THE RANK METHOD AND
APPLICATIONS TO POST-
QUANTUM CRYPTOGRAPHY

Mark Zhandry - Stanford University

Joint work with Dan Boneh

Classical Cryptography

Post-Quantum Cryptography

All communication stays classical

Beyond Post-Quantum Cryptography

Eventually, all computers will be quantum

Adversary may use quantum channels

Quantum Interactions

Allowing quantum interactions makes proving statements
(i.e. lower bounds) much harder

Examples:

- Parity [BHCMdW’1998]

- Unstructured search [BBBV'97]
- Collision finding [Aar'01]

Same is true for cryptography

Example: Message Authentication Codes

Alice k Bob k

How does Bob verify that m was sent by Alice and
wasn’'t modified in transit?
- Classical solution: MAC

Example: Message Authentication Codes

Alice k Bob k
o= 2S(k,m)

Check V(k, m, 0‘)

—

Correctness: All message/tags sent by Alice verify:
V(k,m,S(k,m)) = True

Security: Only messages sent by Alice verify:
V(k,m*,c") = False

Example: Message Authentication Codes

Bob k
Check V(k, m, 0‘)

—

Before forgery attempt, adversary sees valid
tags on many messages, possibly of his choice

(Classical) Security For MACs

k+— IC I€

m;

O; — S(k, mz)

<€

(m*, o*)

Adversary wins if, after many MAC

gueries, it can produce a valid

message/tag pair that was not
seen before:

(m*, O'*) 7& (mi, O'Z)\V/Z

V(k,m",c") = True

Security: No efficient adversary
can win, except with negligible
probability

Full Quantum Security for MACs

Alice k Bob k
o= S(k,m) " Check Vi(k,m,o)

Now adversary has a quantum channel

L
Full Quantum Security for MACs?

What does a forgery mean here?
« Cannot record gquery to check against forgery
« Adversary can “see” tags for all messages

|deas

1. Wins only if weight of forgery in queries is O
- Impossible to check X
- Uniform superposition = all weights non-zero

2. Wins only if weight is low
- Still impossible to check X
- Uniform superposition - all weights low

3. Ask adversary to commit to message ahead of time X
- Called selective security - too weak

4. After g queries, adversary can easily produce g tags. /
Instead ask him to produce g+1.

Full Quantum Security for MACs

g queries

*

(((mT7 O-T)v AR (mZ—I—la Uq—|—1))

Adversary wins if, after making g Security: No efficient adversary

guantum MAC queries, it produces can win, except with negligible
g+1 distinct valid message/tag probability
pairs:

(mj, o) # (mj, 05)Vi# j
V(k,m!,of) = TrueVi

How to Build Quantum-Secure MACs?

To build guantum-secure MACs, look to classical
constructions.

Example: PRFs

Pseudorandom Functions (PRFs)

Efficient keyed functions that look like random functions to
efficient adversaries:

EEK
F(z) = PRF(k, z)

VS.

F& Funcs(X,))

Quantum Pseudorandom Functions (QPRFs)

Efficient keyed functions that look like random functions to
efficient quantum adversaries:

I R K » Zg; aw‘37>
F(:B)ZPRF(k, z) 2o Qa|2, F(2))

VS.

Yl
FﬁFuncs(X,y) > az|x, F(x))

L
PRFs, QPRFs, and MACs

PRFs are fundamental building block in classical crypto
— QPRFs are fundamental to post-quantum crypto

We know how to build PRFs [cam84] and QPRFs [zha'12b]
Given PRF, can define a new MAC:
S(k,m) = PRF(k,m)

V(k,m,o0) = (PRF(k,m) == 0)

Classically, this gives a secure MAC
- Same true in quantum world?

