Quantum Query Solvability

Mark Zhandry – Stanford, MIT

Quantum Query Complexity

How many (quantum) queries are required to solve a given oracle task

[Gro'96,BBBV'97]: Θ(N^{1/2}) queries required

Quantum Query Complexity Results

General form: " $\Theta(f(M,N))$ quantum queries required to solve with success probability 2/3"

- O(f(M,N)): "upper bound", a.k.a algorithm
- Ω(f(M,N)): "lower bound"

Notes:

- Generally worst case
- Asymptotic in # of queries:
 - "exactly f(M,N) queries required..." very unusual
- Almost always allow for some errors
- 2/3 sort of arbitrary, as long as constant

Lower Bounds for Cryptographers

Quantum Lower Bounds	What Cryptographers Want
Worst case	Average caseE.g. random function F, output y
Rule out algorithms with high success probability (say 2/3)	Even success probability 1/log N is devastating
Asymptotic in # of queries	Asymptotic in success probability OK Sometimes # of queries is exact

Often consider different settings

Quantum Query Solvability

Ideal format of results for crypto

General form: "Given q quantum queries, max success probability is $\Theta(f(q,M,N))$ "

Notes:

- Asymptotic in success prob, exact in # of queries
- Makes sense even for extremely small probabilities

Case Study 1: Pre-Image Search

Quantum Query Complexity: Θ(N^{1/2}) [Gro'96,BBBV'97]

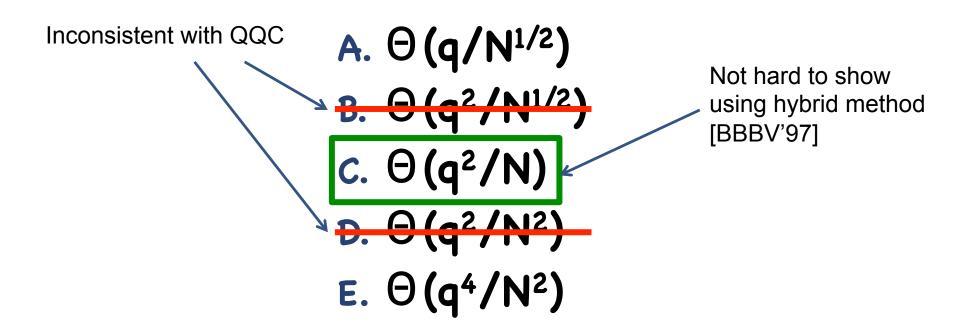
What is the quantum query solvability?

A. $\Theta(q/N^{1/2})$ B. $\Theta(q^2/N^{1/2})$ C. $\Theta(q^2/N)$ D. $\Theta(q^2/N^2)$ E. $\Theta(q^4/N^2)$

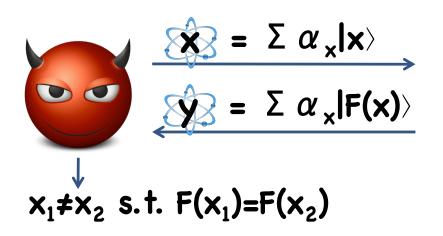
Case Study 1: Pre-Image Search

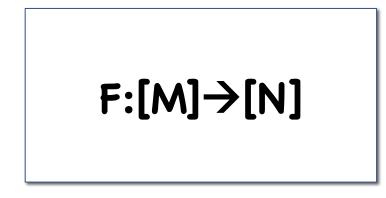
Quantum Query Complexity: Θ(N^{1/2}) [Gro'96,BBBV'97]

What is the quantum query solvability?



Case Study 2: Quantum Collision Finding





How many (quantum) queries needed to find collision?

- Relation to other problems (e.g. element distinctness, graph isomorphism)
- "Collision resistant" functions central to crypto
 - Often model such functions as random functions
 - For crypto, almost always want N << M
- Query complexity/solvability guides parameter settings

Case Study 2: Quantum Collision Finding

Quantum Query Complexity: Θ(N^{1/3}) [BHT'97,A'01,Shi'01,Zha'15]

What is the quantum query solvability?

