Multilinear Maps and Their Applications

Mark Zhandry – Stanford University

Diffie-Hellman Key Exchange

Exchange keys over a public channel:

- Public group \mathbb{G} , generator g, order p

(Potential) Hard Problems in Groups

• Discrete Log (DL):

$$g, g^a \longrightarrow a$$

• Computational Diffie-Hellman (CDH):

$$g, g^a, g^b \longrightarrow g^{ab}$$

• Decisional Diffie-Hellman (DDH):

$$g, g^a, g^b, g^c \longrightarrow c = ab?$$

• Many Others:

- Decision Linear (DLIN): $g_1, g_2, g_3, g_1^a, g_2^b, g_3^c \longrightarrow c = a + b?$

Uses of Diffie-Hellman

- Two party key exchange
- Encryption
- Signatures
- •

3-Way Diffie-Hellman?

3-Way Diffie-Hellman

Problem: Need way to multiply g^b and g^c

Solution [Joux'00]: Use bilinear maps

$$e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_2$$
$$e(g^a, g^b) = g_2^{ab}$$

•Bilinear group: group with bilinear map

3-Way Diffie-Hellman?

Potential Hard Problems in Bilinear Groups

- DL, CDH, DLIN
- DDH? $e(g^{a}, g^{b}) \stackrel{?}{=} e(g, g^{c})$
- Bilinear DDH: $g, g^a, g^b, g^c, g^d_2 \longrightarrow d = abc?$
- Many Others
 - Bilinear Diffie-Hellman Exponent
 - Subgroup Decision

Uses of Bilinear Maps

- Identity-Based Encryption
- Broadcast Encryption w/ short ciphertexts
- Traitor Tracing w/ short ciphertexts
- Short Signatures
- Threshold Signatures
- Somewhat Homomorphic Encryption

4-Way Diffie Hellman?

Multilinear Maps

Many groups: $\mathbb{G}_1, \mathbb{G}_2, \ldots \mathbb{G}_{\kappa}$

• Generators g_i

Source group: $\mathbb{G} = \mathbb{G}_1$, $g = g_1$

Pairing:

$$\begin{aligned} e_{i,j} : \mathbb{G}_i \times \mathbb{G}_j &\longrightarrow \mathbb{G}_{i+j} \\ e_{i,j}(g_i^a, g_j^b) = g_{i+j}^{ab} \end{aligned} (i+j \leq \kappa) \end{aligned}$$

• Often write $e = e_{i,j}$

Gives multilinear map: $e: \mathbb{G}^{\kappa} \longrightarrow \mathbb{G}_{\kappa}$ $e(g^{a_1}, \cdots, g^{a_{\kappa}}) = g_{\kappa}^{a_1 \cdots a_{\kappa}}$

Potential Hard Problems in Multilinear Groups

- DL, CDH, generalization of DLIN
- Multilinear DDH:

$$g, g^{a_1}, \dots, g^{a_{\kappa+1}}, g^c_{\kappa} \longrightarrow c \stackrel{?}{=} \prod_{i=1}^r a_i$$

 $\kappa + 1$

• ML-CDH for all $\kappa' \leq \kappa$ – ML-DDH easy for all $\kappa' < \kappa$

- Many others:
 - Subgroup Decision
 - Multilinear DH Exponent

Potential Applications

Or: Imagine what we could do...

N-Way Key Exchange

Broadcast Encryption

- Alice wants to broadcast a message
- Only a subset of players should decrypt

Will build via constrained PRFs

PRFs

Keyed functions that look like random functions

$$f: \mathcal{K} \times \mathcal{X} \longrightarrow \mathcal{Y}$$

All or Nothing:

- Given k, can eval $f_k(x)$ at all x
- Without $k,\,f_k(\cdot)\,\mathrm{indistinguishable}$ from random

Constrained PRFs [BW'13]

Given set S of inputs, give "constrained key":

$$k_{S} \leftarrow \text{constrain}(k, S)$$

$$k_{S} \text{ can compute } f_{k}(x) \text{ on all points } x \in S$$

$$\text{eval}(k_{S}, x) = \begin{cases} f_{k}(x) & \text{if } x \in S \\ \bot & \text{otherwise} \end{cases}$$

