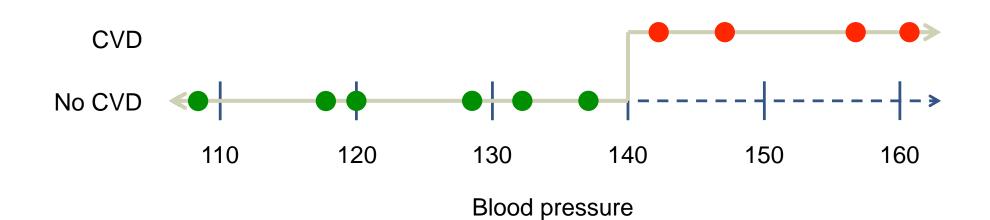
Order-Revealing Encryption and the Hardness of Private Learning

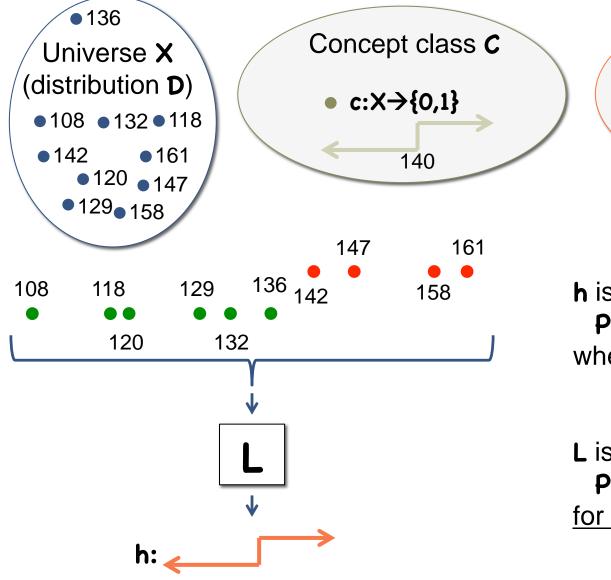
Mark Bun – Harvard University Mark Zhandry – Stanford University

Example: Learning from Patient Data



Goals:Learn thresholdMaintain privacy

(Distribution free) PAC Learning [Val'84]



• h:X→{0,1}

Hypothesis class **H**

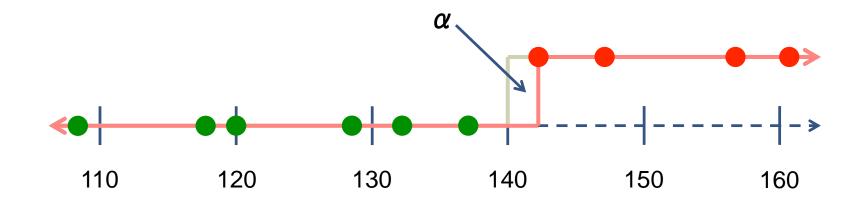
h is α -approx. correct if: **Pr[h(x)=c(x)] \geq 1-\alpha** where **x** \leftarrow **D**

L is (α, β) -accurate if: Pr [h is $\alpha - AC$] $\geq 1 - \beta$ for all D

⁽H=C: proper learning)

How do we learn threshold?

Answer: threshold at smallest positive sample



Fact: O($\log(1/\beta)/\alpha$) samples \Rightarrow (α , β)-accurate

Learnability in General

Fact: Any C can be properly learned using O(log |C|) samples

"Occam's Razor": Pick c consistent with all samples

- Problem: running time O(ICI), exponential in description size
- Learner not efficient