A. $\Theta(q/N^{1/3})$ B. $\Theta(q^2/N^{2/3})$ C. $\Theta(q^2/N)$ D. $\Theta(q^3/N)$ E. $\Theta(q^6/N^2)$

Case Study 2: Quantum Collision Finding

Quantum Query Complexity: Θ(N^{1/3}) [BHT'97,A'01,Shi'01,Zha'15]

What is the quantum query solvability?

Inconsistent with QQC A. $\Theta(q/N^{1/3})$ B. $\Theta(q^2/N^{2/3})$ C. $\Theta(q^2/N)$ D. $\Theta(q^3/N)$ E. $\Theta(q^6/N^2)$

Who Cares

So what if QQS of collision finding was $\Theta(q/N^{1/3})$ instead of $\Theta(q^3/N)$?

Interesting natural question

Affects concrete parameters used for crypto hash functions

- Adversary can make, say, **2**⁸⁰ queries
- Considered broken if collision can be found with prob >2⁻⁸⁰
- Θ(q³/N): N≥2³²⁰ (need 320-bit hashes)
- Θ(q/N^{1/3}): N≥2⁴⁸⁰ (need **480**-bit hashes)
- Can be useful intermediate step for QQC results!

The QQC of Collision Finding

Initial results ([Aar'01,Shi'01,HH'04) prove lower bounds for an **easier** problem:

b=1: F has "many" collisions**b=0:** F injective

$$interpretation = \sum_{k=1}^{\infty} \alpha_{k} | \mathbf{x} \rangle$$

$$interpretation = \sum_{k=1}^{\infty} \alpha_{k} | \mathbf{F}(\mathbf{x}) \rangle$$

$$F:[M] \rightarrow [N]$$

Quantum Collision Detection

Quantum Collision Detection

Thm ([Aar'01,Shi'01,HH'04]): **Ω(N^{1/3})** lower bound for worst case collision detection problem when N≥M

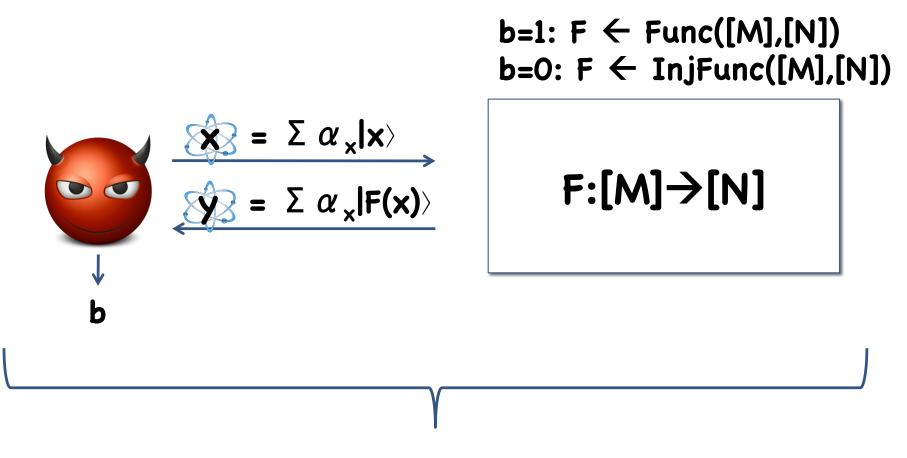
Cor: **Ω(N^{1/3})** lower bound for worst case collision *finding* problem when **N≥M**

Proof: Injective functions have no collisions ⇒ any collision finding is also a detector

Notes:

- When N < M, collisions guaranteed to exist \Rightarrow detection is easy!
- Worst case: results only apply to r-to-1 functions

Average Case Quantum Collision Detection



Average Case Quantum Collision Detection

Step 1: Extend to Average Case

Thm ([Yue'14]): **Ω(N^{1/5})** lower bound for average case quantum collision detection problem

