Multilinear Maps and Their
Applications

Mark Zhandry — Stanford University

Diffie-Hellman Key Exchange

Exchange keys over a public channel:
* Public group (5, generator g, order p

73 .
A a b 'f’\ *

-
,I
S D

(Potential) Hard Problems in Groups

Discrete Log (DL):
g,9" —r a
Computational Diffie-Hellman (CDH):
b b
9,.9%9 —g"
Decisional Diffie-Hellman (DDH):
b
gagavg 796 — ¢ = ab?
Many Others:

— Decision Linear (DLIN):
9179279379%79879:(3: —> C=a + b?

Uses of Diffie-Hellman

Two party key exchange
Encryption
Signatures

3-Way Diffie-Hellman?

3-Way Diffie-Hellman

Problem: Need way to multiply g° and ¢¢

Solution [Joux’00]: Use bilinear maps

e:GxG— GQ
e(9%,9") = g5°

*Bilinear group: group with bilinear map

3-Way Diffie-Hellman?

Potential Hard Problems in Bilinear Groups

* DL, CDH, DLIN
-

* DDH? e(g% ¢°) = e(g, ¢°)
e Bilinear DDH:
b d
g7gaag 790792 — d — CLbC?

 Many Others
— Bilinear Diffie-Hellman Exponent
— Subgroup Decision

Uses of Bilinear Maps

ldentity-Based Encryption

Broadcast Encryption w/ short ciphertexts
Traitor Tracing w/ short ciphertexts

Short Signatures

Threshold Signatures

Somewhat Homomorphic Encryption

4-Way Diffie Hellman?

Multilinear Maps

Many groups: G, G, ... G,
* Generators g;

Source group: (G = (51, 9 = g1
€;i,j G; >l<) Gj ? Gi—l—j
€i,j (95 » gj) — g?—l—j

* Often write € = €; ;

Pairing: (i 4+ 7 < k)

Gives multilinear map: e : G" — G,

a’]_ ...a’lf,

6(9 y 7ga,€) :ggl

Potential Hard Problems in Multilinear Groups

* DL, CDH, generalization of DLIN

* Multilinear DDH: k-1
?
9.9 ...,g% gt —c=] a
i=1

* ML-CDH forall ¥’ < k
— ML-DDH easy for all Kj/ < K

 Many others:
— Subgroup Decision
— Multilinear DH Exponent

Potential Applications

Or: Imagine what we could do...

N-Way Key Exchange

Broadcast Encryption

* Alice wants to broadcast a message

* Only a subset of players should decrypt
.

 Will build via constrained PRFs

PRFs

Keyed functions that look like random functions

f:ExX —)

All or Nothing:
e Given k, caneval fr(x) atall @

* Without £, fk() indistinguishable from
random

Constrained PRFs [Bw’13]

Given set S of inputs, give “constrained key”:
ks < constrain(k,S)
kg can compute fr.(x) on all points 2 € S

fk(il’}) iftxels

eval(kg,x) =
(ks) 1 otherwise

Goal: allow interesting sets .S

Example: GGM

Constrained keys = values of nodes

k

Constrained sets = sets with same prefix

Other Possible Set Systems

Left/Right: X' — \)?
* Left sets: (g, y) for fixed zg

* Right sets: (x, yq) for fixed g

Bit-fixing: X = {0,1}"
* Sets correspondto v € {0,1,7}"

 Can eval at all x that agree with v (? wildcard)
Example:v — (0, 7,7, 1) — 5 = {0001, 0011, 0101, 0111}

Circuit Predicates

Bit-Fixing PRF Construction

Use kK = n + 1 multilinear map
Setup:

* Choose random {d; g }icn]. 80,1}
* Choose random «

* Secret key: (o, {d; g}icin),pef0,11)

Function:

Bit-Fixing PRF Construction

& dz,acz
fr(z) = gott

Constrain:

* Input v € {0,1,7}"

cletV={ien|:v;, #7}

® S ; dz V.,
ky = (91+|V|)QH’LEV T

* ky = (k(,, {gdi’ﬁ}ig\/,ﬁe{(),l})

Bit-Fixing PRF Construction

& dz,acz
fk(w) — 0Ok L
k/ - OéH-EVd?;,V.
v (91+|V|) ’ '

Eval:

° S ; dz x ;
T = (gn_yy) ligvidies)
* Pair with & to get output

Broadcast Encryption from Bit-Fixing PRFs

Setup:
 Generate a Bit-Fixing PRF f with key k
* For each player 7 € [n], compute:

k; < constrain(k,v)

where v; = 1, v; =7for j £ ¢

Encrypt to a subset S C [n]of players:
e Let kg = f(S)
* Use symmetric cipher with key £ 4

Policy-Based Key Agreement

robot,advanced

7

human, ogre,
adult

human, child human, child
P

human, adult duck

robot V (human A chjild)

!