Security of PRF as a MAC

g queries

’ Zm Qi [TT0)

BER S, awlm, PRE(k,m))

Adversary wins if: . . .
(my,of) # (m},07)Vi#j {(mi,07), ... (mgyq,0001)}

of = PRF(k,m})Vi

L
Security of PRF as a MAC

PRF looks random: q queries

r& Funcs(X,)) ™

Adversary wins if:

*

(m?,of) # (m,0%)Vi # j {(m3,07), .. (Mg 41, 0041)}

of = F(m*)Vi

1

After g quantum queries to F, adversary gives q+1
iInput/output pairs of F

(Classical) Oracle Interrogation

After g queries to a random function F, predict F
at k points

g queries
J X
Fl orw |
F: X =Y
Success If: \
« 2 = F(ZBZ)\V/Z ((xlv Zl)v T (ajkv Zk))

.ZEZ#ZEJ\V/Z#]

(Classical) Oracle Interrogation

Choose a random function F from set X to set Y

Allow algorithm A to make q oracle queries to F

A's goal: evaluate F on any k distinct points

Let Po (X,), q, k) denote the optimal success probability

1 if g > k

PC X7y7Q7k — (k_Q)
() (3" <

Quantum Oracle Interrogation

After g quantum queries to a random function
F, predict F at k points

(Dy Yyl Ty Y)
F Zx,y Cka;,y|$,y@F(£E)>

g queries

F: X =Y

Success if: v

« 2 = F(ZBZ)VZ ((561,21), T 7(37167276))
e U; 75 Zl?j\vli 7&]

Quantum Oracle Interrogation

Choose a random function F from set X to set Y
Allow algorithm A to make q quantum oracle queries to F
A's goal: evaluate F (classically) on any k distinct points

Let Po(X, Y, q, k) denote the optimal success probability
1 if q >k

Po(X,Y.q.k) =1 .., o<k

Problem: A gets to “see” F on all inputs!

Prior Work

[van Dam’98]: Quantum algorithm for binary outputs

In other words, for binary outputs, oracle interrogation is
easy

Larger outputs?

- Might expect that we can apply [vD’98] in parallel on each bit of
output - probability extends to arbitrary output size?

« Short answer: no

L
Extending to Arbitrary Range Sizes

[vD’98]: Given q queries to a binary oracle F, can evaluate
Fat k = (2 — €)q points.

Our result: Let F be an oracle with range Y of size N.
There exists a coldssant such that we can evaluate F at

k= (cny — €)q points.
- Example: N=4 > C4 — 4/3

—> Can make 1000 queries to 2-bit oracle, evaluate
F at 1300 points with probability ~95%

(one bit oracle: 1930 points with prob ~95%)

L
Can We Do Better?

Not much known

- If k>2q, success probability in oracle interrogation
problem must be < 7%, else we can solve parity

Many questions remain:
- What about k<2q?
- Tighter bounds on success probability?

Can we use existing lower bound technigues to show
optimality?

Existing Quantum Impossibility Techniques

Need: upper bound average case success probability
when given exact number of queries

Existing techniques: asymptotic lower bound on query
number needed for high success probability in worst case

Can fix some of these issues, but problems remain:

Polynomial Method: Adversary Method:
* Lose factor of 2 in query number « Weight of each input can be high
- only useful when q < k/2 - only useful when g << k

Need new lower bound technique

D
The Rank Method

A new way to prove quantum impossibility results.

Fix a quantum oracle algorithm A that makes q quantum queries
to an oracle F, and tries to learn a function F at k points.

Let |¢F>be the final state of A after g queries to F:
Yr) =U,FU,_1F---FU|0)

Define Rank(A) = Dim Span{|yr)}

Suppose we have a bound on Rank(A). What does this buy us?

