Verifiable Quantum Advantage without Structure

Takashi Yamakawa (NTT Social Informatics Laboratories) Mark Zhandry (NTT Research & Princeton University) Can **quantum** computers offer a superpolynomial computational **advantage**?

Can such advantage be efficiently **verified**?

Is **structure** needed for quantum advantage?

Current state of complexity theory \Rightarrow no unconditional results

Option 1: Oracle Separations

no structure = random oracle

Option 2: Conditional Separations

Prove advantage under some computational assumption

All existing sources of advantage in NP rely on period-finding All existing structure-less sources of advantage are sampling problems

[Aaronson-Ambanis'09]: under a plausible conjecture $0/1 \leftarrow |A\rangle^{q_{QU}} = RO$ $\approx 0/1 \leftarrow S \stackrel{Poly(q)}{\leftarrow} RO$

S potentially computationally unbounded

Basically, random oracles shouldn't help separating BQP from BPP

This work: verifiable quantum advantage without structure

Results: relative to random oracle with probability 1:

 \exists NP <u>search</u> problem in BQP \ BPP

 \exists OWF, CRHFs, signatures that are classically hard but quantumly easy

Assuming classically hard PKE, \exists PKE that is classically hard but quantumly easy

 \exists publicly verifiable proof of quantumness with minimal rounds

Under the AA conjecture, \exists certifiable randomness with minimal rounds

Can replace RO with SHA256 to obtain conjectured non-relativized versions

Our Construction

High-dimensional, Large-alphabet, Linear Code $\,C\,$

Random Subset of x-coordinates

Determined by querying random oracle

Random Subset of y-coordinates

Repeat for all coordinates

Questions:

- Why classically hard?
- Why quantumly easy?
- What code to use?

Why/when should it be classically hard?

Domain-constrained Linear Equations

[Ajtai'96]: Random linear code + low L₂ norm (SIS)

[Applebaum-Haramaty-Ishai-Kushilevitz-Vaikuntanathan'17] [Yu-Zhang-Weng-Guo-Li'17]: [Brakerski-Lyubashevsky-Vaikuntanathan-Wichs'18]

Random binary linear code + low Hamming weight

These seem likely to be (quantum) hard

Def: Dist(c , $S_1 \times S_2 \times ... \times S_n$) := #{ i : $c_i \notin S_i$ } / n

Def: C is *list recoverable* if $\exists \delta, \varepsilon, \varepsilon'$ such that, if $|S_1|, |S_2|, ..., |S_n| \le 2^{n^{\varepsilon}}$, then $\#\{c \in C : Dist(c, S_1 \times S_2 \times ... \times S_n) \le \delta\} \le 2^{n^{\varepsilon'}}$

Examples:

- Folded Reed-Solomon [Guruswami-Rudra'05]
- Random Linear codes [Rudra-Wootters'17]

Thm: list recoverable \implies classically intractable

Concretely, $Pr[poly(n) \text{ queries give solution}] \le 2^{n^{\epsilon'}} \times 2^{-\delta n}$

[Haitner-Ishai-Omri-Shaltiel'15]: List recovery → parallel hashing Why/when should it be quantumly easy?

"Multiplying" quantum states [Regev'05]

Switch to Fourier Domain: Convolution

1. Construct separately:

$$\left(\sum_{x} \hat{\alpha}_{x} | x \right) \otimes \left(\sum_{y} \hat{\beta}_{y} | y \right) = \sum_{x,y} \hat{\alpha}_{x} \hat{\beta}_{y} | x, y \rangle$$
2. Add "in superposition":

$$\sum_{x,y} \hat{\alpha}_{x} \hat{\beta}_{y} | x, y \rangle \rightarrow \sum_{x,y} \hat{\alpha}_{x} \hat{\beta}_{y} | x, y, x + y \rangle$$
3. Decode $x + y \rightarrow (x, y)$ in reverse:

$$\sum_{x,y} \hat{\alpha}_{x} \hat{\beta}_{y} | x, y, x + y \rangle \rightarrow \sum_{x,y} \hat{\alpha}_{x} \hat{\beta}_{y} | x + y \rangle$$
Objective to the set of the

Applying to our construction

 α_x = indicator for C β_x = indicator for valid coordinates Product = solutions to our problem

What is the decoding problem?

$x + y = (dual codeword) + (random errors in <math>\approx \frac{1}{2}$ coordinates)

Thm: Can decode efficiently **whp** if C^{\perp} is **listdecodable** for $\frac{1}{2}+\epsilon$ fraction of errors

Good news: Dual of Folded RS is another Folded RS, has essentially optimal list-decoding

[Regev'05]: error prob $\ll N^{-1} \implies$ still small after multiplying Our work: error prob $\gg N^{-1} \implies$ delicate analysis needed

Applications

1. NP search problem in BQP \ BPP

$$R^{O}: \{0,1\}^{n} \times \Sigma^{n} \to \{0,1\}$$
$$R^{O}(x,w) := \begin{cases} 1 & \text{if } w \in C \land O(i||w_{i}) = x_{i} \forall i \\ 0 & \text{otherwise} \end{cases}$$

2. Classical/Quantum Separations for Crypto

 $OWF^{O}: C \to \{0, 1\}^{n}$ $OWF^{O}(c) := O(1||c_{1}) || O(2||c_{2}) || \cdots || O(n||c_{n})$

3. Proof of Quantumness

Uniform (oracle-independent) adversaries

Oracle-dependent non-uniform adversaries

4. Certifiable Randomness

Thm: AA conjecture \implies c has min-entropy

Is it practical?

Thanks!