Uses adversary method + worst-case collision lower bound

Thm ([Zha'15]): **Ω(N^{1/3})** lower bound for average case quantum collision detection problem

Uses "polynomial-like" method from [Zha'12]

Step 2: Extend to Quantum Query Solvability

Actually show something stronger:

Thm ([Zha'15]): **O(q³/N)** bound on success probability for average case quantum collision detection problem

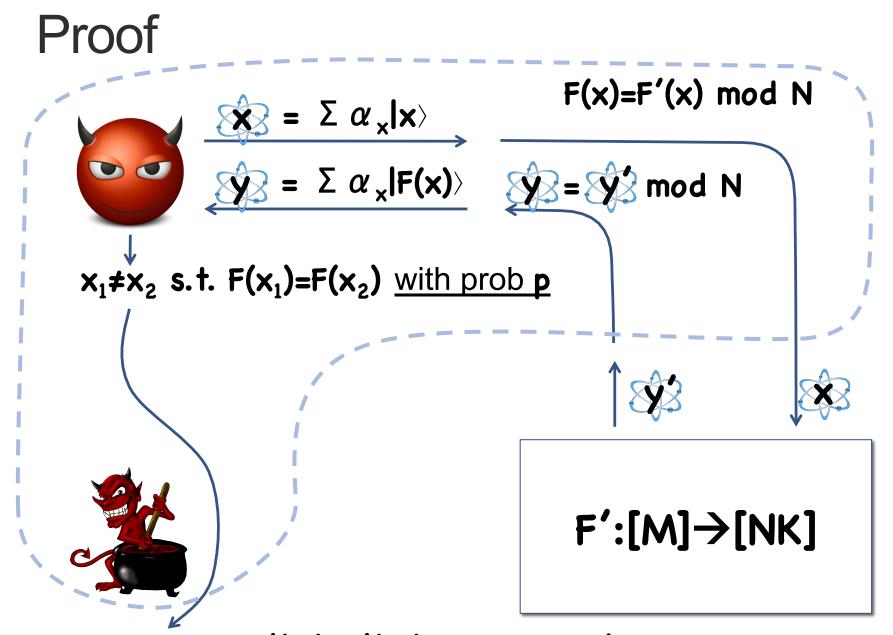
Cor 1: O(q³/N) bound on success probability for average case quantum collision *finding* problem when N≥M

Step 3: Extend QQS to Arbitrary N,M

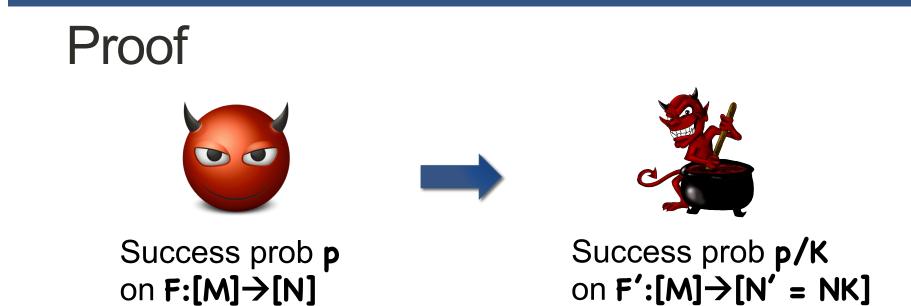
Cor 1: O(q³/N) bound on success probability for average case quantum collision *finding* problem when N≥M

Cor 2: O(q³/N) bound on success probability for average case quantum collision *finding* problem for arbitrary N,M

