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Diffie-Hellman Key Exchange 

Exchange keys over a public channel: 

• Public group     , generator    , order   



(Potential) Hard Problems in Groups 

• Discrete Log (DL): 

 

• Computational Diffie-Hellman (CDH): 

 

• Decisional Diffie-Hellman (DDH): 

 

• Many Others: 

– Decision Linear (DLIN):  



Uses of Diffie-Hellman 

• Two party key exchange 

• Encryption 

• Signatures 

• … 



3-Way Diffie-Hellman? 



3-Way Diffie-Hellman 

Problem: Need way to multiply       and 

 

Solution [Joux’00]: Use bilinear maps 

 

 

 

•Bilinear group: group with bilinear map 



3-Way Diffie-Hellman? 



Potential Hard Problems in Bilinear Groups 

• DL, CDH, DLIN 

• DDH? 

• Bilinear DDH: 

 

• Many Others 

– Bilinear Diffie-Hellman Exponent 

– Subgroup Decision 

– … 



Uses of Bilinear Maps 

• Identity-Based Encryption 

• Broadcast Encryption w/ short ciphertexts 

• Traitor Tracing w/ short ciphertexts 

• Short Signatures 

• Threshold Signatures 

• Somewhat Homomorphic Encryption 

• … 

 



4-Way Diffie Hellman? 



Multilinear Maps 

Many groups: 

• Generators  

Source group:                   ,   

 

Pairing: 

 
• Often write  

 

Gives multilinear map:  

 

(                    ) 



Potential Hard Problems in Multilinear Groups 

• DL, CDH, generalization of DLIN 

• Multilinear DDH: 

 

 

• ML-CDH for all  

– ML-DDH easy for all  

 

• Many others: 

– Subgroup Decision 

– Multilinear DH Exponent 



Potential Applications 

Or: Imagine what we could do… 



N-Way Key Exchange 



Broadcast Encryption 

• Alice wants to broadcast a message 

• Only a subset of players should decrypt 

 

 

 

 

 

 

• Will build via constrained PRFs 

✓ ✓ ✓ 



PRFs 

Keyed functions that look like random functions 

 

 

All or Nothing: 

• Given    , can eval              at all 

• Without    ,            indistinguishable from 
random 

   



Constrained PRFs [BW’13] 

Given set     of inputs, give “constrained key”: 

 

 

       can compute             on all points             : 

 

 

 

 

Goal: allow interesting sets  



Example: GGM 

Constrained keys = values of nodes 

 

 

 

 

 

 

 

Constrained sets = sets with same prefix 

x0  ⟶ 

x1  ⟶ 

x2  ⟶ 



Other Possible Set Systems 

Left/Right: 

• Left sets:                for fixed 

• Right sets:               for fixed 

 

Bit-fixing: 

• Sets correspond to  

• Can eval at all     that agree with     (   wildcard) 

 

Circuit Predicates 

 

Example:  



Bit-Fixing PRF Construction 

Use                        multilinear map 

Setup: 

• Choose random 

• Choose random 

• Secret key: 

 

Function:     

  



Bit-Fixing PRF Construction 

 

 

Constrain: 

• Input 

• Let 

•   

•    



Bit-Fixing PRF Construction 

 

 

 

Eval: 

•   

• Pair with        to get output   

 

 



Broadcast Encryption from Bit-Fixing PRFs 

Setup: 

• Generate a Bit-Fixing PRF    with key 

• For each player               , compute: 

 

  where               ,               for 

 

Encrypt to a subset                  of players: 

• Let 

• Use symmetric cipher with key  



Policy-Based Key Agreement 

✓ ✓ ✓ 

Shared secret key 

Build from constrained PRFs for circuit predicates 



Other Applications of Multilinear Maps 

• Attribute-Based Encryption 

• Witness Encryption 

• Obfuscation 

• Functional Encryption 

• … 

 



Rest of Talk 

Two recent candidates for multilinear maps 

• From ideal lattices 

• Over the integers 

 

Not true multilinear maps 

• Randomized 

• Noisy 

 

May still be used in many applications 



Relaxation: Graded Encodings 

Scalar      Level 0 encoding of  

                 Level 1 encoding of 

                 Level 2 encoding of 

    … 

 

Graded encoding schemes: encoding not unique 

•Ring  

 

 

  

: set of level    encodings of  



Relaxation: Graded Encodings 

Requirements: 

• Add same level encodings 

 

 

 

• Multiply encodings 

 

 
 

(as long as                    ) 

Pairing Equivalent: 

 

 



The GGH Construction 



Notation 

 

 

 

           : reduce mod  

         : principle ideal generated by  

 

Properties: 

•                     , 

•         “short”              ,         “short” 



The GGH Construction 

•               “short”, secret,                    “short”  

•   

•   

•                 secret, not short  

• Level    encoding of                       :   

 , “short” 



Encoding Operations 

• Addition: 

 

 

 

 

 

  Proof: 

“short” 



