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Quantum Computing Attack 
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Adversary uses quantum computer to speed up attack 

aka Post-quantum Crypto 



This Talk 
Shor’s algorithm for factoring integers 
 
Other quantum attacks on classical crypto 
 
Quantum Crypto 
 
 



Number Theory 
x mod N : remainder of x when divided by N

x = y (mod N) : (x-y) is divisible by N

 
Suppose p,q prime, N=pq.  Let φ(N)=(p-1)(q-1)

Fermat’s Little Theorem: 

For all x relatively prime to N, xφ(N) = 1 (mod N)

 

Efficient (classical) modular operations: 
•  x+y mod N

•  x × y mod N

•  x-1 mod N (as long as x and N are relatively prime)

•  xa mod N




RSA Cryptosystem 
KeyGen: 
• Pick large (>500 bits) random primes p, q

•  Let N = pq

•  Let e be relatively prime to φ(N) (ex: e=3) 
•  Let d = e-1 mod φ(N)


Encrypt m < N: 
• Output c = me mod N


Decrypt c: 
• Output m = cd mod N


public key 

private key 

cd = med = m1+kφ(N) = m (mod N)  



RSA Cryptosystem 
If adversary can factor N, can decrypt 
• Factoring also best known attack 
 
Typical RSA key sizes: 

Size of N (in bits) Classical Security Level Quantum Security Level 

768 270 (broken!) 229 

1024 280 230 

2048 2112 233 

3072 2128 235 

15360 2256 242 

Exponential growth Polynomial growth 



Shor’s Algorithm 



Factoring on a Quantum Computer 
Goal: Given N=pq, find p

 
Alternative Goal: Given N, find non-trivial root of unity x 
 
 
 
Observation: (x-1)(x+1) = 0 (mod N)

• Therefore, p and q are factors of (x-1)(x+1)

• Both cannot be factors of x-1 (same for x+1) 
• GCD(N,x+1) gives p or q

 

x < N is a non-trivial root of unity if: 
•  x2 = 1 (mod N)

•  x ≠ ±1 (mod N)




Factoring on a Quantum Computer 
Goal: Given N, find non-trivial root of unity 
 
Fix a < N, a relatively prime to N.  Let fa(z) = az mod N

 
 
 
 
 
Alternate Goal: Find period of fa for random a


The period of a function f is an integer r where: 
•  f(z+r) = f(z) for all integers z

•  There is no r’<r with f(z+r’)=f(z) for all x




Factoring on a Quantum Computer 
fa(z) = az mod N

 
fa(z + φ(N)) = az+φ(N) = az aφ(N) = az (mod N) = fa(z)

 
Therefore, the period of fa divides φ(N)

 
Let r be the period of fa.  Suppose r is even. 
Let x = fa(r/2) = ar/2 mod N

Then x2 = 1 (mod N) and x ≠ 1 (mod N) 


Fact: with probability at least 3/8 over choice of 
a, r is even and x ≠ -1 (mod N)




Factoring Strategy 
• Pick a random integer a < N

• Check that a is relatively prime to N


•  If not, GCD(a,N) is a factor of N

• Find period r of fa(z) = az mod N

•  If r is odd, abort 
• Compute x = fa(r/2) = ar/2 mod N

•  If x = -1 mod N, abort 
• Otherwise, x is a non-trivial root of 1


 à GCD(x-1,N) is a factor of N

 
Only remaining step: period finding 



Quantum Fourier Transform 
Given modulus n, the Quantum Fourier Transform (QFT) 
maps the state  
 
 
(0 ≤ x < n) to the state  

|xi

QFT|xi = 1p
n

n�1X

y=0

e

2⇡ixy/n|yi

(log n qubits corresponding to binary expansion of x) 



Quantum Fourier Transform 
n=2: 
 
 
 
 

 à Exactly the Hadamard H gate 
 
n=2k: Decompose into k QFTs for n’=2

• Basically implementing FFT as a quantum circuit 
 
Similar idea for smooth numbers (all factors small) 

QFT|0i = 1p
2
(|0i+ |1i)

QFT|1i = 1p
2
(|0i � |1i)



Period Finding on a Quantum Computer 
Let f be a periodic function with (unknown) period r

Suppose we know multiple R of r

Assume f(0) ≠ f(1) ≠ f(2) ... ≠ f(r-1)  
 
Step 0: Initialize two registers to the state: 
  

| 0i =
1p
R
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Period Finding on a Quantum Computer 
Step 1: Apply f to the registers: 
 
 
 
 
 
Since f(z+r) = f(z): 
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| 1i =
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R

r�1X
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w=0

|z + rw, f(z)i



Period Finding on a Quantum Computer 
Step 2: Measure second register 
• Output of measurement is f(z) for a random z

• State collapses to be consistent with measurement 

 
Ignore second register: 
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Period Finding on a Quantum Computer 
Step 3: Apply QFT with modulus R (ignore efficiency for now) 
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Period Finding on a Quantum Computer 
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Period Finding on a Quantum Computer 
Putting it together: 
 
 
 
 
Measure final register 
   à Obtain (R/r)y for a uniform y=0,...,r-1

 
Repeat multiple times, take GCD of all results to obtain R/r

  à Obtain r
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Caveats for Integer Factorization 
We don’t know any R

