
One-Shot Signatures
Mark Zhandry (NTT Research & Stanford University)

Based on joint works with Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Omri Shmueli

classical messages

Question 1

Can you send “inherently quantum” states with classical communication?

|Ψ⟩

No pre-shared entanglement!!!

classical messages

Question 1

Can you send “inherently quantum” states with classical communication?

No pre-shared entanglement!!!

|Ψ⟩

Question 1

Example: quantum money [Wiesner’70]

= |Ψ⟩

Unforgeability derives from unclonability of quantum states

Can you send quantum money with classical communication?

Question 1

Family of states {|Ψi⟩}i can be “telegraphed”
if and only if orthogonal

Information theory: impossible!

Can rotate orthogonal states. {|Ψi⟩}i into
computational basis states {|i⟩}i

Corollary: cannot telegraph “inherently
quantum” states

+

Question 1

Complexity theory: all bets are off

Orthogonality does not imply efficient telegraphing

Orthogonality dos not imply efficient
transformation into classical states

Still some barriers, e.g. cannot be used to establish entanglement

Question 1

Many prior works on LOCC model, but
none directly address this question

Quantum teleportation + friends: Needs pre-shared entanglement

Complexity-theoretic remote state preparation: Alice knows state

Question 2

m0

m1

Can Alice and Bob ensure
that m0 = m1 without any

communication

Question 2

m0, σ0

m1, σ1

Setup
vk

vk

|sk⟩

✓ à m0

✘ à ⟂

✓ à m1

✘ à ⟂

Can Alice and Bob
ensure that if m0≠⟂ and

m1≠⟂, then m0 = m1

Non-triviality: for any m≠⟂, possible
adversary to send m0 = m1 = m

Question 2

m0, σ0

m1, σ1

vk

vk

|sk⟩

✓ à m0

✘ à ⟂

✓ à m1

✘ à ⟂

Can Alice and Bob
ensure that if m0≠⟂ and

m1≠⟂, then m0 = m1

Non-triviality: for any m≠⟂, possible
adversary to send m0 = m1 = m

Adversarial setup. Only
guarantee: Alice and Bob

receive same vk

Question 2

Information theory: impossible!

Non-triviality ∀m,∃ valid σ

An inefficient adversary can choose arbitrary m0≠m1,
brute-force the appropriate σ0, σ1, and send (m0, σ0),

(m1, σ1) to Alice and Bob, resp.

Question 2

Classical complexity theory: impossible!

Non-triviality σ efficiently computable
from sk,m

An efficient adversary can choose arbitrary m0≠m1,
compute σ0, σ1 using sk, and send (m0, σ0), (m1, σ1) to

Alice and Bob, resp.

Question 2

Quantum complexity theory: all bets are off

Non-triviality σ efficiently computable
from |sk⟩,m

But, computing σ0, σ1 from |sk⟩ involves
measurements that may not commute. Computing σ0

may destroy |sk⟩, preventing computing σ1

Question 2

Solution = “One-shot Signature”

Numerous applications:
• Smart contracts without blockchain [Sattath’22]
• Overcoming lower-bounds in consensus protocols [Drake’24]
• Sending quantum money with classical communication
• …

[Amos-Georgiou-Kiayias-Z’20]

However, unclear a priori if OSS could even exist

Question 3
Cryptographic hash functions

Pigeonhole principle: ∃ many collisions

Collision: x0≠x1 s.t.H(x0)=H(x1)

Collision resistance: computationally infeasible to find them

x0

x1

H

bAß{0,1}
r ß $

h = H(bA ,r) bBß{0,1}
bB

bA,r
Verify h == H(bA ,r)

b = bA⊕bB

pass fail

b = ⟂

Question 3
Coin tossing from hash functions

Alice wants Pr[b=0] > ½+ε Bob wants Pr[b=1] > ½-ε

h bBß{0,1}
bB

bA,r

Question 3
Coin tossing from hash functions

Verify h == H(bA ,r)

b = bA⊕bB

pass fail

b = ⟂
Alice and Bob may

deviate from protocol

Alice wants Pr[b=0] > ½+ε Bob wants Pr[b=1] > ½-ε

h bBß{0,1}
bB

bA,r

Question 3
Coin tossing from hash functions

Thm: can assume that h is (statistically close to) independent of bA
à If Alice honest, no matter what Bob does, Pr[b=1] ≲ ½

Crucially uses that
H is many-to-1

Question 3

Thm: if H injective, then no matter what Alice does, Pr[b=0] ≤ ½

Proof: h perfectly commits Alice to bA, which is chosen
independently of bB à b = bA⊕bB is uniform

Thm: if H is collision-resistant against classical adversaries, then no
matter what a classical Alice does, Pr[b=0] ≲ ½

Proof: Pr[b=0] > ½+ε, Alice must be able “open” c to both bA = 0
and bA = 1 à Opening c both ways gives a collision à intractable!