Encoding Operations 

• Multiplication: 

 

 

 

 

 

  Proof: 

“short” 



Generating Level 0 Encodings 

Level 0 encoding of              : short 

 

Problem: can’t encode coset w/o knowing 

Resolution: sample coset by sampling short rep 

Fact: Sample “short”     from appropriate 
distribution  coset                 close to uniform 



Moving to Higher Levels 

Need operation                   where 

   

Problem:     is secret  

Solution: publish level 1 encoding of 

 

 

To move to level 1:  

, “short” 



Moving to Higher Levels 

Insecure:                       by dividing by 

Solution: rerandomize 

• Publish many level 1 encodings of 0: 

 

 

To move to level 1: 

, “short” 

, “small” 



Testing for Equality 

Need to be able to test equality  

•Suffices to test if level    encoding encodes 0 

 

Solution: publish “zero test” parameter 

 

 

 

Test if                 is “small”  

 “somewhat small” 



Testing for Equality 

 

 

 

If     encodes 0: 

 

 

 

                                                                   “short” 

(Multiplication over     )  



Testing for Equality 

 

 

 

If     encodes non-zero: 

 

 

 Thm [GGH]: If               , then                is large w.h.p. 



Extraction 

Each party needs to agree on same value 

•But have different encoding of same element 

 

Solution: Use zero-test parameter 

•If             encode same value,  

                                                                            is “short” 

 

•                                  agree on most-significant bits 

 



Extraction 

To extract at level    : 

• Collect most-significant bits of 

• Apply strong randomness extractor to get 
uniform bit string  



What needs to be a secret? 

•    : otherwise DL is easy 

•    : compute 

    Given level 1 encoding      

     

    Compute 

     

 

     No    , so can “divide mod     ” 

– Obtain                           , “short”    



What needs to be a secret? 

•    : compute 

         Pick randomizer 

 

 

        Compute 

 

 

         Now we have level 2k zero tester! 

    Can solve MLDDH 

“short” 



Security of GGH 

• No security proof from standard assumptions 

– Instead: extensive cryptanalysis 

 

• Supposed hard problems: 

– Discrete Log 

– Multilinear DDH 

 

• Easy problems: 

– Decision Linear 

– Subgroup Decision 



Efficiency of GGH 

• Parameterized by security    , level  

• All encodings represented as elements in 

 

• For functionality, need (at minimum) 

 

 

• For security, need 

– Implies 

 

• Size of encodings:  



Efficiency of GGH 

• Size of encodings: 

 

• Size of public parameters: 

–  Level 1 encoding of 1 

–         level 1 encodings of 0 

   (                              for rerandomization) 

– Zero tester 

 

Total public parameter size: 

• Even larger for some applications  



The CLT Construction 



The CLT Construction 

                 , component-wise add/mult 

Let                                             vector of primes 

  

               “short”, secret vector of primes 

 

 

                secret, not short 



Over the Integers 

Let 

CRT isomorphism: 

 

Apply to scheme: 

                 random 

   Level    encoding of                                : 

                          s.t.  

              small  



Secrets? 

Need same secrets as GGH: 

What about the primes? 

• Factorization of     known    1D problem 

• Look at what happens mod p 

• GGH zero tester, encodings of 0, 1: 

 



Secrets? 

Combine: 

 

 

 

Compute for many        , GCD  

Compute for many                 , GCD           

From          easy to compute 

 

For security, must keep primes secret!  



Other Changes 

Keeping primes secret introduces several issues: 

• Generating level 0 encodings 

Must generate integer     such that 

             is short 

 

Cannot sample without knowing       ! 

 

Solution: publish many level 0 encodings        of 
random values 

– To sample, take random subset sums 

 



Other Changes 

Keeping primes secret introduces several issues: 

• Zero testing: 

GGH zero tester: 

 

 

 

Level     encoding of 0: 



Zero Testing 

Multiply GGH zero tester with encoding of 0: 

 

 

Product is “short” mod       , but we can’t test! 

 

Instead, want product to be “short” mod   



CRT Isomorphism 

Coefficient of       >>  

• Small       do not give small   

 

Need to cancel out some the coefficient    



Zero Testing 

Solution: new zero tester 

 

 

 

Multiply with encoding of zero: 

 

 

 

CRT:  



Zero Testing 

Thm [CLT]: If      does not encode 0, then                          whp                                        



Security of CLT 

• Just like GGH, no security proof from standard 
assumptions 

 

• Supposed hard problems: 

– Discrete Log 

– Multilinear DH 

– Decision Linear? 

– Subgroup Decision? 



Efficiency of CLT 

All encodings elements of 

 

Size of encodings same as GGH: 

 

Public params:   

• Asymptotically same: 

• CLT offer some heuristics to reduce size  



Open Problems 

• From standard assumptions 

 

• Remove secrets 

– Necessary to remove trusted setup from key 
exchange 

– How to remove zero tester? 

 

• More Efficient? 