Shared secret key

Build from constrained PRFs for circuit predicates

Other Applications of Multilinear Maps

e Attribute-Based Encryption
* Witnhess Encryption

* Obfuscation

* Functional Encryption

Rest of Talk

Two recent candidates for multilinear maps
* From ideal lattices
* Over the integers

Not true multilinear maps
* Randomized

* Noisy

May still be used in many applications

Relaxation: Graded Encodings

Scalar a = Level 0 encoding of «x
g“ > Level 1 encoding of o

g5 = Level 2 encoding of v

Graded encoding schemes: encoding not unique
‘Ring R,a € R

Si(a): set of level 7 encodings of v

Relaxation: Graded Encodings

Requirements:

 Add same level encodings

a € S,,;(a)

beS-(B)

add(a,b) € S{*1)

* Multiply encodings

aESi(a) bESJ(-B)

mult(a,b) € S

(aB)

1+

(aslongas i+ 7 < k)

Pairing Equivalent:

a,b
9%, 9" = g%g" = g°*"

95,95 — g5g5 = g5+?

sa+ b

a,b— ab
b b b
a,g” —(g°)" =g°
9%, g" — e(g®, g°) = g5°

The GGH Construction

Notation

R=7Z|X]/(X"+1)
K=QX|/(X"+1)

R'= R/qR

[u]q : reduce mod ¢

(g): principle ideal generated by g € R

Properties:
» R«— 7] R «— 7
* U, V'short” 2> u+y uv'short”

The GGH Construction

e g € R “short” secret, g_l c K*“short”

+ 7 =(g)
*T=R/T+—{e+71:ec R}
* 7z ¢ R’ secret, not short

* Level 7 encodingofe +7Z € T":

C
— € R, c ce+Z,“short”
ZZ

Sett — {E cee+ 1, |c| Small}
Z’L

Encoding Operations

e Addition:
C C
U = — € S,L.(eﬁz) =2 ¢ Sz(eﬁz)
VA VA
C1 + Co T
U; + U = - & Si(eﬁ_eﬁ_)
v/
Proof

C1 + Co € (61 —|—€2) +7
C1 + co “short”

Encoding Operations

* Multiplication:

C1 c S(e1+z) _ C2 c S(e2+z)

u; =
/A 2 Z]
C1C2 (ere2+7)
Uuiun = it c S’H—J
Proof:

C1Co €& (6162) +7
C1C2 “short”

Generating Level O Encodings

Level 0 encodingof e +Z:shortc e e+ 1

Problem: can’t encode coset w/o knowing &
Resolution: sample coset by sampling short rep

Moving to Higher Levels

C/

Need operation ¢ — — where ¢, ¢’ c e+ 7
Z

Problem: z is secret

Solution: publish level 1 encodingof 1 + 7

A
y = {—} ac]l+Z,“hort”
Zlq

To move to level 1:

c — |ycl, = [%L

Moving to Higher Levels

Insecure: [yc|, — c by dividing by y
Solution: rerandomize
* Publish many level 1 encodings of O:

b;

X, = | — b, € Z, “short”
7
-~ dgq
To move to level 1:
_ac —+ Z Tibi |
c%[yc%—Zrixi]q: ZZ
i - 1q

r; € Z, “small”

Testing for Equality

Need to be able to test equality
*Suffices to test if level rencoding encodes 0

Solution: publish “zero test” parameter

pzt —

Testif |p,, U] is “small”

SN

3

q

h “somewhat small”

Testing for Equality

hz" c C
[Pztu]q — k| T h—
g % dq - g- q

If wencodes0: c € 7
C _
— = Cg (Multiplication over K)

3

p.,ulg = [heg '], = heg™" “short’

Testing for Equality

‘hz" ¢ - C
L& 271, L 8l

If uencodes non-zero: ¢ ¢ 7

Extraction

Each party needs to agree on same value
*But have different encoding of same element

Solution: Use zero-test parameter
/
If 1, uencode same value,

[pztu]q — [pztu/]q — [Pzt(u — U/)]qis “short”

* [pztu]qv [Pztu/]qagree on most-significant bits

Extraction

To extract at level x
» Collect most-significant bits of |p,, U],

* Apply strong randomness extractor to get
uniform bit string

What needs to be a secret?

e 7:otherwise DL is easy

* : compute p’zt = |gp.t|q = hz"],
. . C
Given level 1 encoding 1 = =

Compute V1 =
Vo —

Z

:P/ztuyﬁ_l]q =ha""'c

:P,ztyfi]q = ha"

No &, so can “divide mod Z”
— Obtain ¢’ € ¢ + Z, “short”

What needs to be a secret?

