Quantum Oracle Classification The Case of Group Structure

Mark Zhandry – Princeton University

Query Complexity

Examples:

- Pre-image of given output
- Collision
- Complete description of O
- •

Motivations

Playground for theoretical computer science

- Don't pay attention to running times
- Only care about number of queries
- Can actually give rigorous hardness proofs!

Motivations

Models "brute force" attacks on crypto

• E.g. Hardness of inverting a black box function

<u>></u>

Hardness of inverting any concrete function

- Often, best known attacks are brute force
- Gives guidance for setting parameters

Motivations

Attack models for certain crypto primitives

More on this in a moment

Oracle Classification

Excludes some problems like collision finding and inversion

Motivating Example: MACs

Motivating Example: MACs

Solution: Message Authentication Codes

Message Authentication Codes

 $MAC(k,m) \rightarrow \sigma$ $Ver(k,m,\sigma) \rightarrow Accept/Reject$

Correctness: $\forall k,m, Ver(k, m, MAC(k,m)) = Accept$

1-time security:

Given $m \neq m'$, $\sigma = MAC(k,m)$, impossible to produce σ' s.t. $Ver(k, m', \sigma') = Accept$

- Variants: adversary picks \mathbf{m} , picks \mathbf{m}' after seeing $\mathbf{\sigma}'$
- 2-time security...

Constructing MACs

1-time secure construction:

$$k = (a,b)$$

 $MAC(k, m) = a m + b$
 $Ver(k, m, \sigma) = Accept iff $\sigma = a m + b$$

q-time secure construction:

k = random degree d=q polynomial P
MAC(P,m) = P(m)
Ver(P, m,
$$\sigma$$
) = Accept iff σ = P(m)

q-time MACs as Oracle Classification

q-time MACs as Oracle Classification

For MAC experiment, really want to let adversary choose \mathbf{m}_0 , ..., \mathbf{m}_q

q-time MACs as Oracle Classification

Straightforward:

Maximal success probability for **d≥q** is **1/F**

"Adaptive" Oracle Classification

And now for quantum...

Quantum Oracle Classification

Quantum Background

Quantum states:

= superposition of all messages
=
$$\Sigma \alpha_x |x\rangle$$
 ($\Sigma |\alpha_x|^2 = 1$)

Measurement:

Operations: Unitary transformations on amplitude vectors

Example op: simulate classical ops in superposition

$$O \longrightarrow O(x) = \Sigma \alpha_x |O(x)\rangle$$

Quantum Background

Quantum states:

= superposition of all messages
=
$$\Sigma \alpha_x |x\rangle$$
 ($\Sigma |\alpha_x|^2 = 1$)

Measurement:

Operations: Unitary transformations on amplitude vectors

Example op: simulate classical ops in superposition:

$$O = \sum \alpha_{x,y} |x,y+O(x)\rangle$$

Quantum Oracle Classification

High-Level Questions

Speedup vs classical queries?

Sequential vs parallel queries?

Adaptively vs statically chosen **f**?

Average case vs worst case?

Low Level Questions

Calculate exact number of queries needed (classically/quantumly, **f** before/after, sequential/parallel)

Better yet: calculate exact optimal success probability given certain number of queries

Difficulty:

- Quantum algorithms "see" entire oracle
- But, info is stuck in quantum superposition
- Difficult to determine how much info can be extracted via measurement

Group Structure

Y = additive abelian group

Notice: Set of functions **O** forms group **■ Y**^{|X|}

A = subspace of Y^{|X|}

O sampled uniformly from A

 \mathcal{F} = subset of homomorphisms on \mathbf{A}

(Y,A,F,q)-Group Quantum Oracle Classification: Determine maximal success probability of **q**-query quantum algorithm

Examples

Function Classes:

- All functions
- (single/multivariate) Polynomials of given degree

Homomorphisms:

- Identity: **f(O)** = **O**
- Evaluation: $f_s(0) = (O(x))_{x \in s}$
- Summation: $f(O) = \sum_{x \in X} O(x)$

Captures Many Known and New Problems

- Parity: **∑O(x) mod 2**
- Polynomial interpolation: Learn **P** entirely
- Polynomial extrapolation: Learn P(x)
- Oracle Interrogation: $(P(x_1),...,P(x_n))$ for n>q
- Polynomials as q-time MACs

This Work: "Complete" Solution to Quantum Group QOC problem

Notation

```
Let P<sub>qm,sp,as,wa</sub> for
qc∈{Quantum, Classical}
sp∈{Sequential, Parallel}
as∈{Adaptive, Static}
wa∈{Worst, Average}
```

be the optimal **wa**-case success probability for algorithms making **sp qc** queries, and where **f** is chosen **as**-ly.

