Quantum QOracle Classification

The Case of Group Structure

Mark Zhandry — Princeton University

Query Complexity

X ‘
QC O(x) LO: XY

Info about O

Examples:
* Pre-image of given output
e Collision
* Complete description of O

Motivations

Playground for theoretical computer science
* Don’t pay attention to running times

* Only care about number of queries

* Can actually give rigorous hardness proofs!

Motivations

Models “brute force” attacks on crypto

* E.g. Hardness of inverting a black box function
>

Hardness of inverting any concrete function

e Often, best known attacks are brute force
* Gives guidance for setting parameters

Motivations

Attack models for certain crypto primitives
* More on this in a moment

Oracle Classification

LO: XY

Excludes some problems like collision finding and inversion

Motivating Example: MACs

@
s

attack attack
4atdawn at dusk

Motivating Example: MACs

HQE) BQE)

attack attack
at dusk

| at dawn

Solution: Message Authentication Codes

Message Authentication Codes

MAC(k,m) = o
Ver(k,m,c) > Accept/Reject

Correctness: V K,m, Ver(k, m, MAC(k,m)) = Accept
1-time security:
Given m#m’, 6 = MAC(k,m), impossible to
produce o s.t. Ver(k, m’, ¢’) = Accept

* Variants: adversary picks m, picks m’ after seeing ¢’

2-time security...

Constructing MACs

1-time secure construction:
k = (a,b)
MAC(k, M) =am+ b
Ver(k, m, o) = Accept iff o =am + b

q-time secure construction:
K = random degree d=q polynomial P
MAC(P,m) = P(m)
Ver(P, m, o) = Accept iff o = P(m)

q-time MACs as Oracle Classification

q queries

@C P | P:F\{m}> F

|

| Random degree d poly

Fm(p) = P(m)

q-time MACs as Oracle Classification

q queries

@C P():<) P:F>F

Random degree d poly

Fmo,ml,...,mq(P) - (P(mo): P(ml)l ooy P(mq))

For MAC experiment, really want to let
adversary choose m,, ..., m,

q-time MACs as Oracle Classification

q queries

X ‘
QC P(x) P:FOF

| Random degree d poly

f, F(P) Where feg:evalq+l = {fmo,ml,...,mq}

Straightforward:
Maximal success probability for d2q is 1/F

“Adaptive” Oracle Classification

q queries

X ‘
QC O(x) LO: XY

f, f(O) Where fEF

And now for quantum...

Quantum Oracle Classification

LO: XY

f, f(O) Where fEF

Quantum Background

Quantum states:
“X) = superposition of all messages

= 3adx) (Cleyl? = 1)

Measurement: —
X (\/& X with probability |o |2

Operations: Unitary transformations on amplitude vectors

Example op: simulate classical ops in superposition
(X o, O(x) = 2o, |O(x))

Quantum Background

Quantum states:
“X) = superposition of all messages

= 3adx) (Cleyl? = 1)

Measurement: —
X (\/& X with probability |o |2

Operations: Unitary transformations on amplitude vectors

Example op: simulate classical ops in superposmon

Quantum Oracle Classification

q queries

LO: XY

High-Level Questions

Speedup vs classical queries?
Sequential vs parallel queries?
Adaptively vs statically chosen §?

Average case vs worst case?

Low Level Questions

Calculate exact number of queries needed
(classically/quantumly, £ before/after, sequential/parallel)

Better yet: calculate exact optimal success probability
given certain number of queries

Difficulty:

* Quantum algorithms “see” entire oracle

* But, info is stuck in quantum superposition

* Difficult to determine how much info can be extracted
via measurement

Group Structure

Y = additive abelian group

il
<
X

Notice: Set of functions O forms group
A = subspace of YIXI
O sampled uniformly from A

F = subset of homomorphisms on A

(Y,A,.‘F,q)-Group Quantum Oracle Classification :
Determine maximal success probability of q-query
guantum algorithm

Examples

Function Classes:
e All functions
* (single/multivariate) Polynomials of given degree

Homomorphisms:

* [dentity: f(O) = O

* Evaluation: f5(0) = (O(x)), cs
« Summation: f(0) = 2, cxO(X)

Captures Many Known and New Problems

e Parity: 20(x) mod 2

* Polynomial interpolation: Learn P entirely

* Polynomial extrapolation: Learn P(x)
* Oracle Interrogation: (P(x,),...,P(x,)) for n>q

* Polynomials as q-time MACs

This Work: “Com
to Quantum Grou

nlete” Soluti

0 QOC prob

on
em

Notation

Let Pm,sp,as,wa fOF

* gcE{Quantum, Classical}
* spE{Sequential, Parallel}
» as< {Adaptive, Static}

» waE{Worst, Average}

be the optimal wa-case success probability for
algorithms making sp qc queries, and where f is
chosen as-ly.