D
The Rank Method

Knowing nothing but the rank of A, get good bounds on A's
success probability

Toy example:

- Suppose just 3 functions: F,, F,, F; (say from {0,1}->{0,1})
- We are given F,; for a randomly chosen i€{1,2,3}

- Goal: given oracle for F;, determine |

-Rank =1, 2, 3

D
Rank =1

‘¢F> iIndependent” of z

|O>'

No matter what, win with probability 1/3

* Up to phase factors, which don'’t affect output distribution

D
Rank =2

\¢F> depends on F, but still far from measurement basis
|2 >

A

|0 >

Can show best case probability is 2/3

Rank =3

No constraints on |¢F >

|2 >
A

If|¢pi> = |Z> win with probability 1=3/3

L
Toy Example

For this example, success prob
IS linear in rank.

Success Probability
1 1/3

2 2/3
3 3/3

Coincidence, or general phenomenon?

The Rank Method

To bound success prob, we need to:
- Bound success prob of rank 1 (0-query) algorithm - hopefully easy
- Bound rank of g-query algorithm - ???

Application to Oracle Interrogation

Recall:

- Given g queries to random oracle F: X=2>Y
- Goal: Learn F at k points

Best rank 1 (O-query) algorithm?

- Pick k distinct inputs arbitrarily, guess outputs arbitrarily
- Success prob: 1/| Y|«

Best g-query algorithm?
- Rank/| Y|«
- Need to bound Rank of g query algorithms

L
Rank of Query Algorithms

(Dy Yyl Ty Y)
F Zx,y am,y|x,y@F(x)>

F: X =Y

Proof Idea

To bound rank of g-query algorithm, we give a spanning set
for the possible final states.

Pick function F, (say, the all-zeros function)

Claim: {\¢F>: F differs from F, on at most g points} is a
spanning set

Size of set: zq: ('f‘) (1Y —=1)"

r=0 ‘ ,
Y

functions differing from F, on exactly r points

Summary So Far

Application to Oracle Interrogation

Best success probability of g query algorithm
< best success probability of 0 query algorithm
times the largest rank of any g query algorithm

x| ()
WXZ()'y"” V]

;

Very large, trivial for many settings of parameters

Observation

If we want F(x) at k points, knowing F(x) at other points will
not help us

- might as well only query on superpositions of k points

Exactly matches our algorithm!

| /

d k
Po(X.,4:8) < g)3 (k) (Yl -1)" < Q;)_q

r

Putting It all Together

How do we analyze this probability?

L
Analyzing the Success Probability

Case 1: Fixed-size range (|Y| is fixed)

> canletk = C(for some constant ¢ (depends on |Y|),
and success with overwhelming probability

- Example: Can make g queries to 3-bit oracle, evaluate
at 1.14q points

Interrogation is Easy

Case 2: Exponential-size Range (Y| > 29)

- Even for k=g+1, success probabillity is exponentially
small (in q)

Interrogation is Hard

Takeaways

Cannot apply [vD’98] in parallel to each bit of the output

Quantum oracle interrogation is easier than classical oracle
Interrogation when the range is small

When range is large, quantum queries don’t help

- R
Back to MAC Security

Hypothetical MAC forger:

D om Om|m)

QU |, F'(M))

g queries

<€

r& Funcs(X,)) 3

m

After g quantum queries to F, adversary gives g+1
Input/output pairs of F
—> Solves oracle interrogation for case k=q+1
- We just showed this is hard! (assuming large range)
- No such forger exists ¢/

A Generalization or Oracle Interrogation

What if the oracle F is not uniform?
- Many lattice-based schemes have non-uniform outputs
- Might have auxiliary information about F

L
Beyond MACs

There are many types of crypto we might want in the
guantum setting:

- PRFs
- MACs
- Signatures
- Encryption

For each of these, we show that small modifications to
existing schemes give schemes secure against quantum
Interrogations [zha'12b, BZ'13a, BZ'13b]

Conclusion

Develop the Rank Method, a new quantum impossibility
technique

Use Rank Method to exactly characterize success
probability for quantum oracle interrogation of random
oracles

- Also give algorithm that exactly achieves this probability

Use results to build crypto secure against guantum gueries

- No need for physical protection against quantum
Interrogation

