Local Quantum Cryptography

Mark Zhandry (Princeton & NTT Research)

Based on joint work with Ryan Amos, Marios Georgiou, and Aggelos Kiayias

Quantum Background

Quantum Background

Quantum Background

Post-Quantum vs Quantum Crypto

Emerging Area: Local Quantum Crypto

Main Question:

Is anything interesting possible?

Prior Work: (Verifiable) Delegation

Mahadev'18 x2, Brakerski-Christiano-Mahadev-Vazirani-Vidick'18]

(I Don't really count multi-device setting: requires entanglement)

Two Motivating Examples

This Work: Two Questions

Q1: Can quantum keys yield any interesting crypto?

Q2: Can quantum states be sent over classical channels?

Disclaimer

Strong computational assumptions:

- Obfuscation (VBB)
- Extractable witness encryption
- Recursively composable zk-SNARKs
- Post-quantum proofs of (sequential) work

Part 1: One-Shot Signatures and Applications

Tool: One-Shot Signatures

Syntax: $(pk,sk) \leftarrow Gen()$ $\sigma \leftarrow Sign(sk,m)$ $0/1 \leftarrow Ver(pk,m,\sigma)$

Security:
$$(pk,m_0,m_1,\sigma_0,\sigma_1)$$
 s.t.
 $m_0 \neq m_1$,
 $Ver(pk,m_0,\sigma_0)=1$, and
 $Ver(pk,m_1,\sigma_1)=1$

Impossibility of One-Shot Signatures?

Idea!

What if **sk** is "used up" to produce σ_0 ?

- Makes no sense classically (rewinding)
- But quantumly, maybe?

One-Shot Signatures (Quantum)

Syntax: $(pk, sk) \leftarrow Gen()$ $\sigma \leftarrow Sign(sk, m)$ $0/1 \leftarrow Ver(pk, m, \sigma)$

Security:
$$(pk,m_0,m_1,\sigma_0,\sigma_1)$$
 s.t. $m_0 \neq m_1$, $Ver(pk,m_0,\sigma_0)=1$, and $Ver(pk,m_1,\sigma_1)=1$

For now, assume \exists OSS. Will construct later

OSS Apps: Burnable Signatures

Goal: Prove that you destroyed your signing key

(assume message is part of sig)

$$\sigma_{pk_0}(m_1||pk_1)$$
, $\sigma_{pk_1}(m_2||pk_2)$,

Proof Idea:

Valid post-burn signature

Forked chain

OSS Forgery

Caveats

|signature| grows with #(messages)

Fix: SNARKs

|sk| grows with #(messages)

Fix: Recursively Composable SNARKs

Stateful Signing

Natural for quantum keys (reading key may disturb it)

OSS Apps: Burnable *Decryption*

Goal: Prove that you destroyed your decryption key

Burnable Sigs → Burnable Decryption

```
Tool: (Extractable) Witness Encryption

c ← WE.Enc( NP statement x , m )

m ← WE.Dec( x, witness w, c )

Security: c hides m, unless
you "know" a witness
```

Burnable Sigs -> Burnable Decryption

Actually, OSS works directly

OSS Apps: Ordered Signatures

Goal: Only sign messages in increasing order

Same construction as burnable sigs, Ver checks message order

OSS Apps: Ordered Signatures

m = (timestamp, document)

If Bob accepts, Alice must have "known" D at time T

OSS Apps: Single-Signer Signatures

Honest can sign any number of messages

Ordered Sigs -> Single-Signer Sigs

OSS Apps: Single-Decryptor Encryption

Same as single-signer sigs, except now secret keys are for decrypting

Single-Signer → Single-Decryptor

Again, OSS works directly

Single-Decryptor App: Traitor Prevention

Single-Decryptor App: Traitor Prevention

Single-Decryptor App: Traitor Prevention

OSS Apps: Quantum Money*

Verification: check $\sigma_{pk_{mint}}(pk)$, that sk can sign random message

*Technically not "local" quantum crypto; will revisit later

OSS Apps: Cryptocurrency sans Blockchain

OSS -> Cryptocurrency w/o Blockchain

Tool: Proofs of Work (PoW) $\pi \leftarrow PoW(ch,T)$, takes time T $O/1 \leftarrow Ver(ch,T,\pi)$ Time << T therefore T the

OSS → Cryptocurrency w/o Blockchain

Verification: check that can sign random message, PoW valid

OSS Apps: Delay Signatures

Can only sign single message every T minutes

Application:

• Limit rate (quantum) money is created

OSS → Delay Signatures

Tool: Proofs of Sequential Work (PoSW)

 $\pi \leftarrow PoSW(ch,T)$, takes sequential time T $O/1 \leftarrow Ver(ch,T,\pi)$

Sequential time << T
$$\rightarrow$$
 Ver(ch,T, π)=1

OSS → Delay Signatures

OSS > Delay Signatures

$$\pi_2 = PoSW(\sigma_{pk_0}, T)$$

 $\sigma_{pk_0}(m_1||pk_1||\pi_1)$, $\sigma_{pk_1}(m_2||pk_2||\pi_2)$,

OSS Apps: Delay Decryption

Can only decrypt single ciphertext every T minutes

Application:

Tiered broadcast subscriptions

Delay Sigs -> Delay Decryption

Part 2: Classically Sending Quantum States

Quantum States over Classical Channels?

Rejected Solution:

Send classical description of state

What if don't know classical description?

Rejected Solution:

Use quantum teleportation

Requires quantum entanglement

No In General: Could use to create entanglement via classical channel

Quantum States over Classical Channels?

Q2': Can any *unclonable* state be sent over a classical channel?

Q2 Rephrased

Q2': Can any *unclonable* state be sent over a classical channel?

No, if single message from Alice to Bob

No, if computationally unbounded

What if interaction + computational assumptions?

Signature Delegation with OSS

Signature Delegation with OSS

Signature Delegation with OSS

Alice effectively sent her unclonable state to Bob over classical channel

Signature Delegation

Using recursively composable **zk**-SNARKS, received state is computationally indistinguishable from original

Can apply to all of our schemes, to send quantum keys/money over classical channels

Part 3: Constructing OSS

Unequivocal Hash Functions

Closely related to concepts from [Ambainis-Rosmanis-Unruh'14,Unruh'16]

Classically:

col. resistance \rightarrow unequiv. hash (rewinding)

Quantumly: maybe not

Equivocal Hash Functions

Equivocal Hash = Col. Resistance + ! Unequivocal

Easy Thm: Equivocal Hash → OSS

[Ambainis-Rosmanis-Unruh'14,Unruh'16]: Construction relative to *quantum* oracle

But, no clear idea how to instantiate

Our Result

Thm: Equivocal hash relative to *classical* oracle

Can heuristically instantiate w/ iO

Simpler Goal: Non-Collapsing Hash

A First (Broken) Attempt

H: assign each "slice" a random output

A First (Broken) Attempt

Inc. oracle O which checks for membership in RowSpan(A)

Problem: Periodic > Not Collision Resistant!

Our Construction

Our Construction

Inc. oracle O which checks for membership in RowSpan(A_h)

Simon's Algorithm?

Our Construction

Thm: If H,O given as oracles, then collision resistant

With some extra work, can also equivocate

Future Directions?

Better assumptions?

Even iO + LWE + LPN + Isogenies + ...?

More apps?

- Fancier crypto (e.g. functional enc)?
- Classically send copy-protected programs?

Thanks!