Quantum Minimalism

Mark Zhandry
NTT Research
Typical (classical) crypto refrain:

One-way functions = Minimal crypto assumption
Typically treated (classically) as the bottom of the mountain
Crypto Mountain

[Ji-Liu-Song’18, Kretschmer’21, Ananth-Qian-Yuen’22, Morimae-Yamakawa’22, Brakerski-Canetti-Qian’22, Brakerski’22, Kretschmer-Qian-Sinha-Tal’22, Behera-Brakerski-Sattath-Shmueli’23,...]
Central Q: What should be the new “minimal” quantum crypto assumption
This Talk: Review what makes OWFs minimal, in order to set the goalposts for this new search
Feature 0: Implied by essentially everything

But “Everything” \(\rightarrow\) OWFs \(\rightarrow\) PRGs, PRFs, PRPs, Signatures, AuthEnc etc

So, e.g., signatures are just as “minimal” as OWFs
Feature 1: *Trivially* implied by most general primitives

"Everything" → Trivial OWF

BUT

Highly non-trivial OWF → Signatures
Feature 1: *Trivially* implied by most general primitives

“Everything” → Trivial WF → BUT

Highly non-trivial OWF → Signatures

“Everything” → Trivial

“distributional” OWF → OWF

But maybe close enough?
Feature 2: Trivially and Robustly Implied by Most Concrete Assumptions

Dlog, Factoring, LWE, Isogenies, etc ➞ OWF

In contrast, Dlog ➔ signatures (in standard model) is very complex

Robustness

Dlog implies $x \rightarrow g^x \mod p$ is one-way, whether:
• x is uniform in \mathbb{Z}_{p-1}
• x is uniform in $[0,2^n-1]$, where $p/2 < 2^n \leq p$
• x is uniform in $2\mathbb{Z}_{p-1}$

Contrast with DDH
Feature 3: Simple to Define

\[\Pr\left[f\left(A\left(f(x) \right) \right) = f(x) \right] < \text{negl} \]
Feature 4: Falsifiable

[Naor’03, Gentry-Wichs’11]
Feature 5: Search Problem

Generally milder assumptions, more robust to how defined
Feature 6: Trivial Combiners and Universal Constructions

\[(x_1, x_2) \rightarrow (F_1(x_1), F_1(x_2))\] is one-way, if either \(F_1, F_2\) are

[Levin’87] → “Universal” OWF that is secure if any OWF exists

→ Immediate combiner/universal construction for anything equivalent to OWFs
Feature 7: Minimal Correctness Requirements

Aside from security, there should be almost no other requirements. Requirements that do exist should be *semantic*.

- **OWFs:** classical deterministic f
- **PRGs:** classical deterministic *expanding* G
- **PRPs:** $F^{-1}(k, F(k, x)) = x$ (not semantic)

Non-semantic \rightarrow non-trivial to devise *robust* combiners and universal constructions.
Feature 8: Can Build Crypto
Some Quantum Primitives Below OWFs
Pseudorandom States

\[\{0,1\}^\lambda \xrightarrow{G} n \text{ qubits} \]

Need crypto if \(n > \Theta(\log(\lambda)) \)

1. Trivially implied by general primitives \(\times \)
2. Trivially & robustly implied by concrete assumptions \(\times \)
3. Simple \(\checkmark \)
4. Falsifiable \(\checkmark \)
5. Search Problem \(\times \)
6. Combiners & universal constructions \(\times \)
7. Minimal Correctness \(\checkmark \)
8. Useful \(\checkmark \)
One-way State Generators
[Morimae-Yamakawa’22]

$s \in \{0,1\}^\lambda \rightarrow F \rightarrow \text{atom}$

$s \rightarrow \text{Ver} \rightarrow 0/1$

Hard to invert wrt Ver, even given poly-many copies

1. Trivially implied by general primitives ✓
2. Trivially & robustly implied by concrete assumptions ✓
3. Simple ✗
4. Falsifiable ✓
5. Search Problem ✓
6. Combiners & universal constructions ✗
7. Minimal Correctness ✗
8. Useful ✓
Possibility: maybe no good minimal quantum assumption?