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Example: Learning from Patient Data 

Blood pressure 

No CVD 

CVD 
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Goals: 
   Learn threshold   Maintain privacy 



(Distribution free) PAC Learning [Val’84] 

Concept class C
Universe X

(distribution D) c:Xà{0,1}
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Hypothesis class H


h:Xà{0,1}


(H=C: proper learning) 
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h:


h is α-approx. correct if: 
  Pr[ h(x)=c(x) ] ≥ 1-α

where xßD

 
 
L is (α,β)-accurate if: 
  Pr [ h is α-AC ] ≥ 1-β

for all D

 



How do we learn threshold? 

Answer: threshold at smallest positive sample 

110 120 130 140 150 160 

α 


Fact: O( log(1/β)/α ) samples  ⇒  (α, β)-accurate   



Learnability in General 

“Occam’s Razor”: Pick c consistent with all samples 
• Problem: running time O(|C|), exponential in description size 
•  Learner not efficient 
 
Only few efficient learning algorithms 
• Statistical query learning [Kea’98], Gaussian elimination 
 
There are problems that cannot be learned efficiently* 
•  e.g. PRFs 

Fact: Any C can be properly learned using O( log |C| ) samples 

*under reasonable assumptions 



Privacy Problem 

110 120 130 140 150 160 

h leaks user data! 



Differential Privacy [DMNS’06] 

A
 y


A
 y


Change 1 record 

Differential Privacy ⇒ output distributions are “close”  



A Differentially Private Threshold Learner 

Solution: add noise! 

110 120 130 140 150 160 

Old exact hypothesis 

New noisy hypothesis 



Learning and Differential Privacy 

Thm ( [KLNRS’11] ):  Any C can be privately learned 
using O(log |C|) samples 

“Private Occam’s Razor”:  
•  Sample random c weighted according to accuracy 
•  Again, learner not efficient 

Statistical query, Gaussian elimination can be privately simulated 
•  [BDMN’05], [KLNRS’11] 

Question ( [KLNRS’11] ): Are all efficiently learnable 
concepts efficiently privately learnable?  

Answer: No 



Crypto and Differential Privacy 

Example: private data release 

S


Useful for answering queries 
Differentially private 

Thm ( [DNRRV’09], informal ): Traitor tracing ⇒ 
impossibility for private data release 

[GGHRSW’13, BZ’14]: Traitor tracing form iO 



Partial Result: Proper Learning [Nis’14] 

Universe X

CRHF h


C = H = {fx(y): h(x)=h(y)?}


x


Any positive sample x is a representation of fx

  ⇒ C is efficiently properly PAC learnable 
 

Given some positive samples, infeasible to find new rep. 
 ⇒ Cannot privately PAC learn a representation x



Can be based on any OWF 



Partial Result: Proper Learning [Nis’14] 

Universe X

CRHF h


C = H = {fx(y): h(x)=h(y)?}


x


Limitation: x is not the only representation of fx as a function

•  gz(y): h(y)=z? where z=h(x)

•  Can privately properly learn representation z

•  Counterexample only applies to “representation learning” 
 
Question: How to extend this to general (non-proper) learning? 



Idea: Encrypted Threshold 

110 120 130 140 150 160 

Universe = ciphertexts 
ft(c): Dec(c) ≥ t?


Question: How to learn? 

Observation: Threshold learner only needs to know order of data 



Order Revealing Encryption [BCLO’09, PR’12] 

Encryption where order is revealed, but nothing else 
 

 
 

 

 
 

 
 

Weak correctness: for any x,y,  

Pr[Comp(Enc(x), Enc(y)) = ( x < y? ) ] = 1 
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 x < y?


Enc,Dec secret 
Comp public 



Order Revealing Encryption [BCLO’09, PR’12] 

Encryption where order is revealed, but nothing else 
 

 
 

 

 
 

 
 

Strong correctness: for any c0, c1,  

Pr[Comp(c0,c1) = ( Dec(c0) < Dec(c1)? ) ] = 1


x

Enc


x
Dec


x
 y
 Comp
 x < y?


Enc,Dec secret 
Comp public 



ORE Security 

“Best possible” security: only order revealed 

x1


x1 < x2 < … < xn
 y1 < y2 < … < yn


x2
 xn
… y1
 y2
 yn
… ≈c




ORE for Encrypted Range Queries 

{ xi : a≤xi<b }
 …



a,b
 x1

x2


xn


Goal: Hide database and query from cloud 



ORE for Encrypted Range Queries 

{    : a≤xi<b }


x1


x2


xn


…



a
 b


xi




ORE vs OPE 

OPE = Order preserving encryption [BCLO’09] 

• Ciphertext space is totally ordered 

• Decryption is monotonic ( so Comp(c0,c1) = ( c0 < c1? ) ) 
• OPE cannot obtain “best possible” security 

• Much weaker notion: indist. from rand. monotonic function 

• Can build from one-way functions 
 

ORE:  
• Much weaker correctness requirement 

• Much stronger security requirement 
• Will discuss constructions shortly 



Learning Encrypted Threshold 

Still threshold at smallest positive (encrypted) sample 
• Hypothesis uses ctxt comp. instead of ptxt comp. 