Trivialities

Classical ¢ Quantum
Parallel ¢ Sequential
Static < Adaptive
Worst < Average

High-Level Theorems

[Thm (easiest): Worst = Average J

"~ Thm (less easy): If q¢c = Classical, A
Parallel = Sequential
Static = Adaptive

_Plus: simplish* expression for P sssicar /

" Thm (hard): If ¢ = Quantum, B
Parallel = Sequential
Static = Adaptive

_Plus: simplish* expression for Pgq,antum /

*based on structure of groups only, no mention of “quantum” or “classical”

High-Level Theorems

Thus, only distinction for group setting is:
classical vs quantum

Worst = Average

e
| q queries

I X

IQCOM O0=0'+D .

: |

| I D& $A

: f, (0)

[

f, f(O)-f(D) = f(O-D) = f(O')

Works equally well for classical and quantum queries

Proof Sketch: Classical Case

Queries O(xl),...O(xq) yield homomorphism e € Feval_

q queries = ¢(0) for some eEFeval_
* j.e. learn O up to value QEKer(e)

Can learn f(O) with certainty if Ker(e)< Ker(f)
* More generally, success prob =

o | Ker(f)nKer(e) |
classical | Ker(e) |

Proof Sketch: Classical Case

Optimal success probability:

MAX £ | Ker(f)nKer(e) |

Pl ical =
classica :§$ " | Ker(e) |

Straightforward to show that sequential queries,

adaptive £ don’t help

* Intuition: query responses independent of kernel
structure

Quantum Case”

More complicated...

For this talk, consider special case:

Y is a field, f are linear transformations

Notation

Let B = Ker(f)
* Let {b; ... b} be basis for B

Identify f(O) with coset of B that contains O

Define C = A/B
= (B,C)
* Let {¢; ... ¢} be a basis for C

Notation

For vector Xx& X9, define

b,(x,) b,(x,) -
B()-() - b,(x,) by(x,) -

by(x,) by(x;) -

c,(x) ¢i(xz) -

C()-() - c,(x;) €a(x;)

cilx) € (x2) -

Theorem: Quantum Case

Optimal success probability:

pquan’rum =

Where x€ X4, rEY4

Extends to any setting where we can induce a ring
structure on Y such that B,C are free modules

Proving the Theorem...

Proof Sketch for Quantum Theorem

First attempt:
Let [W,) be final state of query algorithm

Rank method([BZ’13]):
* Bound on dimension of Span{|W,)} in terms of q
* Success probability/random guessing = Span{lW,)}

Gives immediate upper bound on success prob
 Works well when all functions are possible, goal is to
find entire function

Proof Sketch for Quantum Theorem

Problem:

Rank grows with number of possible functions
Guessing probability shrinks with number of
possible outputs

Mismatch when either:

 Constraints on oracles (e.g. polynomials)
 Goalisn’t to find entire function

Proof Sketch for Quantum Theorem

Second attempt:

For a given v, let p, be the “state” representing ILIJO)
for arandom O such that f(O) = v
* Called a “mixed” state

* Intuition: maybe rank only grows with number of
equivalence classes induced by £?

Problem: No general Rank method for “mixed” states

Proof Sketch for Quantum Theorem

Final solution:

For a given v, let p, be the “state” representing IlIJO) for
a random O such that f(O) = v

Use group structure to “purify” mixed state

* Analyze rank of purified state

* Get bound on success probability

e “Luckily” turns out to be optimal for group structure

Analysis still depends on kernels of homomorphisms
» Adaptivity/sequentiality don’t help

Applying the Theorem...

