Local Quantum Cryptography

Mark Zhandry (Princeton & NTT Research)

Based on joint work with Ryan Amos, Marios Georgiou, and Aggelos Kiayias

Quantum Background

Quantum Period Finding
[Simon’94,Shor’95]

Factoring: N=pq = p, q

=)

DLog: g,g* = a

Quantum Background

QKD [Bennett-Brassard’84]

Observer Effect

O -
P , =) '
—’{2\ ﬂ y
K

Observer Eavesdropping
effect detection

Quantum Background

Quantum Money [Wiesner’'70]

No Cloning

No-cloning

Post-Quantum vs Quantum Crypto

Post-Quantum Crypto: Quantum Crypto:

A
y A -

D

7

Protect classical crypto Use quantum effects to do
from quantum attacks new things

Emerging Area: Local Quantum Crypto

Local Quantum Crypto:

Main Question:
Is anything
interesting possible?

Everyone’s quantum,
communication classical

Prior Work: (Verifiable) Delegation

Mahadev’18 x2, Brakerski-Christiano-Mahadev-Vazirani-Vidick’18]

X

) K

(1 Don’t really count multi-device setting: requires entanglement)

Two Motivating Examples

“Classical” Quantum Money Rate-Limited Decryption

Tl

Send quantum money Can only decrypt single
over classical channels? ciphertext every T minutes

This Work: Two Questions

Q1: Can quantum keys yield
any interesting crypto?

Q2: Can quantum states be
sent over classical channels?

Disclaimer

Strong computational assumptions:

e Obfuscation (VBB)

e Extractable witness encryption

* Recursively composable zk-SNARKs

* Post-quantum proofs of (sequential) work

Part 1: One-Shot Signatures
and Applications

Tool: One-Shot Signatures

Syntax: Security: (pk,m,m,,0,,0,) s.t.
(pk,sk) € Gen() Mo#EM,

o < Sign(sk,m) Ver(pk,m,,0,)=1, and
0/1 & Ver(pk,m,c) Ver(pk,ml,ol)zl

Impossibility of One-Shot Signatures?

Attack?
* (pk,sk) € Gen()

G .5, € Sign(sk,m,)
g, € Sign(sk,m,)

Ide\ai What if sk is “used up” to produce o,?
\

\@: * Makes no sense classically (rewinding)
N (7

T °*But quantumly, maybe?

One-Shot Signatures (Quantum)

Syntax: Security: (pk,m,m,,0,,0,) s.t.

(pk,) < Gen() mo#m,,

o < Sign(Sks,m) Ver(pk,m,,0,)=1, and
0/1 < Ver(pk,m,o0) Ver(pk,m,,0,)=1

For now, assume = OSS. Will construct later

OSS Apps: Burnable Signatures

Goal: Prove that you destroyed your signing key

pk |

Solution: Signature Chaining

sks

k_K/

Solution: Signature Chaining

(assume message is part of sig)

Solution: Signature Chaining

Solution: Signature Chaining

Proof Idea:
Valid post-burn Forked 0SS
, > .
signature chain Forgery

Caveats

| signature| grows with #(messages)
Fix: SNARKSs

|sk| grows with #(messages)
Fix: Recursively Composable SNARKSs

Stateful Signing
Natural for qguantum keys
(reading key may disturb it)

OSS Apps: Burnable Decryption

Goal: Prove that you destroyed your decryption key

Burnable Sigs = Burnable Decryption

Tool: (Extractable) Witness Encryption

¢ €< WE.Enc(NP statement x , m)
m €& WE.Dec(x, withessw, ¢)

Security: ¢ hides m, unless
you “know” a witness

Burnable Sigs = Burnable Decryption

oo < Message space

}ﬁ‘ céWE Enc(“r has a sig”, m) Gl

Kif/

Actually, OSS works directly

OSS Apps: Ordered Signatures

Goal: Only sign messages in increasing order

Same construction as burnable
sigs, Ver checks message order

OSS Apps: Ordered Signatures

m = (timestamp, document)

" (o)

LS ((T'<T. D) .0)

7

If Bob accepts, Alice must have
“known” D at time T

OSS Apps: Single-Signer Signatures

PR ; o

7N\

® %

Honest @ can sign any number of messages

Ordered Sigs =2 Single-Signer Sigs
Proof: Used timestamped version

- Gl
FQ;{ \ -\
% @

Secret keys must respect ordering,
so can’t sign independently

OSS Apps: Single-Decryptor Encryption

> c ; R

AN\

\

® %

Same as single-signer sigs, except
now secret keys are for decrypting

Single-Signer = Single-Decryptor

oo < Message space

}ﬁ‘ céWE Enc(“r has a sig”, m) Gl

Kif/

Again, OSS works directly

Single-Decryptor App: Traitor Prevention
Recall Traitor Tracing [Chor-Fiat-Naor’94]:

| encrypted
() broadcast
>

C

L=
J

Goal: Given pirate decoder, can identify the traitor(s)