• φ(N) is a multiple of the period 
• But knowing φ(N) is equivalent to knowing factors of N

 
QFT only efficient for “smooth” moduli, φ(N) is probably not 
smooth 

Careful analysis shows:  
 If R>>r, can round R to a smooth number  
 (ex: powers of 2) and everything works out 



Impact Of Quantum Computers 
Much public-key crypto is broken: 
• RSA-based  
• Discrete Log-based 

•  Diffie-Hellman key exchange

•  Elliptic Curve crypto 
•  Shor’s algorithm can be adapted for Dlog 

 
Must use other crypto: 
• Ex: Lattice crypto 
 
Private-key crypto seems relatively safe 

•  Must increase key sizes to cope with Grover’s algorithm 
 
 
 



Quantum Channel Attacks 



Classical Chosen Ciphertext Attack (CCA) 
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Post-Quantum Chosen Ciphertext Attack 
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Quantum Chosen Ciphertext Attack (qCCA) 
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Our Results on Quantum CCA Security 
No known attacks on post-quantum schemes 
 
Contrived post-quantum scheme susceptible to quantum 
CCA attack 
 
Example of scheme resistant to quantum CCA attack 
• Basically, use scheme that is secure, even if adversary 

learns decryptions on all ciphertexts other than c




Discussion 
Are these quantum channel attacks reasonable? 

Objection: Bob can always measure before decrypting 
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Discussion 
Are these quantum channel attacks reasonable? 

Answer: measuring entangles with environment 
• Adversary may control environment – attack restored! 
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Digital Signatures 
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Classical Chosen Message Attack (CMA) 
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Quantum Chosen Message Attack 
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Our Results on Quantum CMA Security 
Again, no attacks on existing post-quantum schemes 
 
Contrived post-quantum scheme susceptible to quantum 
CMA attack 
 
Two simple conversions from post-quantum signatures 
• Hash before signing 

•  Likely to be used in practice anyway for efficiency 
•  Heuristic security guarantees against qCMA attacks 

• Use special hash function 
•  Less efficient 
•  Provable security guarantees 

 



Other Results 
Pseudorandom Functions (funcs that look random): 
• Simple insecure example 
• Common post-quantum constructions are secure 

Message Authentication Codes (sigs with private verification): 
• One existing post-quantum construction is insecure 
• Other common constructions secure 



Quantum Key Distribution (QKD) 



Quantum Key Distribution 
In classical crypto, key exchange requires computational 
assumptions 
• At a minimum, P≠NP 
 
With quantum mechanics, no longer true… 



Quantum Key Distrubution 
Two possible ways to encode bits in photon polarization: 
• Rectilinear (   ): 

• Diagonal (   ):   

0 �! |↑i
1 �! |→i

0 �! |ñi
1 �! |ói

⇥

+



Quantum Key Distribution 
Measurement: 
• Measure in     basis: 

 
• Measure in     basis:   

+
|↑i �! 0

|→i �! 1

|ñi �! 0 or 1 with probability 1/2

|ói �! 0 or 1 with probability 1/2

⇥
|↑i �! 0 or 1 with probability 1/2

|→i �! 0 or 1 with probability 1/2

|ñi �! 0

|ói �! 1



Quantum Key Distribution 
Needed properties: 
•  If measure in wrong basis, random output 
• Cannot tell which basis used to build state 
• Once measured, original state destroyed 



Quantum Key Distribution 

Random bit: 
Random basis: 
Encode bit in basis: 

b
c

| i | i

Random basis: 
Measure in basis:  

c0
b0

If           , then        
Otherwise,        uncorrelated 
c = c0

Phase 1: 

b = b0

b, b0

Repeat many times 



Quantum Key Distribution 

Random bit: 
Random basis: 

b
c

Random basis: 
Bit:  

c0
b0

Phase 2: 

c0
c

If           , throw away            c 6= c0



Quantum Key Distribution 
What happens if someone evesdrops? 

Random bit: 
Random basis: 
Encode bit in basis: 

b
c

| i

| i

Random basis: 
Measure in basis:  

c0
b0

Evesdropper cannot tell basis.  What if guesses incorrectly? 
   à Introduce errors, even if  c = c0

| 0i



Example 

Random bit: 
Random basis: 
Encode bit in basis: 

Random basis: 
Measure in basis:  

1
+

| i

| i

Random basis: 
Measure in basis: 
Resulting state:   

⇥
0

|ñi

|ñi

+
0

Inconsistent! 



Quantum Key Distribution 
Phase 3: 

Random fraction of bits 

If too many errors, start over on new channel 



More Details 
Errors may occur even if no eavesdropping 
•  Impossible to tell if errors result from bad channel or an 

eavesdropper 
 
Information reconciliation: 
• Make sure Alice and Bob have same key 
• Eavesdropper will have some partial information about key 
 
Privacy Amplification: 
• Reduce information to negligible 
• Basically apply universal hash to key 



Conclusion 
Quantum computer will have a large impact on crypto 
• Additional computational power à many systems broken 
• Quantum channel attacks 
• Quantum protocols à security without assumptions 
 
A lot of work remains: 
• Cryptanalysis of existing post-quantum schemes 
• Reduce key sizes 
•  Increase distance for QKD 