Trivialities

```
Classical ≤ Quantum
Parallel ≤ Sequential
Static ≤ Adaptive
Worst ≤ Average
```

High-Level Theorems

Thm (easiest): Worst = Average

```
Thm (less easy): If qc = Classical,

Parallel = Sequential

Static = Adaptive
```

Plus: simplish* expression for $P_{classical}$

```
Thm (hard): If qc = Quantum,
Parallel = Sequential
Static = Adaptive
```

Plus: simplish* expression for PQuantum

^{*}based on structure of groups only, no mention of "quantum" or "classical"

High-Level Theorems

```
Thm (easiest): Worst = Average
```

```
Thm (less easy): If qc = Classical,
Parallel = Sequential
```

Thus, only distinction for group setting is:

classical vs quantum

```
Thm (hard): If qc = Quantum,

Parallel = Sequential

Static = Adaptive

us: simplish* expression for Pa
```

^{*}based on structure of groups only, no mention of "quantum" or "classical"

Worst = Average

Works equally well for classical and quantum queries

Proof Sketch: Classical Case

Queries $O(x_1),...O(x_q)$ yield homomorphism $e \in \mathcal{F}^{eval}_q$

q queries
$$\Rightarrow$$
 e(O) for some e $\in \mathcal{F}^{eval}_q$
• i.e. learn O up to value Q \in Ker(e)

Can learn f(0) with certainty if $Ker(e) \subseteq Ker(f)$

More generally, success prob =

$$P_{classical} = \frac{| Ker(f) \cap Ker(e) |}{| Ker(e) |}$$

Proof Sketch: Classical Case

Optimal success probability:

$$P_{\text{classical}} = \frac{MAX}{e^{\in \mathcal{F}^{\text{eval}}} q} \left(\frac{| \text{Ker}(f) \cap \text{Ker}(e) |}{| \text{Ker}(e) |} \right)$$

Straightforward to show that sequential queries, adaptive **f** don't help

Intuition: query responses independent of kernel structure

Quantum Case?

More complicated...

For this talk, consider special case:

Y is a field, **f** are linear transformations

Notation

Let
$$\mathbf{B} = \mathbf{Ker}(\mathbf{f})$$

• Let $\{\mathbf{b_1} \dots \mathbf{b_r}\}$ be basis for \mathbf{B}

Identify **f(O)** with coset of **B** that contains **O**

Define
$$C = A/B$$

- f ≡ (B,C)
- Let $\{c_1 \dots c_s\}$ be a basis for C

Notation

For vector $\bar{\mathbf{x}} \in \mathbf{X}^q$, define

$$B(\bar{x}) = \begin{cases} b_1(x_1) \ b_1(x_2) \cdots b_1(x_q) \\ b_2(x_1) \ b_2(x_2) \cdots b_2(x_q) \\ \vdots \ \vdots \ \vdots \\ b_r(x_1) \ b_r(x_2) \cdots b_r(x_q) \end{cases}$$

$$C(\bar{x}) = \begin{cases} c_1(x_1) & c_1(x_2) & \cdots & c_1(x_q) \\ c_2(x_1) & c_2(x_2) & \cdots & c_2(x_q) \\ \vdots & \vdots & & \vdots \\ c_r(x_1) & c_r(x_2) & \cdots & c_r(x_q) \end{cases}$$

Theorem: Quantum Case

Optimal success probability:

$$P_{\text{quantum}} = \underset{B,C,h}{\text{MAX}} \left(\frac{ | \{C(\bar{x}) \cdot \bar{r} : B(\bar{x}) \cdot \bar{r} = h \} |}{ | C |} \right)$$

Where $\bar{\mathbf{x}} \in \mathbf{X}^q$, $\bar{\mathbf{r}} \in \mathbf{Y}^q$

Extends to any setting where we can induce a ring structure on **Y** such that **B**,**C** are free modules

Proving the Theorem...

