Allowing quantum interactions makes proving statements 

(i.e. lower bounds) much harder 

 

Examples: 

• Parity [BHCMdW’1998] 

• Unstructured search [BBBV’97] 

• Collision finding [Aar’01] 

 

Same is true for cryptography 



Example: Message Authentication Codes 

How does Bob verify that m was sent by Alice and 

wasn’t modified in transit? 

 - Classical solution: MAC 

Bob k Alice k 



Example: Message Authentication Codes 

Bob k 

Check 

Alice k 

Correctness: All message/tags sent by Alice verify: 

 

Security: Only messages sent by Alice verify: 



Example: Message Authentication Codes 

Bob k Alice k 

Before forgery attempt, adversary sees valid 

tags on many messages, possibly of his choice 

Check 



(Classical) Security For MACs 

Adversary wins if, after many MAC 

queries, it can produce a valid 

message/tag pair that was not 

seen before: 

  

Security: No efficient adversary 

can win, except with negligible 

probability 



Full Quantum Security for MACs 

Bob k Alice k 

Now adversary has a quantum channel 

Check 



Full Quantum Security for MACs? 

What does a forgery mean here? 

• Cannot record query to check against forgery 

• Adversary can “see” tags for all messages 

? 



Ideas 

1.  Wins only if weight of forgery in queries is 0 

• Impossible to check 

• Uniform superposition  all weights non-zero 

 

2.  Wins only if weight is low 

• Still impossible to check 

• Uniform superposition  all weights low 

 

3.  Ask adversary to commit to message ahead of time 

• Called selective security  too weak 

 

4.  After q queries, adversary can easily produce q tags.  
Instead ask him to produce q+1. 

X 

X 

X 

✓ 



Full Quantum Security for MACs 
q queries 

Adversary wins if, after making q 

quantum MAC queries, it produces 

q+1 distinct valid message/tag 

pairs: 

  

Security: No efficient adversary 

can win, except with negligible 

probability 



How to Build Quantum-Secure MACs? 

To build quantum-secure MACs, look to classical 

constructions. 

 

Example: PRFs 



Pseudorandom Functions (PRFs) 

Efficient keyed functions that look like random functions to 

efficient adversaries: 

vs. 

? ? ? 



Quantum Pseudorandom Functions (QPRFs) 

Efficient keyed functions that look like random functions to 

efficient quantum adversaries: 

vs. 

? ? ? 



PRFs, QPRFs, and MACs 

PRFs are fundamental building block in classical crypto 

 → QPRFs are fundamental to post-quantum crypto 

 

We know how to build PRFs [GGM’84] and QPRFs [Zha’12b] 

 

Given PRF, can define a new MAC: 

 S(k,m) = PRF(k,m) 

 V(k,m,σ) = (PRF(k,m) == σ) 

 

Classically, this gives a secure MAC 

  Same true in quantum world? 



Security of PRF as a MAC 

Adversary wins if: 

 

 

q queries 



Security of PRF as a MAC 

Adversary wins if: 

 

 

PRF looks random: 

After q quantum queries to F, adversary gives q+1 

input/output pairs of F 

q queries 



(Classical) Oracle Interrogation 

q queries 

Success if: 

•   

•   

After q queries to a random function F, predict F 

at k points 



(Classical) Oracle Interrogation 

Choose a random function F from set X to set Y 

Allow algorithm A to make q oracle queries to F 

A’s goal: evaluate F on any k distinct points 

Let                            denote the optimal success probability  



Quantum Oracle Interrogation 

Success if: 

•   

•   

After q quantum queries to a random function 

F, predict F at k points 
q queries 



Quantum Oracle Interrogation 

Choose a random function F from set X to set Y 

Allow algorithm A to make q quantum oracle queries to F 

A’s goal: evaluate F (classically) on any k distinct points 

Let                            denote the optimal success probability  

Problem: A gets to “see” F on all inputs! 



Prior Work 

[van Dam’98]: Quantum algorithm for binary outputs 

 

 

 

 

 

In other words, for binary outputs, oracle interrogation is 

easy  

 

Larger outputs? 

• Might expect that we can apply [vD’98] in parallel on each bit of 

output  probability extends to arbitrary output size? 

• Short answer: no 

Theorem([vD’98]): For any constant             , there exists 

a quantum algorithm that makes q quantum queries to an 

oracle F:X{0,1} and evaluates F at                            

points with overwhelming probability. 



Extending to Arbitrary Range Sizes 

[vD’98]: Given q queries to a binary oracle F, can evaluate 

F at                            points.  

 

 

Our result: Let F be an oracle with range Y of size N.  

There exists a constant        such that we can evaluate F at 

                                  points. 

• Example: N = 4  

  Can make 1000 queries to 2-bit oracle, evaluate 

F at       1300 points with probability ~95%  

 (one bit oracle: 1930 points with prob ~95%) 



Can We Do Better? 

Not much known 

• If k>2q, success probability in oracle interrogation 

problem must be ≤ ½, else we can solve parity 

 

Many questions remain: 

• What about k<2q? 

• Tighter bounds on success probability? 

 

Can we use existing lower bound techniques to show 

optimality? 

 



Existing Quantum Impossibility Techniques 

Need: upper bound average case success probability 
when given exact number of queries 

Existing techniques: asymptotic lower bound on query 
number needed for high success probability in worst case 

 

Can fix some of these issues, but problems remain: 

Polynomial Method: 

• Lose factor of 2 in query number  

  only useful when q ≤ k/2 

Adversary Method: 

• Weight of each input can be high 

  only useful when q << k 

Need new lower bound technique  



The Rank Method 

A new way to prove quantum impossibility results. 