Goal: allow interesting sets S

Example: GGM

Constrained keys = values of nodes

Constrained sets = sets with same prefix

Other Possible Set Systems

Left/Right: $\mathcal{X} = \mathcal{W}^2$

- Left sets: (x_0, y) for fixed x_0
- Right sets: (x,y_0) for fixed y_0

Bit-fixing: $\mathcal{X} = \{0,1\}^n$

- Sets correspond to $\mathbf{v} \in \{0, 1, ?\}^n$
- Can eval at all x that agree with \mathbf{v} (? wildcard) Example: $\mathbf{v} = (0, ?, ?, 1) \rightarrow S = \{0001, 0011, 0101, 0111\}$

Circuit Predicates

Bit-Fixing PRF Construction

Use $\kappa = n + 1$ multilinear map

Setup:

- Choose random $\{d_{i,\beta}\}_{i\in[n],\beta\in\{0,1\}}$
- Choose random α
- Secret key: $(\alpha, \{d_{i,\beta}\}_{i \in [n], \beta \in \{0,1\}})$

Function:

$$f_k(x) = g_{\kappa}^{\alpha \prod_i d_{i,x_i}}$$

Bit-Fixing PRF Construction

$$f_k(x) = g_{\kappa}^{\alpha \prod_i d_{i,x_i}}$$

Constrain:

- Input $\mathbf{v} \in \{0, 1, ?\}^n$
- Let $V = \{i \in [n] : \mathbf{v}_i \neq ?\}$
- $k'_{\mathbf{v}} = (g_{1+|V|})^{\alpha \prod_{i \in V} d_{i,\mathbf{v}_i}}$
- $k_{\mathbf{v}} = (k'_{\mathbf{v}}, \{g^{d_{i,\beta}}\}_{i \notin V, \beta \in \{0,1\}})$

Bit-Fixing PRF Construction

$$f_k(x) = g_{\kappa}^{\alpha \prod_i d_{i,x_i}}$$
$$k'_{\mathbf{v}} = (g_{1+|V|})^{\alpha \prod_{i \in V} d_{i,\mathbf{v}_i}}$$

Eval:

- $T = (g_{n-|V|})^{\prod_{i \notin V} (d_{i,x_i})}$ Pair with $k'_{\mathbf{v}}$ to get output

Broadcast Encryption from Bit-Fixing PRFs

Setup:

- Generate a Bit-Fixing PRF f with key k
- For each player $i \in [n]$, compute:

$$k_i \leftarrow \texttt{constrain}(k, \mathbf{v})$$
 where $\mathbf{v}_i = 1$, $\mathbf{v}_j = ?$ for $j \neq i$

Encrypt to a subset $S \subseteq [n]$ of players:

- Let $k_S = f(S)$
- Use symmetric cipher with key k_S

Policy-Based Key Agreement

Build from constrained PRFs for circuit predicates

Other Applications of Multilinear Maps

- Attribute-Based Encryption
- Witness Encryption
- Obfuscation
- Functional Encryption

Rest of Talk

Two recent candidates for multilinear maps

- From ideal lattices
- Over the integers

Not true multilinear maps

- Randomized
- Noisy

May still be used in many applications

Relaxation: Graded Encodings

Scalar
$$a \rightarrow$$
 Level 0 encoding of α
 $g^a \rightarrow$ Level 1 encoding of α
 $g_2^a \rightarrow$ Level 2 encoding of α

Graded encoding schemes: encoding not unique •Ring $R, \alpha \in R$

$$S^{(lpha)}_i$$
: set of level i encodings of $lpha$

Relaxation: Graded Encodings

Requirements:

Add same level encodings

$$a \in S_i^{(\alpha)} \quad b \in S_i^{(\beta)}$$

add $(a, b) \in S_i^{(\alpha + \beta)}$

• Multiply encodings $a \in S_i^{(\alpha)}$ $b \in S_j^{(\beta)}$ $\operatorname{mult}(a, b) \in S_{i+j}^{(\alpha\beta)}$