Only few efficient learning algorithms

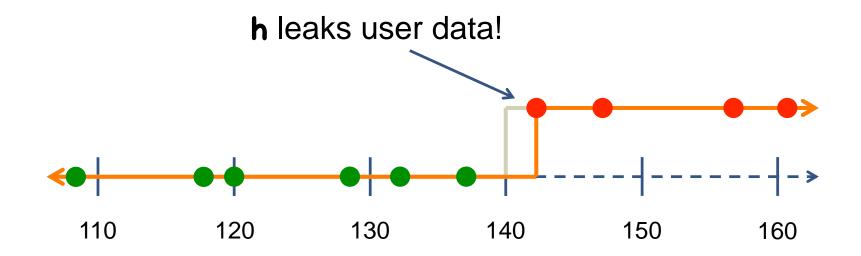
• Statistical query learning [Kea'98], Gaussian elimination

There are problems that cannot be learned efficiently*

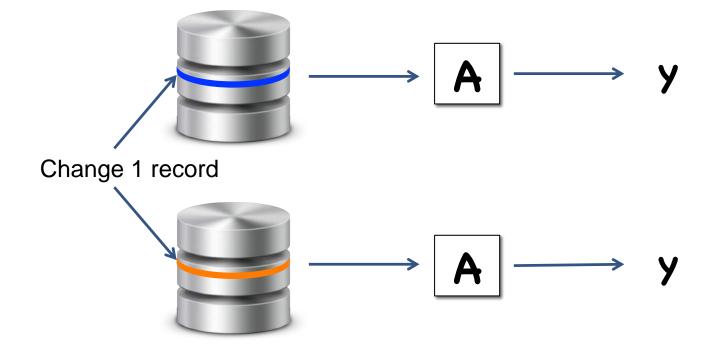
• e.g. PRFs

*under reasonable assumptions

Privacy Problem



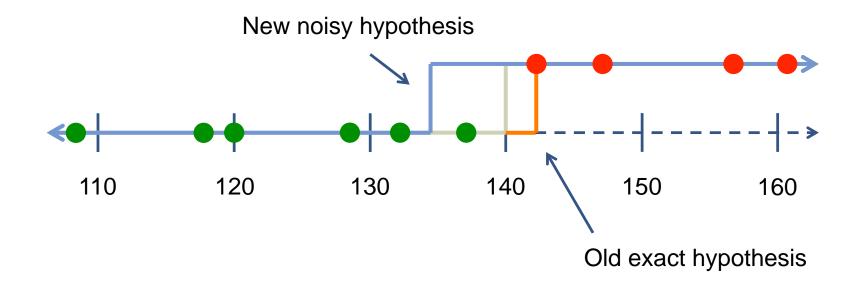
Differential Privacy [DMNS'06]



Differential Privacy \Rightarrow output distributions are "close"

A Differentially Private Threshold Learner

Solution: add noise!



Learning and Differential Privacy

Thm ([KLNRS'11]): Any C can be privately learned using O(log |C|) samples

"Private Occam's Razor":

- Sample random **c** weighted according to accuracy
- Again, learner not efficient

Statistical query, Gaussian elimination can be privately simulated

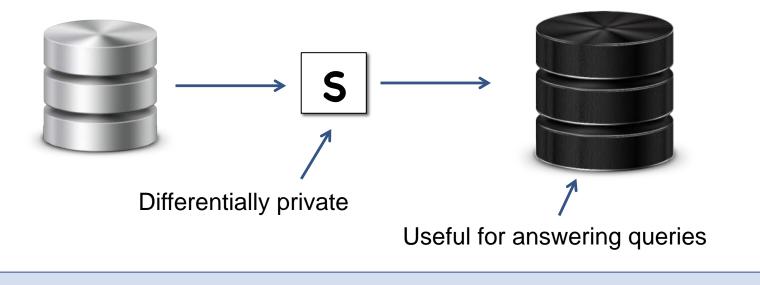
[BDMN'05], [KLNRS'11]

Question ([KLNRS'11]): Are all efficiently learnable concepts efficiently privately learnable?