Breaks security against Bob

Question 3
What about quantum?

Producing (0,r0) and (1,r1) may involve non-
commuting measurements of Alice’s state

Alice may be able to “open” to both 0 and
1, but be unable to do both simultaneously

Does collision-resistance nevertheless
justify coin tossing quantumly?

[van de Graaf’97,Ambainis-Rosmanis-Unruh’14,Unruh’16]

Question 3

Importance: similar arguments used extensively in e.g.
signature schemes, a crucial part of a secure internet

When transitioning to a quantum world, we will
upgrade building blocks (e.g. hash functions)
with post-quantum version. Will the resulting

schemes then be post-quantum secure?

Let’s answer the questions in reverse order…

Equivocal hash functions

Thm [Ambainis-Rosmanis-Unruh’14,Unruh’16]:
∃ (quantum) collision-resistant H s.t. Alice has a near-perfect
strategy (aka H is equivocal) relative to a quantum oracle
Proof idea: start with random compressing function H

[Aaronson-Shi’04, Yuen’13, Z’15]: H is collision-resistant

[Unruh’16]: but H is also secure in coin-tossing!

Thm [Ambainis-Rosmanis-Unruh’14,Unruh’16]:
∃ (quantum) collision-resistant H s.t. Alice has a near-perfect
strategy (aka H is equivocal) relative to a quantum oracle
Proof idea: start with random compressing function H

Additionally supply, for each image h, the oracle Uh
which reflects about

|Ψh⟩ = ∑ |b,r⟩
b,r:H(b,r)=h

Thm [Ambainis-Rosmanis-Unruh’14,Unruh’16]:
∃ (quantum) collision-resistant H s.t. Alice has a near-perfect
strategy (aka H is equivocal) relative to a quantum oracle
Proof idea: Breaking coin tossing (equivocating):

|Ψ⟩ = ∑ |b,r⟩
b,r

Initialize

Measure H(b,r) à h

Keep collapsed state |Ψh⟩

h

Thm [Ambainis-Rosmanis-Unruh’14,Unruh’16]:
∃ (quantum) collision-resistant H s.t. Alice has a near-perfect
strategy (aka H is equivocal) relative to a quantum oracle
Proof idea: Breaking coin tossing (equivocating):

|Ψh⟩
bAmplitude amplification

|Ψh,b⟩ = ∑ |b,r⟩
r:H(b,r)=h

Measure à b,r b,r

Uses Uh

Thm [Ambainis-Rosmanis-Unruh’14,Unruh’16]:
∃ (quantum) collision-resistant H s.t. Alice has a near-perfect
strategy (aka H is equivocal) relative to a quantum oracle
Proof idea: Possible to show that Uh doesn’t

break collision-resistance of H

Intuition: Uh enables amplitude amplification,
but doesn’t give any obvious way to actually

construct a second pre-image

Is there a classical oracle “separation”?

Is there an oracle-free separation?
(using computational assumptions)

Thm [Amos-Georgiou-Kiayias-Z’20]:
∃ (quantum) collision-resistant H s.t. Alice has a near-perfect
strategy (aka H is equivocal) relative to a classical oracle✘

Fatal bug in the proof [Bartusek]

Note: no attack on construction

Thm [Shmueli-Z’25]: ∃ (quantum) collision-resistant H s.t.
Alice has a near-perfect strategy (aka H is equivocal) relative
to a classical oracle, or without oracles assuming (somewhat
accepted post-quantum) cryptographic assumptions

Proof idea from [AGKZ’20]: Simulate Uh with classical oracle

Set H to be coset partition function: pre-image set
of each image h is large-ish affine subspace Sh

Provide additional oracle Q(h,y): test for membership in Sh
⟂

Proof idea from [AGKZ’20]: Simulate Uh with classical oracle

Can project onto |Ψh⟩ = ∑ |b,r⟩
b,r:H(b,r)=h

• Use H to test that support is on preimages of h

• Apply QFT

• Use Q to test for membership in Sh
⟂

• [Aaronson-Christiano’12]: |Ψh⟩ is the only state
passing verification

(equivalent to reflection)

