
Multilinear Maps and Their
Applications

Mark Zhandry – Stanford University

Diffie-Hellman Key Exchange

Exchange keys over a public channel:

• Public group , generator , order

(Potential) Hard Problems in Groups

• Discrete Log (DL):

• Computational Diffie-Hellman (CDH):

• Decisional Diffie-Hellman (DDH):

• Many Others:

– Decision Linear (DLIN):

Uses of Diffie-Hellman

• Two party key exchange

• Encryption

• Signatures

• …

3-Way Diffie-Hellman?

3-Way Diffie-Hellman

Problem: Need way to multiply and

Solution [Joux’00]: Use bilinear maps

•Bilinear group: group with bilinear map

3-Way Diffie-Hellman?

Potential Hard Problems in Bilinear Groups

• DL, CDH, DLIN

• DDH?

• Bilinear DDH:

• Many Others

– Bilinear Diffie-Hellman Exponent

– Subgroup Decision

– …

Uses of Bilinear Maps

• Identity-Based Encryption

• Broadcast Encryption w/ short ciphertexts

• Traitor Tracing w/ short ciphertexts

• Short Signatures

• Threshold Signatures

• Somewhat Homomorphic Encryption

• …

4-Way Diffie Hellman?

Multilinear Maps

Many groups:

• Generators

Source group: ,

Pairing:

• Often write

Gives multilinear map:

()

Potential Hard Problems in Multilinear Groups

• DL, CDH, generalization of DLIN

• Multilinear DDH:

• ML-CDH for all

– ML-DDH easy for all

• Many others:

– Subgroup Decision

– Multilinear DH Exponent

Potential Applications

Or: Imagine what we could do…

N-Way Key Exchange

Broadcast Encryption

• Alice wants to broadcast a message

• Only a subset of players should decrypt

• Will build via constrained PRFs

✓ ✓ ✓

PRFs

Keyed functions that look like random functions

All or Nothing:

• Given , can eval at all

• Without , indistinguishable from
random

Constrained PRFs [BW’13]

Given set of inputs, give “constrained key”:

 can compute on all points :

Goal: allow interesting sets

Example: GGM

Constrained keys = values of nodes

Constrained sets = sets with same prefix

x0 ⟶

x1 ⟶

x2 ⟶

Other Possible Set Systems

Left/Right:

• Left sets: for fixed

• Right sets: for fixed

Bit-fixing:

• Sets correspond to

• Can eval at all that agree with (wildcard)

Circuit Predicates

Example:

Bit-Fixing PRF Construction

Use multilinear map

Setup:

• Choose random

• Choose random

• Secret key:

Function:

Bit-Fixing PRF Construction

Constrain:

• Input

• Let

•

•

Bit-Fixing PRF Construction

Eval:

•

• Pair with to get output

Broadcast Encryption from Bit-Fixing PRFs

Setup:

• Generate a Bit-Fixing PRF with key

• For each player , compute:

 where , for

Encrypt to a subset of players:

• Let

• Use symmetric cipher with key

Policy-Based Key Agreement

✓ ✓ ✓

Shared secret key

Build from constrained PRFs for circuit predicates

Other Applications of Multilinear Maps

• Attribute-Based Encryption

• Witness Encryption

• Obfuscation

• Functional Encryption

• …

Rest of Talk

Two recent candidates for multilinear maps

• From ideal lattices

• Over the integers

Not true multilinear maps

• Randomized

• Noisy

May still be used in many applications

Relaxation: Graded Encodings

Scalar  Level 0 encoding of

  Level 1 encoding of

  Level 2 encoding of

 …

Graded encoding schemes: encoding not unique

•Ring

: set of level encodings of

Relaxation: Graded Encodings

Requirements:

• Add same level encodings

• Multiply encodings

(as long as)

Pairing Equivalent:

The GGH Construction

Notation

 : reduce mod

 : principle ideal generated by

Properties:

• ,

• “short”  , “short”

The GGH Construction

• “short”, secret, “short”

•

•

• secret, not short

• Level encoding of :

 , “short”