 

Fix a quantum oracle algorithm A that makes q quantum queries 

to an oracle F, and tries to learn a function F at k points. 

 

Let           be the final state of A after q queries to F: 

 

 

Define  

 

Suppose we have a bound on Rank(A).  What does this buy us? 



The Rank Method 

Knowing nothing but the rank of A, get good bounds on A’s 

success probability 

 

Toy example: 

• Suppose just 3 functions: F1, F2, F3 (say from {0,1}{0,1}) 

• We are given Fi for a randomly chosen i∈{1,2,3} 

• Goal: given oracle for Fi, determine i 

• Rank = 1, 2, 3 

 

 



Rank = 1 

        independent* of z 

 

 

 

 

 

 

 

 

 

No matter what, win with probability 1/3 

* Up to phase factors, which don’t affect output distribution 



Rank = 2 

        depends on F, but still far from measurement basis 

 

 

 

 

 

 

 

 

 

Can show best case probability is 2/3 



Rank = 3 

No constraints on 

 

 

 

 

 

 

 

 

 

If                     , win with probability 1=3/3 



Toy Example 

Rank Success Probability 

1 1/3 

2 2/3 

3 3/3 

For this example, success prob 

is linear in rank. 

 

 

Coincidence, or general phenomenon? 



 

 

 

 

 

 

To bound success prob, we need to: 

• Bound success prob of rank 1 (0-query) algorithm - hopefully easy 

• Bound rank of q-query algorithm  - ??? 

The Rank Method 

Theorem: For any distribution D on F, the probability that 

a quantum algorithm with rank r learns F at k points is at 

most r times the probability a rank 1 algorithm learns F at 

k points. 



Application to Oracle Interrogation 

Recall: 

• Given q queries to random oracle F:XY 

• Goal: Learn F at k points 

 

Best rank 1 (0-query) algorithm? 

• Pick k distinct inputs arbitrarily, guess outputs arbitrarily 

• Success prob: 1/|Y|k 

 

Best q-query algorithm? 

• Rank/|Y|k 

• Need to bound Rank of q query algorithms 



Rank of Query Algorithms 

Theorem: The rank of any algorithm making q queries to 

F: XY is at most 

 

 

 



Proof Idea 

To bound rank of q-query algorithm, we give a spanning set 

for the possible final states. 

 

Pick function F0 (say, the all-zeros function) 

 

Claim: {         : F differs from F0 on at most q points} is a 

spanning set 

 

Size of set: 

# functions differing from F0 on exactly r points 



Summary So Far 

Theorem: For any distribution D on F, the probability that 

a quantum algorithm with rank r learns F at k points is at 

most r times the probability a rank 1 algorithm learns F at 

k points. 

Theorem: The rank of any algorithm making q queries to 

H: XY is at most 

 

 

 



Application to Oracle Interrogation 

Best success probability of q query algorithm 

 ≤ best success probability of 0 query algorithm  

     times the largest rank of any q query algorithm 

  

 =  

Very large, trivial for many settings of parameters 



Observation 

If we want F(x) at k points, knowing F(x) at other points will 

not help us 

  might as well only query on superpositions of k points 

 

 

 

 
Exactly matches our algorithm! 



Putting it all Together 

 

 

 

 

 

 

 

 

 

 

How do we analyze this probability? 

Theorem: No quantum algorithm, making q quantum 

queries to a random oracle F: X  Y, can learn F at k 

points, except with probability 

 

 

 

 

Moreover, there is an algorithm that exactly achieves this 

bound 



Analyzing the Success Probability 

Case 1: Fixed-size range (|Y| is fixed) 

  can let                 for some constant c (depends on |Y|), 

and success with overwhelming probability 

 Example: Can make q queries to 3-bit oracle, evaluate 

at 1.14q points 

 

 

Case 2: Exponential-size Range (|Y| > 2q) 

  Even for k=q+1, success probability is exponentially 

small (in q) 

Interrogation is Easy 

Interrogation is Hard 



Takeaways 

Cannot apply [vD’98] in parallel to each bit of the output 

 

Quantum oracle interrogation is easier than classical oracle 

interrogation when the range is small 

 

When range is large, quantum queries don’t help 



Back to MAC Security 

Hypothetical MAC forger: 

After q quantum queries to F, adversary gives q+1 

input/output pairs of F 

  Solves oracle interrogation for case k=q+1 

  We just showed this is hard! (assuming large range) 

  No such forger exists ✓ 

q queries 



A Generalization or Oracle Interrogation 

What if the oracle F is not uniform? 

• Many lattice-based schemes have non-uniform outputs 

• Might have auxiliary information about F 

Theorem: As long as each output is drawn 

independently (not necessarily identically) from 

a distribution that is unpredictable, then 

quantum oracle interrogation is still hard, even 

when k=q+1 



Beyond MACs 

There are many types of crypto we might want in the 

quantum setting: 

• PRFs 

• MACs 

• Signatures 

• Encryption 

 

For each of these, we show that small modifications to 

existing schemes give schemes secure against quantum 

interrogations [Zha’12b, BZ’13a, BZ’13b] 

 

 



Conclusion 

Develop the Rank Method, a new quantum impossibility 

technique 

 

Use Rank Method to exactly characterize success 

probability for quantum oracle interrogation of random 

oracles 

• Also give algorithm that exactly achieves this probability 

 

Use results to build crypto secure against quantum queries 

 No need for physical protection against quantum 

interrogation 