(as long as $i+j \leq \kappa$)

Pairing Equivalent:

$$a, b \rightarrow a + b$$

$$g^{a}, g^{b} \rightarrow g^{a}g^{b} = g^{a+b}$$

$$g^{a}_{2}, g^{b}_{2} \rightarrow g^{a}_{2}g^{b}_{2} = g^{a+b}_{2}$$

$$a, b \to ab$$

 $a, g^b \to (g^b)^a = g^{ab}$
 $g^a, g^b \to e(g^a, g^b) = g_2^{ab}$

The GGH Construction

Notation

$$\begin{split} &R = \mathbb{Z}[X]/(X^n + 1) \\ &\mathbb{K} = \mathbb{Q}[X]/(X^n + 1) \\ &R' = R/qR \\ &[\mathbf{u}]_q : \text{reduce mod } q \\ &\langle \mathbf{g} \rangle : \text{principle ideal generated by } \mathbf{g} \in R \end{split}$$

Properties:

•
$$R \longleftrightarrow \mathbb{Z}^n, R' \longleftrightarrow \mathbb{Z}^n_q$$

• \mathbf{u}, \mathbf{v} short" $\rightarrow \mathbf{u} + \mathbf{y} \mathbf{u} \mathbf{v}$ short"

The GGH Construction

- $\mathbf{g} \in R$ "short", secret, $\mathbf{g}^{-1} \in \mathbb{K}$ "short"
- $\mathcal{I} = \langle \mathbf{g}
 angle$
- $T = R/\mathcal{I} \longleftrightarrow \{\mathbf{e} + \mathcal{I} : \mathbf{e} \in R\}$
- $\mathbf{z} \in R'$ secret, not short
- Level i encoding of $\mathbf{e} + \mathcal{I} \in T$:

$$rac{\mathbf{c}}{\mathbf{z}^i} \in R_q \qquad \mathbf{c} \in \mathbf{e} + \mathcal{I}$$
, "short"

$$S_i^{\mathbf{e}+\mathcal{I}} = \left\{ \frac{\mathbf{c}}{\mathbf{z}^i} : \mathbf{c} \in \mathbf{e} + \mathcal{I}, \|\mathbf{c}\| \text{ small} \right\}$$

Encoding Operations

• Addition:

$$\mathbf{u}_1 = \frac{\mathbf{c}_1}{\mathbf{z}^i} \in S_i^{(\mathbf{e}_1 + \mathcal{I})} \quad \mathbf{u}_2 = \frac{\mathbf{c}_2}{\mathbf{z}^i} \in S_i^{(\mathbf{e}_2 + \mathcal{I})}$$

$$\mathbf{u}_1 + \mathbf{u}_2 = \frac{\mathbf{c}_1 + \mathbf{c}_2}{\mathbf{z}^i} \in S_i^{(\mathbf{e}_1 + \mathbf{e}_2 + \mathcal{I})}$$

Proof:

$$\mathbf{c}_1 + \mathbf{c}_2 \in (\mathbf{e}_1 + \mathbf{e}_2) + \mathcal{I}$$

 $\mathbf{c}_1 + \mathbf{c}_2$ "short"

Encoding Operations

• Multiplication:

$$\mathbf{u}_1 = \frac{\mathbf{c}_1}{\mathbf{z}^i} \in S_i^{(\mathbf{e}_1 + \mathcal{I})} \quad \mathbf{u}_2 = \frac{\mathbf{c}_2}{\mathbf{z}^j} \in S_j^{(\mathbf{e}_2 + \mathcal{I})}$$

$$\mathbf{u}_1\mathbf{u}_2 = \frac{\mathbf{c}_1\mathbf{c}_2}{\mathbf{z}^{i+j}} \in S_{i+j}^{(\mathbf{e}_1\mathbf{e}_2 + \mathcal{I})}$$

Proof:
$$\mathbf{c}_1\mathbf{c}_2\in (\mathbf{e}_1\mathbf{e}_2)+\mathcal{I}$$
 $\mathbf{c}_1\mathbf{c}_2$ "short"

