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Example: Learning from Patient Data
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Goals:
Learn threshold Maintain privacy
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(Distribution free) PAC Learning arss
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How do we learn threshold?

Answer: threshold at smallest positive sample
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[ Fact: O( log(1/B)/ a ) samples = (a, B)-accurate J




I
Learnability in General

[ Fact: Any C can be properly learned using O( log IC| ) samples}

“*Occam’s Razor”: Pick ¢ consistent with all samples
- Problem: running time O(ICl), exponential in description size
- Learner not efficient

Only few efficient learning algorithms
- Statistical query learning [Kea’98], Gaussian elimination

There are problems that cannot be learned efficiently*
- e.g. PRFs

*under reasonable assumptions
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Privacy Problem

h leaks user data!
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Differential Privacy pwsos
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Differential Privacy = output distributions are “close”
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A Differentially Private Threshold Learner

Solution: add noise!

New noisy hypothesis
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Learning and Differential Privacy

Thm ([KLNRS’11] ): Any C can be privately learned
using O(log ICl) samples

“Private Occam’s Razor”:
« Sample random ¢ weighted according to accuracy
e Again, learner not efficient

Statistical query, Gaussian elimination can be privately simulated
« [BDMN'05], [KLNRS'11]

Question ( [KLNRS’11] ): Are all efficiently learnable
concepts efficiently privately learnable?

Answer: No
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Crypto and Differential Privacy

Example: private data release

Differentially private
Useful for answering queries

Thm ([DNRRV’09], informal ): Traitor tracing =
Impossiblility for private data release

[GGHRSW’13, BZ'14]: Traitor tracing form iO
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Partial Result: Proper Learning nis14
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C = H = {f,(y): h(x)=h(y)?}

Any positive sample x is a representation of f,
= C is efficiently properly PAC learnable

Given some positive samples, infeasible to find new rep.
= Cannot privately PAC learn a representation x

Can be based on any OWF



Partial Result: Proper Learning nis14
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C = H = {f,(y): h(x)=h(y)?}

Limitation: x is not the only representation of f, as a function

* g,(y): h(y)=z? where z=h(x)
o Can privately properly learn representation z
« Counterexample only applies to “representation learning”

Question: How to extend this to general (non-proper) learning?
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ldea: Encrypted Threshold
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Universe = ciphertexts
f.(c): Dec(c) 2 t?

Question: How to learn?

Observation: Threshold learner only needs to know order of data



Order Revealing Encryption scioos, priz)

Encryption where order is revealed, but nothing else
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Order Revealing Encryption scioos, priz)

Encryption where order is revealed, but nothing else

Enc
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5
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Xs LY > X <Y?

Strong correctness: for any ¢,, ¢,
Pr[Comp(c,,c,) = ( Dec(c,) < Dec(c;)? )] =1

Enc,Dec secret
Comp public




ORE Security

“Best possible” security: only order revealed
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ORE for Encrypted Range Queries

a,b

6 { x. : asx<b }

Goal: Hide database and query from cloud




ORE for Encrypted Range Queries




I
ORE vs OPE

OPE = Order preserving encryption [BCLO09]

- Ciphertext space is totally ordered

- Decryption is monotonic ( so Comp(c,,c,) = ( ¢, < ¢,? ) )
- OPE cannot obtain “best possible” security

- Much weaker notion: indist. from rand. monotonic function
- Can build from one-way functions

ORE:

- Much weaker correctness requirement
- Much stronger security requirement

- Will discuss constructions shortly
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Learning Encrypted Threshold

Still threshold at smallest positive (encrypted) sample
- Hypothesis uses ctxt comp. instead of ptxt comp.
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h.(c’)=Comp(c,c’)

{ Thm: Encrypted threshold is efficiently PAC learnable J

What about private learning?



Private Learnability of Encrypted Threshold

Intuition: ORE is non-malleable, so can’'t add noise
- Proof by contradiction: suppose possible to add noise e€[A,B)
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Question: how to formally prove private learning is impossible?
 Difficulty: no restrictions on form of hypothesis




e
Re-identification for Encrypted Threshold

Goal: “Trace” learner, identify one of the samples
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Tr is “good” (breaks differential privacy) if:
e Trace to some ¢
 Approx. correct h = c#c*
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Re-identification for Encrypted Threshold
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I
Analysis

Tr always outputs some ¢ v

Claim: h is approx. correct = some “large” positive gap
- No “large” positive gap = h poor approximation
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Goal: show that large gap at ¢* breaks security

Call h “bad” if large gap at c*



I
Analysis
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¢
1 with prob p,_,
“Bad” h = positive distinguishing advantage

 If h always “bad”, overall positive advantage

* Problem: “good” h can have p;_, > p; = overall advantage could be O
« Solution: different challenge set/analysis



-
Result

a : : )
Thm: Assuming ORE (with strong correctness), there are

efficiently PAC learnable concept classes that are not efficiently
differentially privately learnable

- J

How reasonable an assumption is ORE?



-
Constructions of ORE

In bounded #(ctxt) setting, can build from OWF:
- [GVW’12] bounded collusion FE from OWF

- [BS’15] Add function privacy

- ORE.ctxt = FE.ctxt + FE.sk

Unfortunately, we need unbounded #(ctxt)
- #(samples)=#(ctxt) should be independent of C
- For bounded #(ctxt), C depends on #(ctxt)
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Constructions of Unbounded ORE

All known constructions use multilinear maps
- Through obfuscation [GGHRSW’13]

- Through FE [GGHZ’14] + [BS'15]

« Through multi-input FE [BLRSZZ'15]

Issue: All existing schemes have weak correctness
- Use current noisy maps [GGH’12]

- Come ciphertexts (those with large noise) cause
comparison errors

Thm: ORE w/ weak correctness + Perfectly sound NIZKs =
ORE w/ strong correctness




-
Constructions of Unbounded ORE

All known constructions use multilinear maps
- Through obfuscation [GGHRSW’13]

- Through FE [GGHZ’14] + [BS'15]

« Through multi-input FE [BLRSZZ'15]

Issue: Multilinear maps have unproven security

- [GGH’'12,GGH’14]: “source group” assumptions broken
 [CLT’'13]: Completely broken [CHRLS’15]

 [CLT’15]: Tweak to [CLT'13]. Is it really secure?




-
Constructions of Unbounded ORE

All known constructions use multilinear maps
- Through obfuscation [GGHRSW’13]

- Through FE [GGHZ’14] + [BS'15]

« Through multi-input FE [BLRSZZ'15]

Issue: Multilinear maps are very inefficient
- [BLRSZZ’15]: Best ORE construction
- 16-bit plaintext = |ctxt] = 23GB

Using [ACLL'14] with 1 =80
- 64-bit plaintext = |etxt| = 1,41'3} sing | Jwi
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Removing Mmaps from ORE

Conjecture: OWF insufficient for (unbounded) ORE

Conjecture: Bilinear maps insufficient for ORE

32U3pIuUod Buisealdaq

Conjecture: Constant arity mmaps insufficient for ORE

Hope: LWE sufficient for ORE?

Thanks!