Answer: No

Crypto and Differential Privacy

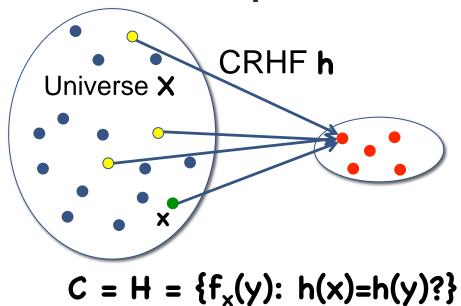
Example: private data release



Thm ([DNRRV'09], informal): Traitor tracing ⇒ impossibility for private data release

[GGHRSW'13, BZ'14]: Traitor tracing form iO

Partial Result: Proper Learning [Nis'14]

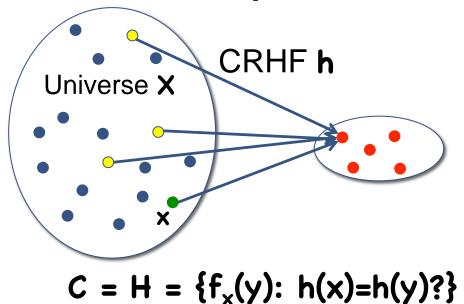


Any positive sample **x** is a representation of $\mathbf{f}_{\mathbf{x}}$ $\Rightarrow \mathbf{C}$ is efficiently properly PAC learnable

Given some positive samples, infeasible to find new rep. \Rightarrow Cannot privately PAC learn a representation **x**

Can be based on any OWF

Partial Result: Proper Learning [Nis'14]

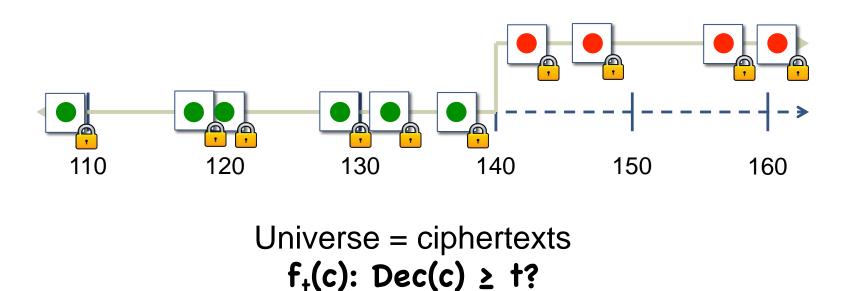


Limitation: **x** is not the only representation of $\mathbf{f}_{\mathbf{x}}$ as a function

- g_z(y): h(y)=z? where z=h(x)
- Can privately properly learn representation z
- Counterexample only applies to "representation learning"

Question: How to extend this to general (non-proper) learning?

Idea: Encrypted Threshold

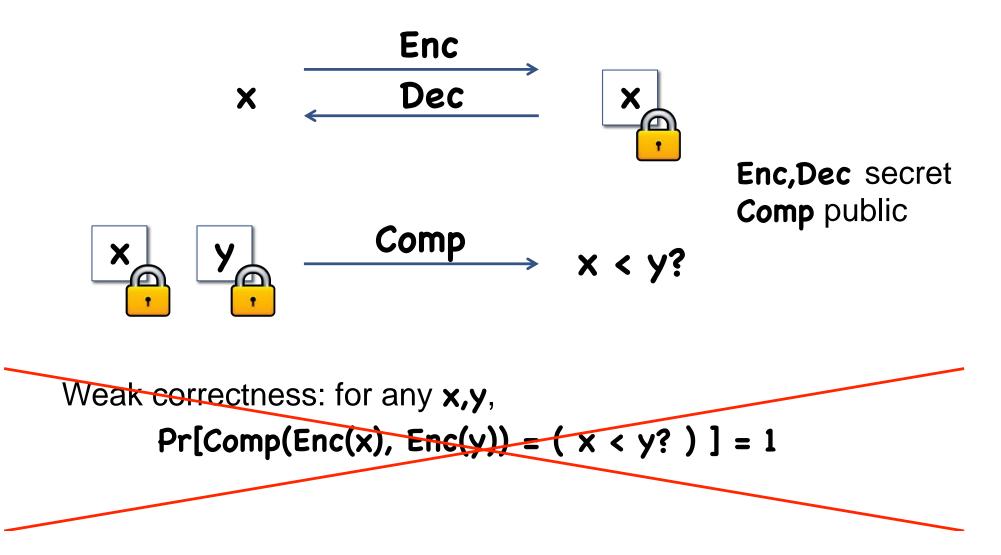


Question: How to learn?