Quantum Oracle Summation

Compute 20O(x) for a random function O
« Write X = [O,...,N-1]

B = {O such that ZO(X) = 0}
= by(x) = §;, = 6 for i=l,...,N-1

* C = {O such that O(x)=0 YV x#0}
C(X) - 60,)(

Quantum Oracle Summation

* Fix some h
* Solve B(X) ¥ = h

* |f X does not contain O:
000
100 . |
- 000 q 1’s in rows corresponding
B(X) = 010 to elements in X
001
000

— h must be O in all but q (that is, N-1-q) positions

Quantum Oracle Summation

* Fix some h
* Solve B(X) ¥ = h

e If x does contain O:

(by reordering X,T, can assume
O is first coordinate of x)

B(x) =

o—-n—-n'—-o—-n—-o—-
oNoll NeoNeoNe
O 0000

— h must be ry in all but q-1 (that is, N-q) positions

Quantum Oracle Summation

* Fix some h

* Solve B(X) * ¥ =

* Determinez = C(x) * ¥
 If X does not contain O:

C(x) = (0 00)
= C(x) * 7 =

Quantum Oracle Summation

* Fix some h

* Solve B(X) * ¥ =

* Determinez = C(x) * ¥
 If X does contain O:

C(x) = (1 00)
= C(x)r=r

Quantum Oracle Summation

* Fix some h
*SolveB(x) * ¥ = h
* Determinez = C(x) * ¥
e Count Z’s:
* Non-zero 2Z’s set M-q coordinates of h
* 2=0 sets M-q-1 coordinates
* K =total number of possible 2’s for any h:

M-qg-1 + (k-l)@(M—q) < M-1
k < [M/(M-q)]

Quantum Oracle Summation

* Fix some h

* Solve B(X) ¥ = h

* Determinez = C(x) * ¥
* Count 2’s: £ | M/(M-q)]

* Maximum success probability:

|M/(M-q)]

vl

To beat random guessing, need q 2 M/2
To answer perfectly, needq 2 M (1 = 1/1YI)

Generalizes [FGGS'09,BBCdW’01], improves [MP’11]

Quantum Polynomial Interpolation

For a random degree-d polynomial P over Y, find P
* B is empty
« C(x) are Vandermonde matrices

1 1
C(x) = X| Xz "t Xg
xld xzd ooo qu

 Goal: count vectors of form C(x) ° ¥

Quantum Polynomial Interpolation

For a random degree-d polynomial P over Y, find P
* Goal: count vectors of form C(x) * ¥
* Easy upper bound:

("5

* Turns out, essentially tight

Yl
pquan’rum < (q) IYld-l-l-q

Quantum Polynomial Interpolation

For a random degree-d polynomial P over Y, find P

M
pquanfum < (q) |Y|d+l-q

Think 1Yl > q = Pgyantum = 1Y129-4-1/q!

* q > (d+1)/2: success proba

* q < (d+1)/2: success proba

o]

o]

ity C

ity €

osetol

oseto O

* q = (d+1)/2: success probability close to 1/q!

Proved concurrently by [CvDHS’15]

Degree d Polys as g-time MACs

Find (P(t,), ..., P(t,))
*B = {P suchthatP(t,y) = ... = P(fq) = 0}

Let R(x) be the degree-(q+1) monic polynomial with roots at {fo,...,i'q}

R(x,) - R(x,)
B(X) = I R(x)x, = Rlx)x,

R(xl) xld-q-l eoo R(xq) qu-q-l

* For upper bound, suffices to count solutionsto B(x) * ¥ = h

Degree d Polys as g-time MACs

Find (P(t,), ..., P(t,))

*B={P such that lg(i'o) = .. = P(t) = 0}

* For upper bound, suffices to count solutlons toB(X) 7 = h
* If @ £ d/2, number of solutions bounded by:

(q+1)q e?vs
* So success probability in breaking MAC:
¢ (q+1)q e?¥9/|Y| = negligible

* Thus, degree 2q polynomials are good g-time quantum-

secure MACs
* Optimal, improves on 3q required by [BZ'13]

High level takeaways...

Comparing Classical and Quantum

_ MAXfl{cx) -7 B(x)-F=h}l)

pquc\rn‘um B,Ch | c |

_ MAX Ll {c(x) -7 B(x)-F=h}l)

pclassical ~ BChx | C |

Where XE X4, rEYA

Observation

Only modest quantum speedups for problems
analyzed

Explanation:

* Quantum algorithms have much higher success
probability (by a factor of up to |X|”q)

* But, success probability increases significantly
every for every query made

* Don’t need many extra classical queries to
compensate

Conclusion

Give complete solution to wide class of problems

Gain some level of intuition for why quantum queries
help

Future direction:
Gain intuition for more general problems

Thanks!