Problem with [AGKZ’20] construction:
• Extra structure due to H being coset partition function
• Oracle Q potentially provides more information than Uh

Need new arguments to prove collision resistance of H

Unfortunately, our proof was fatally flawed,
though I still think the construction works

A slightly different construction (based on idea of James Bartusek):

For each h, choose random affine subspace Sh
such that |Sh| = #(preimages of h)

Provide 2 additional oracles:
• P(b,r): random bijection with Sh where h=H(b,r)
• Q(h,y): test for membership in Sh

⟂

Leave H unstructured, though assume
all pre-image sets have size 2r

In completely
different universe

A slightly different construction (based on idea of James Bartusek):

Can still project onto |Ψh⟩ by using P to map to Sh

• P(b,r): random bijection with Sh where h=H(b,r)
• Q(h,y): test for membership in Sh

⟂

Now H has less structure, so maybe easier.
Though still a priori not obvious how to prove

Proof idea (oracle setting): Need to prove that P,Q don’t break
collision-resistance

Overly simplified view of proof:
Step 1: Reduce to case without Q

Step 2: Reduce to worst-case collision-resistance of
many-to-1 coset partition function (CPFs)

Step 3: Worst-case CPFs are collision-resistant

Use random
self-reduction

2-to-1 funcs are automatically CPFs
à Parallel repetition to get many-to-1

Proof idea (oracle-free setting):

Requires interesting new techniques for
obfuscating pseudorandom permutations

• Instantiate random choices with pseudorandom
functions / permutations

• Instantiate oracles P,Q with indistinguishability
obfuscation (iO)

• Replace each step in proof with cryptographic step

Equivocal hash functions à OSS

Question 2

m0, σ0

m1, σ1

vk

vk

|sk⟩

✓ à m0

✘ à ⟂

✓ à m1

✘ à ⟂

Can Alice and Bob
ensure that if m0≠⟂ and

m1≠⟂, then m0 = m1

Non-triviality: for any m≠⟂, possible
adversary to send m0 = m1 = m

Thm [Z’19, Amos-Georgiou-Kiayias-Z’20, Dall’Agnol-Spooner’23]:
Equivocal hash function à OSS

Proof idea: (Honest) setup samples h, |Ψh⟩ vk = h, |sk⟩ = |Ψh⟩

Sign(|sk⟩, b): equivocate to (b,r) s.t. H(b,r) = h σ = r

Ver(vk, b, σ): check that H(b, σ) =h

Can extend to multi-bit messages by parallel repetition

OSS à Quantum Money w/
Classical Communication

Thm [Amos-Georgiou-Kiayias-Z’20]: OSS à Publicly-verifiable
quantum Money with classical communication

Proof: Mint publishes verification key vk* for plain signature
scheme, keeps plain signing key sk* secret

|$⟩ = |sk⟩, vk, σvk*àvk

σvk*àvk = Sign*(sk*, vk)

Verification: Check that σvk*àvk is valid signature on vk
(relative to vk*), and that |sk⟩ can sign messages relative to vk

Thm [Amos-Georgiou-Kiayias-Z’20]: OSS à Publicly-verifiable
quantum Money with classical communication

Proof: Sending money

|$⟩ = |sk⟩, vk, σvk*àvk

Thm [Amos-Georgiou-Kiayias-Z’20]: OSS à Publicly-verifiable
quantum Money with classical communication

Proof: Sending money

|$⟩ = |sk⟩, vk, σvk*àvk

|sk’⟩, vk’ ß Setup
vk’

Thm [Amos-Georgiou-Kiayias-Z’20]: OSS à Publicly-verifiable
quantum Money with classical communication

Proof: Sending money

vk’
σvkàvk’ ß Sign(|sk⟩, vk’)

|$’⟩ = |sk’⟩, vk’, σvk*àvk , σvkàvk’

|sk’⟩, vk’ ß Setup

|$⟩ = |sk⟩, vk, σvk*àvk

Thm [Amos-Georgiou-Kiayias-Z’20]: OSS à Publicly-verifiable
quantum Money with classical communication

Proof:

In general, |$⟩ = |sk⟩ + vk + chain of signatures from vk* to vk

By OSS

?