Observation: Threshold learner only needs to know order of data

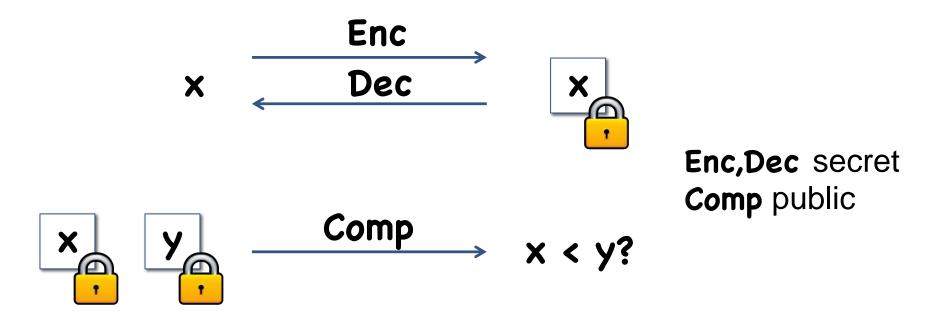
Order Revealing Encryption [BCLO'09, PR'12]

Encryption where order is revealed, but nothing else



Order Revealing Encryption [BCLO'09, PR'12]

Encryption where order is revealed, but nothing else

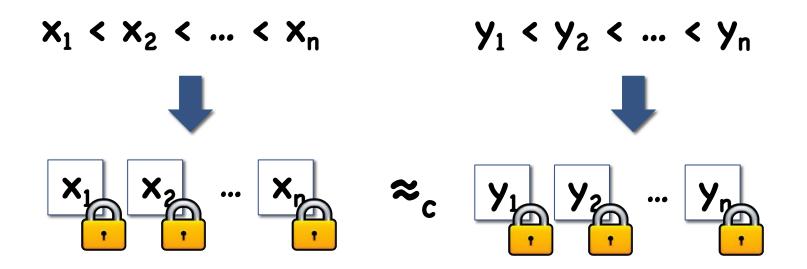


<u>Strong</u> correctness: for any c_0 , c_1 ,

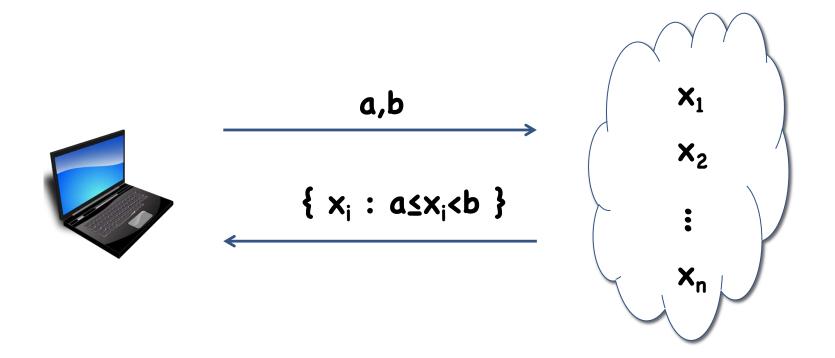
 $Pr[Comp(c_0, c_1) = (Dec(c_0) < Dec(c_1)?)] = 1$

