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Quantum Query Complexity 
How many (quantum) queries are required to solve a given 
oracle task 
 
Ex: Pre-image search 
 
 
 
 
 
 
 
[Gro’96,BBBV’97]: Θ(N1/2) queries required 

F:[M]à[N]



y∈[M]



x = Σαx|x⟩



y

 = Σαx|F(x)⟩



x s.t. F(x)=y





Quantum Query Complexity Results 
General form: “Θ(f(M,N)) quantum queries required to solve 
with success probability 2/3” 
• O(f(M,N)): “upper bound”, a.k.a algorithm 
• Ω(f(M,N)): “lower bound” 
 
Notes: 

• Generally worst case 

• Asymptotic in # of queries:  
•  “exactly f(M,N) queries required…” very unusual 

• Almost always allow for some errors 

•  2/3 sort of arbitrary, as long as constant 



Lower Bounds for Cryptographers 

Quantum Lower Bounds 
 
Worst case 
 
 
Rule out algorithms with high 
success probability (say 2/3) 
 
 
Asymptotic in # of queries 

What Cryptographers Want 
 
Average case 
•  E.g. random function F, output y


 
Even success probability 1/log N is 
devastating 
 
 
Asymptotic in success probability OK 
•  Sometimes # of queries is exact 

Often consider different settings 
 



Quantum Query Solvability 
Ideal format of results for crypto 
 
General form: “Given q quantum queries, max success 
probability is Θ(f(q,M,N))” 
 
Notes: 

• Asymptotic in success prob, exact in # of queries 

• Makes sense even for extremely small probabilities 



Case Study 1: Pre-Image Search 
Quantum Query Complexity: Θ(N1/2) [Gro’96,BBBV’97] 
 

What is the quantum query solvability? 

A.  Θ(q/N1/2)


B.  Θ(q2/N1/2)


C.  Θ(q2/N)


D.  Θ(q2/N2)


E.  Θ(q4/N2)
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Inconsistent with QQC 

Not hard to show 
using hybrid method 
[BBBV’97] 



Case Study 2: Quantum Collision Finding 
 
 
 
 
 
 
 
How many (quantum) queries needed to find collision? 
• Relation to other problems (e.g. element distinctness, 

graph isomorphism) 
•  “Collision resistant” functions central to crypto 

•  Often model such functions as random functions 
•  For crypto, almost always want N << M



• Query complexity/solvability guides parameter settings 

F:[M]à[N]


x = Σαx|x⟩



y

 = Σαx|F(x)⟩



x1≠x2 s.t. F(x1)=F(x2)





Case Study 2: Quantum Collision Finding 

Quantum Query Complexity: Θ(N1/3) [BHT’97,A’01,Shi’01,Zha’15] 
 

What is the quantum query solvability? 
 

A.  Θ(q/N1/3)


B.  Θ(q2/N2/3)


C.  Θ(q2/N)


D.  Θ(q3/N)


E.  Θ(q6/N2)
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Who Cares 
So what if QQS of collision finding was Θ(q/N1/3) instead of 
Θ(q3/N)? 
 
•  Interesting natural question 

• Affects concrete parameters used for crypto hash functions 
•  Adversary can make, say, 280 queries 
•  Considered broken if collision can be found with prob >2-80


•  Θ(q3/N): N≥2320 (need 320-bit hashes) 
•  Θ(q/N1/3): N≥2480 (need 480-bit hashes) 

• Can be useful intermediate step for QQC results! 



The QQC of Collision Finding 
Initial results ([Aar’01,Shi’01,HH’04) prove lower bounds for an 
easier problem: 
 
 

 F:[M]à[N]


x = Σαx|x⟩



y

 = Σαx|F(x)⟩



b 

Quantum Collision Detection 

b=1: F has “many” collisions 
b=0: F injective 



Quantum Collision Detection 

Proof: Injective functions have no collisions  
 ⇒ any collision finding is also a detector 

 
Notes: 
• When N<M, collisions guaranteed to exist ⇒ detection is easy! 
• Worst case: results only apply to r-to-1 functions 
 

Thm ([Aar’01,Shi’01,HH’04]): Ω(N1/3) lower bound for worst 
case collision detection problem when N≥M



Cor: Ω(N1/3) lower bound for worst case collision 
finding problem when N≥M





Average Case Quantum Collision Detection 

F:[M]à[N]


x = Σαx|x⟩



y

 = Σαx|F(x)⟩



b 

Average Case Quantum Collision Detection 

b=1: F ß Func([M],[N])


b=0: F ß InjFunc([M],[N])