First attempt:

Let $|\Psi_0\rangle$ be final state of query algorithm

Rank method([BZ'13]):

- Bound on dimension of Span{|Ψ_O⟩} in terms of q
- Success probability/random guessing = $Span\{|\Psi_0\rangle\}$

Gives immediate upper bound on success prob

 Works well when all functions are possible, goal is to find entire function

First attempt:

Problem:

- Rank grows with number of possible functions
- Guessing probability shrinks with number of possible outputs
- Mismatch when either:
 - Constraints on oracles (e.g. polynomials)
 - Goal isn't to find entire function
- Works well when all functions are possible, goal is to find entire function

Second attempt:

For a given \mathbf{v} , let $\mathbf{\rho}_{\mathbf{v}}$ be the "state" representing $|\Psi_{O}\rangle$ for a random O such that $\mathbf{f}(O) = \mathbf{v}$

- Called a "mixed" state
- Intuition: maybe rank only grows with number of equivalence classes induced by **f**?

Problem: No general Rank method for "mixed" states

Final solution:

For a given \mathbf{v} , let $\mathbf{\rho}_{\mathbf{v}}$ be the "state" representing $|\Psi_{O}\rangle$ for a random O such that $\mathbf{f}(O) = \mathbf{v}$

Use group structure to "purify" mixed state

- Analyze rank of purified state
- Get bound on success probability
- "Luckily" turns out to be optimal for group structure

Analysis still depends on kernels of homomorphisms

Adaptivity/sequentiality don't help

Applying the Theorem...

Compute $\Sigma O(x)$ for a random function O

- Write X = [0,...,N-1]
- B = {O such that $\Sigma O(x) = 0$ } $\Rightarrow b_i(x) = \delta_{i,x} - \delta_{0,x}$ for i=1,...,N-1
- C = {O such that $O(x)=0 \forall x\neq 0$ } $\Rightarrow c(x) = \delta_{0,x}$

- Fix some **h**
- Solve $B(\bar{x}) \cdot \bar{r} = h$
 - If $\bar{\mathbf{x}}$ does **not** contain **0**:

$$B(\bar{x}) = \begin{cases} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{cases}$$

$$q 1's in rows corresponding to elements in $\bar{x}$$$

 \Rightarrow h must be **0** in all but q (that is, N-1-q) positions

- Fix some h
- Solve $B(\bar{x}) \cdot \bar{r} = h$
 - If $\bar{\mathbf{x}}$ does contain $\mathbf{0}$:

$$B(\bar{x}) = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

(by reordering \bar{x},\bar{r} , can assume $\bar{0}$ is first coordinate of \bar{x})

 \Rightarrow **h** must be $\mathbf{r_1}$ in all but $\mathbf{q-1}$ (that is, $\mathbf{N-q}$) positions

- Fix some h
- Solve $B(\bar{x}) \cdot \bar{r} = h$
- Determine $z = C(\bar{x}) \cdot \bar{r}$
 - If $\bar{\mathbf{x}}$ does not contain $\mathbf{0}$:

$$C(\bar{x}) = (0 0 0)$$

$$\Rightarrow$$
 C(\bar{x}) · \bar{r} = 0

- Fix some **h**
- Solve $B(\bar{x}) \cdot \bar{r} = h$
- Determine $z = C(\bar{x}) \cdot \bar{r}$
 - If $\bar{\mathbf{x}}$ does contain $\mathbf{0}$:

$$C(\bar{x}) = (1 0 0)$$

$$\Rightarrow$$
 $C(\bar{x}) \cdot \bar{r} = r_1$

- Fix some h
- Solve $B(\bar{x}) \cdot \bar{r} = h$
- Determine $z = C(\bar{x}) \cdot \bar{r}$
- Count **z**'s:
 - Non-zero z's set M-q coordinates of h
 - z=0 sets M-q-1 coordinates
 - **k** = total number of possible **z**'s for any **h**:

$$M-q-1 + (k-1) (M-q) \le M-1$$

 $k \le |M/(M-q)|$

- Fix some h
- Solve $B(\bar{x}) \cdot \bar{r} = h$
- Determine $z = C(\bar{x}) \cdot \bar{r}$
- Count $z's: \leq [M/(M-q)]$
- Maximum success probability:

 | Maximum success probability: | Maximum success probability

To beat random guessing, need $q \ge M/2$ To answer perfectly, need $q \ge M(1 - 1/|Y|)$