ORE Security

"Best possible" security: only order revealed

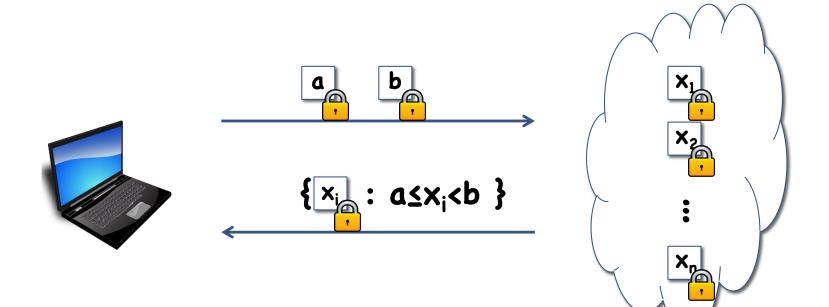


ORE for Encrypted Range Queries



Goal: Hide database and query from cloud

ORE for Encrypted Range Queries



ORE vs OPE

OPE = Order *preserving* encryption [BCLO'09]

- Ciphertext space is totally ordered
- Decryption is monotonic (so $Comp(c_0,c_1) = (c_0 < c_1?)$)
- OPE cannot obtain "best possible" security
- Much weaker notion: indist. from rand. monotonic function
- Can build from one-way functions

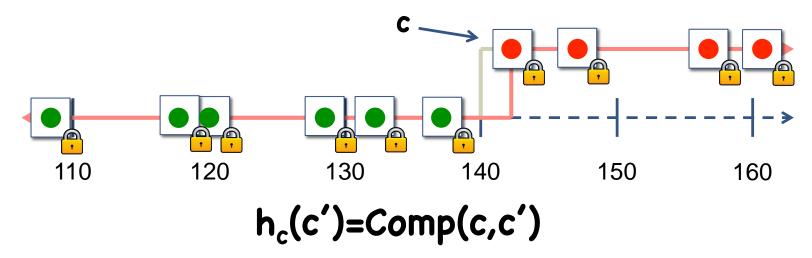
ORE:

- Much weaker correctness requirement
- Much stronger security requirement
- Will discuss constructions shortly

Learning Encrypted Threshold

Still threshold at smallest positive (encrypted) sample

• Hypothesis uses ctxt comp. instead of ptxt comp.



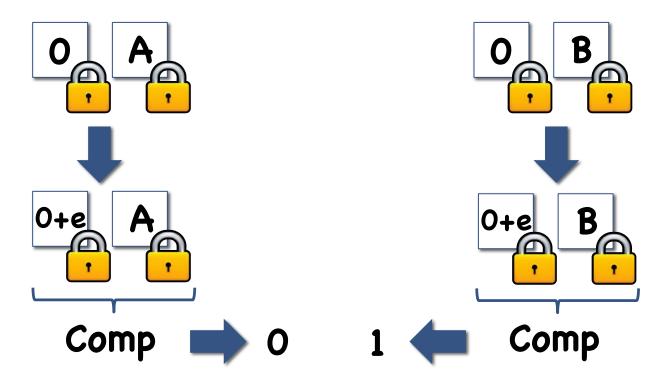
Thm: Encrypted threshold is efficiently PAC learnable

What about private learning?

Private Learnability of Encrypted Threshold

Intuition: ORE is non-malleable, so can't add noise

Proof by contradiction: suppose possible to add noise e∈[A,B)

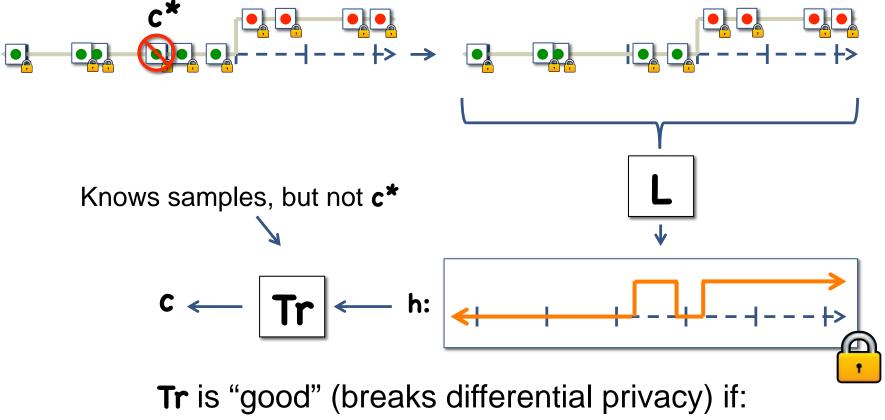


Question: how to formally prove private learning is impossible?