Proof Idea $\sum_{\mathbf{x}} = \Sigma \alpha_{\mathbf{x}} |\mathbf{x}\rangle$ $= \Sigma \alpha_{\mathbf{x}} |\mathbf{F}(\mathbf{x})\rangle$ 00 F:[M]→[N] $x_1 \neq x_2$ s.t. $F(x_1) = F(x_2)$ with prob p $\sum_{\mathbf{x}} = \Sigma \alpha_{\mathbf{x}} |\mathbf{x}\rangle$ $\sum_{\mathbf{x}} = \Sigma \alpha_{\mathbf{x}} |\mathbf{F}'(\mathbf{x})\rangle$ F':[M]→[NK] $\mathbf{x}_1 \neq \mathbf{x}_2$ s.t. $\mathbf{F}'(\mathbf{x}_1) = \mathbf{F}'(\mathbf{x}_2)$ with prob \mathbf{p}'



 $x_1 \neq x_2$ s.t. $F'(x_1) = F'(x_2)$ with prob p/K



Choose K so that $N' = NK \ge M$

$$\Rightarrow p/K = O(q^3/(NK))$$

$$\Rightarrow p = O(q^3/N)$$

Proof Overview

Thm ([Zha'15]): O(q³/N) bound on success probability for average case quantum collision *detection* problem

Cor 1: O(q³/N) bound on success probability for average case quantum collision *finding* problem when N≥M

Cor 2: **O**(**q**³/**N**) bound on success probability for average case quantum collision *finding* problem for *arbitrary* **N**,**M**

Cor 3: **Ω(N^{1/3})** lower bound for average case quantum collision *finding* problem for arbitrary **N**,**M**

Effect of Different Solvabilities

Suppose QQS was O(q/N^{1/3})

Success prob **p** on **F:[M]→[N]**

Success prob p/K on F':[M]→[N' = NK]

Choose **K** so that $N' = NK \ge M$

$$\Rightarrow p/K = O(q/(NK)^{1/3})$$

$$\Rightarrow$$
 p = O(qK^{2/3}/N^{1/3}) = O(q M^{2/3}/N)

Quantum query complexity is $\Omega(N/M^{2/3})$

Meaningless when N<M^{2/3}

Case Study 3: Quantum Oracle Interrogation

$$interest = \Sigma \alpha_{x} |x\rangle$$

$$interest = \Sigma \alpha_{x} |F(x)\rangle$$

 $F \leftarrow Func([M],[N])$

F:[M]→[N]

Distinct $(x_1,F(x_1)),(x_2,F(x_2)),...,(x_k,F(x_k))$

Comes up in quantum resistant MAC/Signature analysis

- N exponential
- Want (extremely) low success probability even for q=k-1
- Success prob 1 for $q=k \Rightarrow$ Asymptotic query count meaningless

[vD'98]: Query complexity < 0.501k for N=2

Case Study 3: Quantum Oracle Interrogation

How does [vD'98] generalize to arbitrary N?

Open up analysis:

• Success probability $\sum_{r=0}^{k} {k \choose r}$

- Generalize algorithm to arbitrary N: $C_{k,q,N} := \sum_{r=0}^{1} {k \choose r} (N-1)^{r}$
- Small constant N: $q = (1-1/N + \varepsilon)k \Rightarrow \text{prob } 1-2^{-O(k)}$
 - E.g. N=4 (2 bit outputs), need q=0.751k queries to output k points
- Exponential N: even when q=k-1, prob is < (q+1)/N
 - But is this attack optimal?

Matching Lower Bound?

Existing methods (e.g. adversary, polynomial) don't cut it as is

- Theorem statements asymptotic in *query number*
- Other difficulties in using

[BZ'13]: developed new method – the Rank method

- Relates success prob after **q** queries to prob before *any* query
- Built from the start to give quantum query *solvability* results

Thm ([BZ'15]): $C_{k,q,N}$ is the best possible success probability for quantum oracle interrogation

• [vD'98] and generalization are **exactly** optimal!

Takeaways

QQS useful quantity to study

- Natural
- Reveals important info missed using QQC alone
- Good for cryptographers
- Meaningful in settings where QQC loses meaning
- Can help for proving QQC results
- Better understanding of power of a quantum query?
 - Extra **q** factor?