Step 1: Extend to Average Case 

Uses adversary method + worst-case collision lower bound 

Thm ([Yue’14]): Ω(N1/5) lower bound for average case 
quantum collision detection problem



Thm ([Zha’15]): Ω(N1/3) lower bound for average case 
quantum collision detection problem



Uses “polynomial-like” method from [Zha’12] 



Step 2: Extend to Quantum Query Solvability 

Thm ([Zha’15]): O(q3/N) bound on success probability 
for average case quantum collision detection problem



Actually show something stronger: 

Cor 1: O(q3/N) bound on success probability  
for average case quantum collision finding  

problem when N≥M





Step 3: Extend QQS to Arbitrary N,M



Cor 1: O(q3/N) bound on success probability  
for average case quantum collision finding  

problem when N≥M



Cor 2: O(q3/N) bound on success probability  
for average case quantum collision finding  

problem for arbitrary N,M





Proof Idea 

F:[M]à[N]


x = Σαx|x⟩



y

 = Σαx|F(x)⟩



x1≠x2 s.t. F(x1)=F(x2) with prob p



F’:[M]à[NK]



x1≠x2 s.t. F’(x1)=F’(x2) with prob p’



x = Σαx|x⟩



y’

= Σαx|F’(x)⟩





Proof 
x = Σαx|x⟩



y

 = Σαx|F(x)⟩



x1≠x2 s.t. F(x1)=F(x2) with prob p



F’:[M]à[NK]



x1≠x2 s.t. F’(x1)=F’(x2) with prob p/K



F(x)=F’(x) mod N



xy’



y

 y’

=     mod N





Proof 

Choose K so that N’ = NK ≥ M




⇒   p/K = O(q3/(NK)) 




⇒   p = O(q3/N) 







Success prob p  
on F:[M]à[N]



Success prob p/K  
on F’:[M]à[N’ = NK]



✓ 



Proof Overview 
Thm ([Zha’15]): O(q3/N) bound on success probability for 

average case quantum collision detection problem



Cor 1: O(q3/N) bound on success probability for average case 
quantum collision finding problem when N≥M



Cor 2: O(q3/N) bound on success probability for average case 
quantum collision finding problem for arbitrary N,M



Cor 3: Ω(N1/3) lower bound for average case quantum collision 
finding problem for arbitrary N,M





Effect of Different Solvabilities 
Suppose QQS was O(q/N1/3)


 

Choose K so that N’ = NK ≥ M




⇒   p/K = O(q/(NK)1/3) 




⇒   p = O(qK2/3/N1/3) = O(q M2/3/N)



Success prob p  
on F:[M]à[N]



Success prob p/K  
on F’:[M]à[N’ = NK]



Quantum query complexity is Ω(N/M2/3)


•  Meaningless when N<M2/3





Case Study 3: Quantum Oracle Interrogation 

Comes up in quantum resistant MAC/Signature analysis 
•  N exponential 
•  Want (extremely) low success probability even for q=k-1


•  Success prob 1 for q=k ⇒ Asymptotic query count meaningless 

[vD’98]: Query complexity < 0.501k for N=2






F:[M]à[N]


x = Σαx|x⟩



y

 = Σαx|F(x)⟩



Distinct (x1,F(x1)),(x2,F(x2)),…,(xk,F(xk)) 

F ß Func([M],[N])





Case Study 3: Quantum Oracle Interrogation 

How does [vD’98] generalize to arbitrary N? 
 
Open up analysis: 
• Success probability 

• Generalize algorithm to arbitrary N: 

• Small constant N:  q = (1-1/N+ε)k  ⇒  prob 1-2-O(k)  
•  E.g. N=4 (2 bit outputs), need q=0.751k queries to output k points 

• Exponential N: even when q=k-1,  prob is < (q+1)/N


•  But is this attack optimal? 

∑( )

k


r

r=0



q



Ck,q,N := ∑( )(N-1)r

k


r

r=0



q





Matching Lower Bound? 
Existing methods (e.g. adversary, polynomial) don’t cut it as is 
•  Theorem statements asymptotic in query number 
• Other difficulties in using 

[BZ’13]: developed new method – the Rank method 
• Relates success prob after q queries to prob before any query 
• Built from the start to give quantum query solvability results 

•  [vD’98] and generalization are exactly optimal! 

Thm ([BZ’15]): Ck,q,N is the best possible success probability for 
quantum oracle interrogation





Takeaways 
QQS useful quantity to study 
• Natural 
• Reveals important info missed using QQC alone 
• Good for cryptographers 
• Meaningful in settings where QQC loses meaning 
• Can help for proving QQC results 
• Better understanding of power of a quantum query? 

•  Extra q factor? 

? 