* h: compute p’, = p.:/h|, = 2" /g],
Pick randomizer

b, b; = gb;

x; = | 2t g0;

L Z], b; “short”

Compute

p/z/t — [(Plzt)zxi]q — [bgz%/g]q

Now we have level 2k zero tester!
—> Can solve MLDDH

Security of GGH

* No security proof from standard assumptions

— Instead: extensive cryptanalysis

e Supposed hard problems:

— Discrete Log
— Multilinear DDH

e Easy problems:
— Decision Linear
— Subgroup Decision

Efficiency of GGH

Parameterized by security), level g
All encodings represented as elements in ZZ’

For functionality, need (at minimum)

logg > O(kX + klogn)

For security, need logqg < n/\
— Implies 1, > O(/{,)\2>

Size of encodings: O(k2\?)

Efficiency of GGH

* Size of encodings: O(/{z)\g)

* Size of public parameters:
— Level 1 encoding of 1
— 11 level 1 encodings of O
(m > O(nlog q) for rerandomization)
— Zero tester

Total public parameter size: é(k4)\6)

* Even larger for some applications

The CLT Construction

The CLT Construction

R = 7", component-wise add/mult

Let p = (p1,...,Pn) € R vector of primes
R = R/pR

g € IR “short”, secret vector of primes
1= (g)
T=R/T+—{e:0<¢; <g;}

7z € R’ secret, not short

Over the Integers

Let ¢ = Hpi

CRT isomorphism:
R =7"/pZ" +— Z,
Apply to scheme:
z € Lgrandom
Level j encoding ofe = (eq, ..., e,):
; € Ly st. c=r1;g; +e; (mod p;)
r;g; + €5 small

Secrets’?

Need same secrets as GGH: ¢, z, h

What about the primes?

* Factorization of ¢ known > 1D problem
* Look at what happens mod p

* GGH zero tester, encodings of O, 1:

hz"
Dzt = 7 (mod p) gz, = i (mod p)
2
1 + sg
y = (mod p)

Z

Secrets’?

Combine:

K—1 1—1

2y patlp = [hrp(1 4+ 59)" "',
= hri(1 4 sg)" 'g" !

Compute for many 7, £, GCD =2 h
Compute formany ¢ > 2, ¢,GCD 2> hg—=2> ¢
From h, g easy to compute 2

For security, must keep primes secret!

Other Changes

Keeping primes secret introduces several issues:

* Generating level 0 encodings
Must generate integer ¢ such that
C (mod pj) is short

Cannot sample without knowing D!

Solution: publish many level 0 encodings wy of
random values

— To sample, take random subset sums

Other Changes

Keeping primes secret introduces several issues:
* Zero testing:

GGH zero tester:
h.:z"
J
Pzt — (mOd pj)
g;

Level K encoding of O:

LS
= === od p;
U K (mod pj)

Zero Testing

Multiply GGH zero tester with encoding of O:
pxu = hir; (mod p;)

Product is “short” mod p;, but we can’t test!

Instead, want product to be “short” mod ¢

CRT Isomorphism

c — ¢; = ¢ mod p;

c; — c= ch H pj/(pj_,l mod p,) mod ¢

J 3'#J

Coefficient of ¢; >>¢q
* Small ¢; do not give small ¢

Need to cancel out some the coefficient

Zero Testing

Solution: new zero tester

H pjr | (mod p;)

3’7

Pzt =

Multiply with encoding of zero:

pztu = hjr; H pjs (mod p;)
J'#J

CRT: PrtU = Z hjir; H pj» (mod q)

J J'#3

Zero Testing

pztu—Zh T I_Ip7 (mod q)

7' %

poiu| = n |h| |r] << p" g

Security of CLT

* Just like GGH, no security proof from standard
assumptions

e Supposed hard problems:
— Discrete Log
— Multilinear DH
— Decision Linear?
— Subgroup Decision?

Efficiency of CLT

All encodings elements of Zq
Size of encodings same as GGH: O(/{Q)\S)
Public params:

« Asymptotically same: O(k4)\6)
e CLT offer some heuristics to reduce size

Open Problems

* From standard assumptions

* Remove secrets

— Necessary to remove trusted setup from key
exchange

— How to remove zero tester?

* More Efficient?