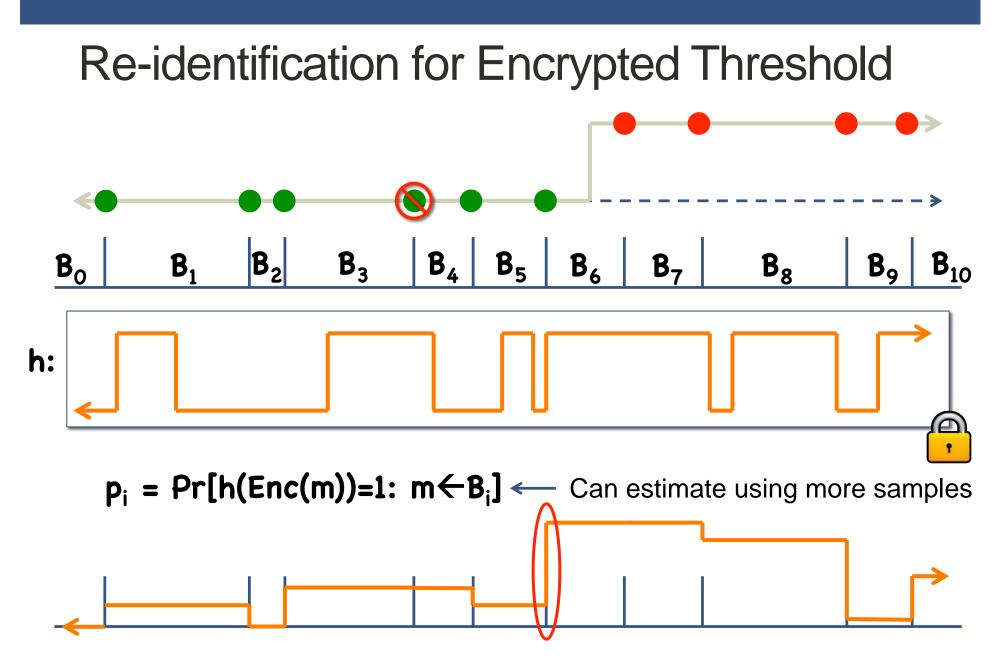
Difficulty: no restrictions on form of hypothesis