Generalizes [FGGS'09,BBCdW'01], improves [MP'11]

Quantum Polynomial Interpolation

For a random degree-**d** polynomial **P** over **Y**, find **P**

- **B** is empty
- C(x̄) are Vandermonde matrices

$$C(\bar{x}) = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_q \\ \vdots & \vdots & & \vdots \\ x_1^d & x_2^d & \cdots & x_q^d \end{pmatrix}$$

• Goal: count vectors of form $C(\bar{x}) \cdot \bar{r}$

Quantum Polynomial Interpolation

For a random degree-**d** polynomial **P** over **Y**, find **P**

- Goal: count vectors of form $C(\bar{x}) \cdot \bar{r}$
- Easy upper bound:

$$\binom{|Y|}{q}$$
 $|Y|^q$

Turns out, essentially tight

$$P_{\text{quantum}} \approx {|Y| \choose q} / |Y|^{d+1-q}$$

Quantum Polynomial Interpolation

For a random degree-d polynomial P over Y, find P

$$P_{quantum} \approx {|Y| \choose q} / |Y|^{d+1-q}$$

Think $|Y| \gg q \Rightarrow P_{quantum} \approx |Y|^{2q-d-1}/q!$

- q > (d+1)/2: success probability close to 1
- q < (d+1)/2: success probability close to 0
- q = (d+1)/2: success probability close to 1/q!

Degree d Polys as q-time MACs

Find
$$(P(t_0), ..., P(t_q))$$

• $B = \{P \text{ such that } P(t_0) = ... = P(t_q) = 0\}$
Let $R(x)$ be the degree- $(q+1)$ monic polynomial with roots at $\{t_0, ..., t_q\}$

$$B(\bar{x}) = \begin{pmatrix} R(x_1) & \cdots & R(x_q) \\ R(x_1)x_1 & \cdots & R(x_q)x_q \\ \vdots & & \vdots \\ R(x_1)x_1^{d-q-1} & \cdots & R(x_q)x_q^{d-q-1} \end{pmatrix}$$

• For upper bound, suffices to count solutions to $B(\bar{x}) \cdot \bar{r} = h$

Degree d Polys as q-time MACs

Find ($P(t_0)$, ..., $P(t_q)$)

- B = {P such that $P(t_0) = ... = P(t_q) = 0$ }
- For upper bound, suffices to count solutions to $B(\bar{x}) \cdot \bar{r} = h$
- If q ≤ d/2, number of solutions bounded by:

So success probability in breaking MAC:

$$\leq (q+1)q e^{2\sqrt{q}}|Y| = \text{negligible}$$

- Thus, degree 2q polynomials are good q-time quantumsecure MACs
 - Optimal, improves on 3q required by [BZ'13]

High level takeaways...

Comparing Classical and Quantum

$$P_{\text{quantum}} = \underset{B,C,h}{\text{MAX}} \left(\frac{ | \{C(\bar{x}) \cdot \bar{r} : B(\bar{x}) \cdot \bar{r} = h \} |}{ | C |} \right)$$

$$P_{classical} = MAX_{B,C,h,\bar{x}} \left(\frac{|\{C(\bar{x}) \cdot \bar{r} : B(\bar{x}) \cdot \bar{r} = h\}|}{|C|} \right)$$

Where $\bar{\mathbf{x}} \in \mathbf{X}^q$, $\bar{\mathbf{r}} \in \mathbf{Y}^q$

Observation

Only modest quantum speedups for problems analyzed

Explanation:

- Quantum algorithms have much higher success probability (by a factor of up to |X|^q)
- But, success probability increases significantly every for every query made
- Don't need many extra classical queries to compensate

Conclusion

Give complete solution to wide class of problems

Gain some level of intuition for why quantum queries help

Future direction:

Gain intuition for more general problems

Thanks!