110 120 130 140 150 160 

hc(c’)=Comp(c,c’)


Thm: Encrypted threshold is efficiently PAC learnable 

What about private learning? 

c




Private Learnability of Encrypted Threshold 

Intuition: ORE is non-malleable, so can’t add noise 
• Proof by contradiction: suppose possible to add noise e∈[A,B)
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Question: how to formally prove private learning is impossible? 
•  Difficulty: no restrictions on form of hypothesis 



Re-identification for Encrypted Threshold 

Goal: “Trace” learner, identify one of the samples 

L


h:
Tr


c*


c


Tr is “good” (breaks differential privacy) if: 
•  Trace to some c

•  Approx. correct h ⇒ c≠c*


Knows samples, but not c*




Re-identification for Encrypted Threshold 

B0
 B1
 B2
 B3
 B4
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 B6
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 B10


h:


pi = Pr[h(Enc(m))=1: mßBi]
 Can estimate using more samples


Output point with largest positive jump 



Analysis 

Tr always outputs some c

 

Claim: h is approx. correct  ⇒  some “large” positive gap 
• No “large” positive gap ⇒ h poor approximation 

 

 
 

 
Goal: show that large gap at c* breaks security 

 
Call h “bad” if large gap at c*


✓ 



Analysis 

L


1 with prob pi-1 


h


L


1 with prob pi 


h


“Bad” h ⇒ positive distinguishing advantage 
•  If h always “bad”, overall positive advantage  
•  Problem: “good” h can have pi-1 > pi  ⇒ overall advantage could be 0

•  Solution: different challenge set/analysis 



Result 

Thm: Assuming ORE (with strong correctness), there are 
efficiently PAC learnable concept classes that are not efficiently 

differentially privately learnable 

How reasonable an assumption is ORE? 



Constructions of ORE 

In bounded #(ctxt) setting, can build from OWF: 
•  [GVW’12] bounded collusion FE from OWF 

•  [BS’15] Add function privacy 
• ORE.ctxt = FE.ctxt + FE.sk

 

Unfortunately, we need unbounded #(ctxt)

• #(samples)=#(ctxt) should be independent of C

•  For bounded #(ctxt), C depends on #(ctxt)




Constructions of Unbounded ORE 

All known constructions use multilinear maps 
•  Through obfuscation [GGHRSW’13] 

•  Through FE [GGHZ’14] + [BS’15] 
•  Through multi-input FE [BLRSZZ’15] 

Issue: All existing schemes have weak correctness 
• Use current noisy maps [GGH’12] 

• Come ciphertexts (those with large noise) cause 
comparison errors 

  

Thm: ORE w/ weak correctness + Perfectly sound NIZKs ⇒ 
ORE w/ strong correctness 



Constructions of Unbounded ORE 

All known constructions use multilinear maps 
•  Through obfuscation [GGHRSW’13] 

•  Through FE [GGHZ’14] + [BS’15] 
•  Through multi-input FE [BLRSZZ’15] 

Issue: Multilinear maps have unproven security 
•  [GGH’12,GGH’14]: “source group” assumptions broken 

•  [CLT’13]: Completely broken [CHRLS’15] 
•  [CLT’15]: Tweak to [CLT’13].  Is it really secure? 



Constructions of Unbounded ORE 

All known constructions use multilinear maps 
•  Through obfuscation [GGHRSW’13] 

•  Through FE [GGHZ’14] + [BS’15] 
•  Through multi-input FE [BLRSZZ’15] 

Issue: Multilinear maps are very inefficient 
•  [BLRSZZ’15]: Best ORE construction 

•  16-bit plaintext à |ctxt| ≈ 23GB

•  64-bit plaintext à |ctxt| ≈ 1.4TB

 

Using [ACLL’14] with λ=80 



Removing Mmaps from ORE 

Conjecture: OWF insufficient for (unbounded) ORE 
 

Conjecture: Bilinear maps insufficient for ORE 
 

Conjecture: Constant arity mmaps insufficient for ORE 

 
Hope: LWE sufficient for ORE? 

 

D
ecreasing confidence 

Thanks! 