Generating Level 0 Encodings

Level 0 encoding of $\mathbf{e} + \mathcal{I}$: short $\mathbf{c} \in \mathbf{e} + \mathcal{I}$

Problem: can't encode coset w/o knowing \mathbf{g} **Resolution:** sample coset by sampling short rep

Fact: Sample "short" **c** from appropriate distribution \rightarrow coset **c** + \mathcal{I} close to uniform

Moving to Higher Levels

Need operation $\mathbf{c}
ightarrow rac{\mathbf{c}'}{\mathbf{z}}$ where $\mathbf{c}, \mathbf{c}' \in \mathbf{e} + \mathcal{I}$

Problem: \mathbf{z} is secret

Solution: publish level 1 encoding of $1+\mathcal{I}$

$$\mathbf{y} = \left[egin{smallmatrix} \mathbf{a} \ \mathbf{z} \end{bmatrix}_q \ \mathbf{a} \in 1 + \mathcal{I}$$
, "short"

To move to level 1:

$$\mathbf{c}
ightarrow [\mathbf{y}\mathbf{c}]_q = \left[rac{\mathbf{a}\mathbf{c}}{\mathbf{z}}
ight]_q$$

Moving to Higher Levels

Insecure: $[\mathbf{yc}]_q \rightarrow \mathbf{c}$ by dividing by \mathbf{y} Solution: rerandomize

• Publish many level 1 encodings of 0:

$$\mathbf{x}_i = egin{bmatrix} \mathbf{b}_i \ \mathbf{z} \end{bmatrix}_q \quad \mathbf{b}_i \in \mathcal{I}$$
, "short"

To move to level 1:

$$\begin{split} \mathbf{c} &\to [\mathbf{y}\mathbf{c} + \sum_{i} r_i \mathbf{x}_i]_q = \left[\frac{\mathbf{a}\mathbf{c} + \sum_{i} r_i \mathbf{b}_i}{\mathbf{z}}\right]_q \\ &r_i \in \mathbb{Z}, \text{"small"} \end{split}$$

Testing for Equality

Need to be able to test equality
Suffices to test if level *r*encoding encodes 0

Solution: publish "zero test" parameter $\mathbf{p}_{zt} = \left[\frac{\mathbf{h}\mathbf{z}^{\kappa}}{\mathbf{g}}\right]_{q} \mathbf{h}$ "somewhat small"

Test if $[\mathbf{p}_{zt}\mathbf{u}]_q$ is "small"

Testing for Equality

$$[\mathbf{p}_{zt}\mathbf{u}]_q = \left[rac{\mathbf{h}\mathbf{z}^\kappa}{\mathbf{g}}rac{\mathbf{c}}{\mathbf{z}^\kappa}
ight]_q = \left[\mathbf{h}rac{\mathbf{c}}{\mathbf{g}}
ight]_q$$

If \mathbf{u} encodes 0: $\mathbf{c} \in \mathcal{I}$

 $rac{\mathbf{c}}{\mathbf{g}} = \mathbf{c}\mathbf{g}^{-1}$ (Multiplication over \mathbbm{K})

$$[\mathbf{p}_{zt}\mathbf{u}]_q = [\mathbf{hcg}^{-1}]_q = \mathbf{hcg}^{-1}$$
 "short"

Testing for Equality

$$[\mathbf{p}_{zt}\mathbf{u}]_q = \left[\frac{\mathbf{h}\mathbf{z}^{\kappa}}{\mathbf{g}}\frac{\mathbf{c}}{\mathbf{z}^{\kappa}}\right]_q = \left[\mathbf{h}\frac{\mathbf{c}}{\mathbf{g}}\right]_q$$

If \mathbf{u} encodes non-zero: $\mathbf{c} \notin \mathcal{I}$

Thm [GGH]: If
$$\mathbf{c}
otin \mathcal{I}$$
, then $\left[\mathbf{h} rac{\mathbf{c}}{\mathbf{g}}
ight]_q$ is large w.h.p.