Single-Decryptor App: Traitor Prevention

Traitor Prevention:

g
(@) =
A > =~
N SN

Only N individuals ever capable of decrypting

Single-Decryptor App: Traitor Prevention

Traitor Prevention:

| encrypted
() broadcast
>

s

ya—

4

Only N individuals ever capable of decrypting

OSS Apps: Quantum Money*

= PK, Oy (PK),
duj

sk

L)

mint

Verification: check GPkmin’r(pk)' that

can sign random message

*Technically not “local” quantum crypto; will revisit later

OSS Apps: Cryptocurrency sans Blockchain

&

OSS - Cryptocurrency w/o Blockchain

Tool: Proofs of Work (PoW)

m<PoW(ch,T), takes time T
0/1<Ver(ch,T,m)

Time< T ‘

<ché$
RS Ver(ch,T,m)=1

OSS - Cryptocurrency w/o Blockchain

Verification: check that can
sign random message, PoW valid

OSS Apps: Delay Signatures

, o Can only sign single
“) message every T minutes

Application:
* Limit rate (quantum) money is created

OSS - Delay Signatures

Tool: Proofs of Sequential Work (PoSW)

m<PoSW(ch,T), takes sequential time T
0/1<Ver(ch,T,m)

Sequential <Ché$
time<« T LI Ver(ch,T,m)=1

OSS - Delay Signatures
ﬂlpoSW(PkO,T)

= e e e e e e e e e e e o e e e D e e e e

OSS - Delay Signatures
ﬂ2=POSW(0]

T)

pko ¢

1

OSS Apps: Delay Decryption

7

Application:
* Tiered broadcast subscriptions

Delay Sigs =2 Delay Decryption

pK
r €< Message space

. ¢ €& WE. Enc(“r has a sig”, m) Gm

<:>

Part 2: Classically Sending
Quantum States

Quantum States over Classical Channels?

Rejected Solution: What if don’t know
Send classical description of state classical description?
Rejected Solution: Requires quantum
Use quantum teleportation entanglement

No In General: Could use to create
entanglement via classical channel

Quantum States over Classical Channels?

Q2’: Can any unclonable state be
sent over a classical channel?

A
/ < > (e Q..
8 @@

7

Q2 Rephrased

Q2’: Can any unclonable state be
sent over a classical channel?

No, if single message from Alice to Bob

No, if computationally unbounded

What if interaction + computational assumptions?

Signature Delegation with OSS

sy

Ko ¢ W
/ o~

7

Signature Delegation with OSS

% j
; < o
[c)-pk(_)(l:)kl) > @%

| S@R Pk,

Signature Delegation with OSS

N i i Ponpl). 2
pko P¥ %}‘
" (™
@ Pk,

Alice effectively sent her unclonable
state to Bob over classical channel

Signature Delegation

Using recursively composable zk-SNARKS,
received state is computationally
indistinguishable from original

Can apply to all of our schemes, to send
quantum keys/money over classical channels

Part 3: Constructing OSS

Unequivocal Hash Functions

Closely related to concepts from [Ambainis-Rosmanis-Unruh’14,Unruh’16]

AN

b C% H(b,r) =
r N “
Classically:

col. resistance = unequiv. hash (rewinding)

Quantumly: maybe not

Equivocal Hash Functions

Equivocal Hash = Col. Resistance + ! Unequivocal
Easy Thm: Equivocal Hash = OSS

[Ambainis-Rosmanis-Unruh’14,Unruh’16]:
Construction relative to quantum oracle

But, no clear idea how to instantiate

Our Result

Thm: Equivocal hash relative to *classical* oracle

Can heuristically instantiate w/ iO

Simpler Goal: Non-Collapsing Hash

superposition over single value x
pre-images of h

I
I
L
@ ‘collapses” to k 0, @”collapses” to
I
I

A First (Broken) Attempt

mxn
AS,
random, secret

—

H: assign each “slice” a random output

A First (Broken) Attempt

B @ @»QFT i

(A.x=b) (yERowSpan(A)3

gt

(All pos-sible V)

>

Inc. oracle O which checks for membership in RowSpan(A)

Problem: Periodic = Not Collision Resistant!

Simon’s Alg:
@8>@) il QFT @»—»y
(A.x=b)

Repeat several

V=
Recall: y <RowSpan(A)= times: reconstruct A

Our Construction

V. E4,"
random, secret

V..X=0 —

V. X=l—"

V.. X=

Our Construction Vo.X=1
Vo,V random, -
secret
0 T vexal
VE.X— — Vl.X=1
Vo.x=0

v;.X=0

Our Construction

v..x=0
VO.X=1
VOI.X=O

VooVo1-Vio Vi1
random, secret

VE.X=O /

Vo.x=0
Voo.x=0

v..x=0

Vo.x=0
VOo.x=1

Our Construction

% o P ger

Ah,)(=b;) (yERowSpan(Ah;)

~)

>

G .

(All pos-sible V)

Inc. oracle O which checks for membership in RowSpan(A;,)

Simon’s Algorithm?

Simon’s Alg:

(A he X= b h) . \
vy ERowSpan(A,)

X

Repeat = Different h ® Different A,
= Never able to reconstruct A,

Our Construction

Thm: If H,0 given as oracles, then collision resistant

With some extra work, can also equivocate

Future Directions?

Better assumptions?
 EveniO + LWE + LPN + Isogenies + ...?

More apps?
e Fancier crypto (e.g. functional enc)?
* Classically send copy-protected programs?

Thanks!