Re-identification for Encrypted Threshold

Goal: "Trace" learner, identify one of the samples



- Trace to some **c**
- Approx. correct h ⇒ c≠c*



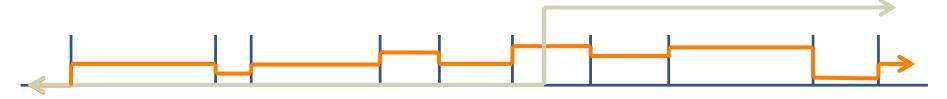
Output point with largest positive jump

Analysis

Tr always outputs some c

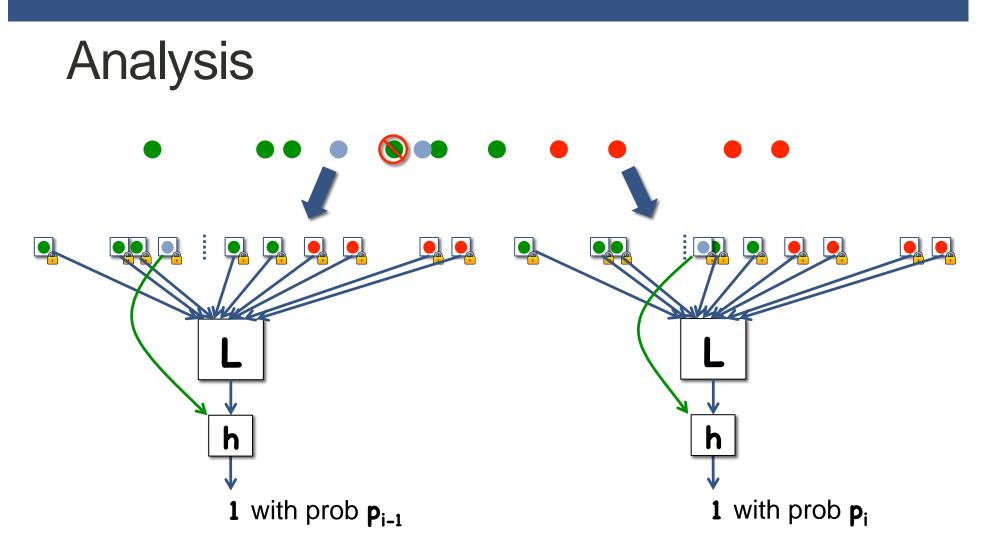
Claim: **h** is approx. correct \Rightarrow some "large" positive gap

• No "large" positive gap \Rightarrow **h** poor approximation



Goal: show that large gap at **c*** breaks security

Call h "bad" if large gap at c*



"Bad" $\mathbf{h} \Rightarrow$ positive distinguishing advantage

- If **h** always "bad", overall positive advantage
- **Problem:** "good" **h** can have $\mathbf{p}_{i-1} > \mathbf{p}_i \Rightarrow$ overall advantage could be **0**
- Solution: different challenge set/analysis

Result

Thm: Assuming ORE (with strong correctness), there are efficiently PAC learnable concept classes that are not efficiently differentially privately learnable

How reasonable an assumption is ORE?

Constructions of ORE

In bounded **#(ctxt)** setting, can build from OWF:

- [GVW'12] bounded collusion FE from OWF
- [BS'15] Add function privacy
- ORE.ctxt = FE.ctxt + FE.sk

Unfortunately, we need unbounded #(ctxt)

- #(samples)=#(ctxt) should be independent of C
- For bounded #(ctxt), C depends on #(ctxt)

Constructions of Unbounded ORE

All known constructions use multilinear maps

- Through obfuscation [GGHRSW'13]
- Through FE [GGHZ'14] + [BS'15]
- Through multi-input FE [BLRSZZ'15]

Issue: All existing schemes have weak correctness

- Use current noisy maps [GGH'12]
- Come ciphertexts (those with large noise) cause comparison errors

Thm: ORE w/ weak correctness + Perfectly sound NIZKs ⇒ ORE w/ strong correctness

Constructions of Unbounded ORE

All known constructions use multilinear maps

- Through obfuscation [GGHRSW'13]
- Through FE [GGHZ'14] + [BS'15]
- Through multi-input FE [BLRSZZ'15]

Issue: Multilinear maps have unproven security

- [GGH'12,GGH'14]: "source group" assumptions broken
- [CLT'13]: Completely broken [CHRLS'15]
- [CLT'15]: Tweak to [CLT'13]. Is it really secure?

Constructions of Unbounded ORE

All known constructions use multilinear maps

- Through obfuscation [GGHRSW'13]
- Through FE [GGHZ'14] + [BS'15]
- Through multi-input FE [BLRSZZ'15]

Issue: Multilinear maps are very inefficient

- [BLRSZZ'15]: Best ORE construction
 - 16-bit plaintext → [ctxt] ≈ 23GB

Using [ACLL'14] with $\lambda = 80$

64-bit plaintext → |ctxt| ≈ 1.4TB

Removing Mmaps from ORE

Conjecture: OWF insufficient for (unbounded) ORE

Conjecture: Bilinear maps insufficient for ORE

Conjecture: Constant arity mmaps insufficient for ORE

Hope: LWE <u>sufficient</u> for ORE?

Thanks!