Extraction

Each party needs to agree on same valueBut have different encoding of same element

Solution: Use zero-test parameter • If \mathbf{u}, \mathbf{u}' encode same value, $[\mathbf{p}_{zt}\mathbf{u}]_q - [\mathbf{p}_{zt}\mathbf{u}']_q = [\mathbf{p}_{zt}(\mathbf{u} - \mathbf{u}')]_q$ is "short"

• $[\mathbf{p}_{zt}\mathbf{u}]_q, [\mathbf{p}_{zt}\mathbf{u}']_q$ agree on most-significant bits

Extraction

To extract at level κ :

- Collect most-significant bits of $[\mathbf{p}_{zt}\mathbf{u}]_q$
- Apply strong randomness extractor to get uniform bit string

What needs to be a secret?

- z: otherwise DL is easy
- **g**: compute $\mathbf{p}'_{zt} = [\mathbf{g}\mathbf{p}_{zt}]_q = [\mathbf{h}\mathbf{z}^{\kappa}]_q$ Given level 1 encoding $\mathbf{u} = \frac{\mathbf{c}}{\mathbf{z}}$

Compute
$$\mathbf{v}_1 = [\mathbf{p}'_{zt}\mathbf{u}\mathbf{y}^{\kappa-1}]_q = \mathbf{h}\mathbf{a}^{\kappa-1}\mathbf{c}$$

 $\mathbf{v}_2 = [\mathbf{p}'_{zt}\mathbf{y}^{\kappa}]_q = \mathbf{h}\mathbf{a}^{\kappa}$

No
$${f g}$$
, so can "divide mod ${\cal I}$ "
– Obtain ${f c}'\in {f c}+{\cal I}$, "short"

What needs to be a secret?

• h: compute $\mathbf{p}'_{zt} = [\mathbf{p}_{zt}/\mathbf{h}]_q = [\mathbf{z}^{\kappa}/\mathbf{g}]_q$ Pick randomizer

$$\mathbf{x}_i = \left[egin{array}{c} \mathbf{b}_i \ \mathbf{z} \end{array}
ight]_q \qquad egin{array}{c} \mathbf{b}_i = \mathbf{g} \mathbf{b}_i' \ \mathbf{b}_i' & ext{"short"} \end{array}$$

Compute

$$\mathbf{p}_{zt}'' = [(\mathbf{p}_{zt}')^2 \mathbf{x}_i]_q = [\mathbf{b}_i' \mathbf{z}^{2\kappa} / \mathbf{g}]_q$$

Now we have level 2k zero tester! \rightarrow Can solve MLDDH

Security of GGH

No security proof from standard assumptions
 – Instead: extensive cryptanalysis

- Supposed hard problems:
 - Discrete Log
 - Multilinear DDH

- Easy problems:
 - Decision Linear
 - Subgroup Decision

Efficiency of GGH

- Parameterized by security λ , level κ
- All encodings represented as elements in \mathbb{Z}_{a}^{n}

- For functionality, need (at minimum) $\log q \geq O(\kappa \lambda + \kappa \log n)$
- Implies $n \geq \tilde{O}(\kappa \lambda^2)$
- Size of encodings: $ilde{O}(\kappa^2\lambda^3)$

Efficiency of GGH

- Size of encodings: $ilde{O}(\kappa^2\lambda^3)$
- Size of public parameters:
 - Level 1 encoding of 1
 - m level 1 encodings of 0 ($m > O(n \log q)$ for rerandomization)

– Zero tester

Total public parameter size: $ilde{O}(k^4\lambda^6)$

• Even larger for some applications

The CLT Construction

The CLT Construction

 $R = \mathbb{Z}^n$, component-wise add/mult Let $\mathbf{p} = (p_1, ..., p_n) \in R$ vector of primes $R' = R/\mathbf{p}R$ $\mathbf{g} \in R$ "short", secret vector of primes $\mathcal{I} = \langle \mathbf{g} \rangle$ $T = R/\mathcal{I} \longleftrightarrow \{\mathbf{e} : 0 \le e_i \le g_i\}$ $\mathbf{z} \in R'$ secret, not short

Over the Integers

Let $q = \left[\begin{array}{c} p_i \end{array} \right]$ **CRT** isomorphism: $R' = \mathbb{Z}^n / \mathbf{p} \mathbb{Z}^n \longleftrightarrow \mathbb{Z}_a$ Apply to scheme: $z \in \mathbb{Z}_q$ random Level i encoding of $\mathbf{e} = (e_1, ..., e_n)$: $\frac{c}{\gamma^i} \in \mathbb{Z}_q \text{ s.t. } c = r_j g_j + e_j \pmod{p_i}$ $r_i g_i + e_j$ small

Secrets?