Encoding Operations

• Addition:

 Proof:

“short”

Encoding Operations

• Multiplication:

 Proof:

“short”

Generating Level 0 Encodings

Level 0 encoding of : short

Problem: can’t encode coset w/o knowing

Resolution: sample coset by sampling short rep

Fact: Sample “short” from appropriate
distribution  coset close to uniform

Moving to Higher Levels

Need operation where

Problem: is secret

Solution: publish level 1 encoding of

To move to level 1:

, “short”

Moving to Higher Levels

Insecure: by dividing by

Solution: rerandomize

• Publish many level 1 encodings of 0:

To move to level 1:

, “short”

, “small”

Testing for Equality

Need to be able to test equality

•Suffices to test if level encoding encodes 0

Solution: publish “zero test” parameter

Test if is “small”

 “somewhat small”

Testing for Equality

If encodes 0:

 “short”

(Multiplication over)

Testing for Equality

If encodes non-zero:

 Thm [GGH]: If , then is large w.h.p.

Extraction

Each party needs to agree on same value

•But have different encoding of same element

Solution: Use zero-test parameter

•If encode same value,

 is “short”

• agree on most-significant bits

Extraction

To extract at level :

• Collect most-significant bits of

• Apply strong randomness extractor to get
uniform bit string

What needs to be a secret?

• : otherwise DL is easy

• : compute

 Given level 1 encoding

 Compute

 No , so can “divide mod ”

– Obtain , “short”

What needs to be a secret?

• : compute

 Pick randomizer

 Compute

 Now we have level 2k zero tester!

  Can solve MLDDH

“short”

Security of GGH

• No security proof from standard assumptions

– Instead: extensive cryptanalysis

• Supposed hard problems:

– Discrete Log

– Multilinear DDH

• Easy problems:

– Decision Linear

– Subgroup Decision

Efficiency of GGH

• Parameterized by security , level

• All encodings represented as elements in

• For functionality, need (at minimum)

• For security, need

– Implies

• Size of encodings:

Efficiency of GGH

• Size of encodings:

• Size of public parameters:

– Level 1 encoding of 1

– level 1 encodings of 0

 (for rerandomization)

– Zero tester

Total public parameter size:

• Even larger for some applications

The CLT Construction

The CLT Construction

 , component-wise add/mult

Let vector of primes

 “short”, secret vector of primes

 secret, not short

Over the Integers

Let

CRT isomorphism:

Apply to scheme:

 random

 Level encoding of :

 s.t.

 small

Secrets?

Need same secrets as GGH:

What about the primes?

• Factorization of known  1D problem

• Look at what happens mod p

• GGH zero tester, encodings of 0, 1:

Secrets?

Combine:

Compute for many , GCD 

Compute for many , GCD  

From easy to compute

For security, must keep primes secret!

Other Changes

Keeping primes secret introduces several issues:

• Generating level 0 encodings

Must generate integer such that

 is short

Cannot sample without knowing !

Solution: publish many level 0 encodings of
random values

– To sample, take random subset sums

Other Changes

Keeping primes secret introduces several issues:

• Zero testing:

GGH zero tester:

Level encoding of 0:

Zero Testing

Multiply GGH zero tester with encoding of 0:

Product is “short” mod , but we can’t test!

Instead, want product to be “short” mod

CRT Isomorphism

Coefficient of >>

• Small do not give small

Need to cancel out some the coefficient

Zero Testing

Solution: new zero tester

Multiply with encoding of zero:

CRT:

Zero Testing

Thm [CLT]: If does not encode 0, then whp

Security of CLT

• Just like GGH, no security proof from standard
assumptions

• Supposed hard problems:

– Discrete Log

– Multilinear DH

– Decision Linear?

– Subgroup Decision?

Efficiency of CLT

All encodings elements of

Size of encodings same as GGH:

Public params:

• Asymptotically same:

• CLT offer some heuristics to reduce size

Open Problems

• From standard assumptions

• Remove secrets

– Necessary to remove trusted setup from key
exchange

– How to remove zero tester?

• More Efficient?