Need same secrets as GGH: g, z, h

What about the primes?

- Factorization of q known \rightarrow 1D problem
- Look at what happens mod p
- GGH zero tester, encodings of 0, 1:

$$p_{zt} = \frac{hz^{\kappa}}{g} \pmod{p} \quad x_{\ell} = \frac{r_{\ell}g}{z} \pmod{p}$$
$$y = \frac{1+sg}{z} \pmod{p}$$

Secrets?

Combine:

$$[x_{\ell}^{i}y^{\kappa-i}p_{zt}]_{p} = [hr_{\ell}^{i}(1+sg)^{\kappa-i}g^{i-1}]_{p}$$
$$= hr_{\ell}^{i}(1+sg)^{\kappa-i}g^{i-1}$$

Compute for many i, ℓ , GCD $\rightarrow h$ Compute for many $i \ge 2, \ell$, GCD $\rightarrow hg \rightarrow g$ From h, g easy to compute z

For security, must keep primes secret!

Other Changes

Keeping primes secret introduces several issues:

• Generating level 0 encodings

Must generate integer c such that

 $c \pmod{p_j}$ is short

Cannot sample without knowing $p_j!$

Solution: publish many level 0 encodings w_ℓ of random values

– To sample, take random subset sums

Other Changes

Keeping primes secret introduces several issues:

• Zero testing:

GGH zero tester:

$$p_{zt} = \frac{h_j z^{\kappa}}{g_j} \pmod{p_j}$$

Level κ encoding of 0:

$$u = \frac{r_j g_j}{z^k} \pmod{p_j}$$

Zero Testing

Multiply GGH zero tester with encoding of 0:

$$p_{zt}u = h_j r_j \pmod{p_j}$$

Product is "short" mod p_j , but we can't test!

Instead, want product to be "short" mod q

CRT Isomorphism

$$c \longrightarrow c_j = c \mod p_j$$

$$c_j \longrightarrow c = \left[\sum_j c_j \left(\prod_{j' \neq j} p_{j'}(p_{j'}^{-1} \mod p_j) \right) \right] \mod q$$

Coefficient of $c_j >> q$

• Small c_j do not give small c

Need to cancel out some the coefficient

Zero Testing

Solution: new zero tester

$$p_{zt} = \frac{h_j z^k}{g_j} \left(\prod_{j' \neq j} p_{j'} \right) \pmod{p_j}$$

Multiply with encoding of zero:

$$p_{zt}u = h_j r_j \prod_{j' \neq j} p_{j'} \pmod{p_j}$$

CRT:
$$p_{zt}u = \sum_j h_j r_j \prod_{j' \neq j} p_{j'} \pmod{q}$$

Zero Testing

$$p_{zt}u = \sum_{j} h_j r_j \prod_{j' \neq j} p_{j'} \pmod{q}$$

$|p_{zt}u| \approx n |h| |r| p^{n-1} < p^n \approx q$

Thm [CLT]: If u does not encode 0, then $|p_{zt}u| pprox q$ whp

Security of CLT

Just like GGH, no security proof from standard assumptions

- Supposed hard problems:
 - Discrete Log
 - Multilinear DH
 - Decision Linear?
 - Subgroup Decision?

Efficiency of CLT

All encodings elements of \mathbb{Z}_q

Size of encodings same as GGH: $ilde{O}(\kappa^2\lambda^3)$

Public params:

- Asymptotically same: $ilde{O}(k^4\lambda^6)$
- CLT offer some heuristics to reduce size

Open Problems

• From standard assumptions

- Remove secrets
 - Necessary to remove trusted setup from key exchange
 - How to remove zero tester?

• More Efficient?