Another Round of Breaking and Making Quantum Money: How Not to Do It, and More

Jiahui Liu

University of Texas, Austin

Hart Montgomery

Linux Foundation (Formerly Fujitsu)

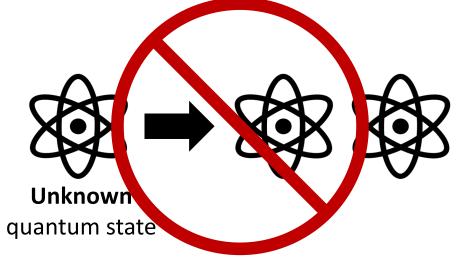
Mark Zhandry

NTT Research (Formerly Princeton)

Background

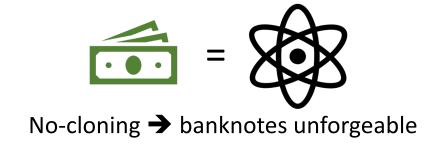
No-cloning Theorem

[Park'70, Wooters-Zurek'82, Dieks'82]



Secret key quantum money

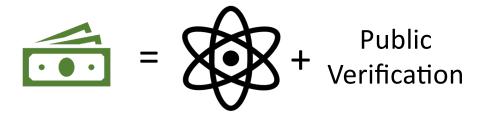
[Wiesner'70]



Problem: only mint can verify

Public key quantum money

[Aaronson'09]



Challenge: state information-theoretically "known"

- → breaks no-cloning theorem
- → need crypto + quantum information

(Public Key) Quantum Money is Hard!

[Aaronson'09]: random stabilizer states

[Farhi-Gosset-Hassidim-Lutomirski-Shor'10]: knots

[Aaronson-Christiano'12]: polynomials hiding subspaces

[Kane'18]: Modular forms

[Zhandry'19]: quadradic systems of equations

[Zhandry'19]: post-quantum iO

[Kane-Sharif-Silverberg'21]: Quaternion Algebras

[Khesin-Lu-Shor'22]: lattices

K [Lutomirski-Aaronson-Farhi-Gosset-Hassidim-Kelner-Shor'10]

little published cryptanalysis effort

[Pena-Faugère-Perret'14, Christiano-Sattath'16]

[Bilyk-Doliskani-Gong'22] some analysis

(Roberts'21)

Post-quantum iO not well understood

No published cryptanalysis effort

? No (prior) cryptanalysis effort

This Work: Breaking and making quantum money

Attack on general class of lattice-based schemes

[Khesin-Lu-Shor'22] is insecure

"Walkable Invariant" framework + analysis

Identify sufficient conditions for [FGHLS'12] to be secure

(unclear if conditions met)

New candidate walkable invariants

Approach to building quantum money from isogenies

(one crucial missing piece)

How *Not* To Build Quantum Money

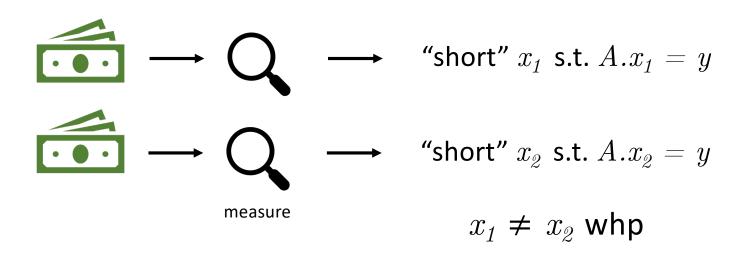
A lattice-based proposal

(folklore)

Verification key (aka serial number) =
$$A$$

$$\propto \sum_{\substack{\text{"short" } x \text{ s.t.} \\ A.x \bmod q = y}} |x|$$

Motivation



$$A.(x_1 - x_2) = 0$$

Short non-vector in kernel of A, aka SIS solution. Believed hard

Attack

(consequence of [Liu-Zhandry'19])

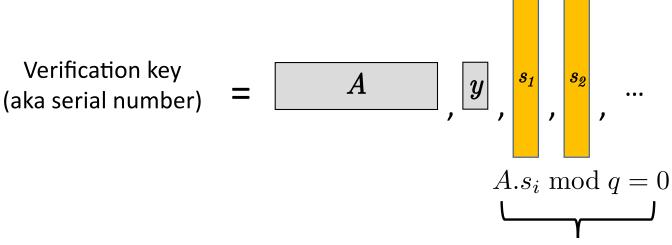
$$= |x\rangle \qquad = |x\rangle$$

Thm [Liu-Zhandry'19]: LWE + super-poly $q \rightarrow$ SIS hash function is *collapsing*

Cor: Attack fools *any* efficient verification procedure

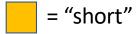
(note SIS → LWE [Regev'05])

A more general proposal



Example: can re-interpret [Khesin-Lu-Shor'22] in this form

Trapdoors for A, help with verification



Why Trapdoors are Useful

Assume
$$\propto \sum_{x:A.x \bmod q = y} e^{-\pi |x|^2/\sigma^2} |x\rangle$$

$$QFT \sum_{\text{(approx.)}} \sum_{r,e} \left(\omega_q^{r \cdot y} \right) e^{-\pi |e|^2/(q/\sigma)^2} |A^T \cdot r + e\rangle$$

$$s^T \cdot (A^T \cdot r + e) = s^T \cdot e = \text{short}$$

Why Trapdoors are Useful

Meanwhile

$$QFT|x\rangle \propto \sum_{z} \left(\omega_{q}^{z \cdot x}\right)|z\rangle$$

$$s^T \cdot z = \text{big (whp)}$$

Detects attack

Attack (this work)

$$\longrightarrow \bigcirc \longrightarrow \text{"short" } x \text{ s.t. } A.x = y$$

$$= \sum_{u_1, u_2, \dots \text{ s.t. z is "short"}} |z = x + u_1 s_1 + u_2 s_2 + \dots \rangle$$

Thm (this work):

- 1. LWE + **any** $q \rightarrow$ fools any efficient verification in many natural settings
- 3. Efficiently construct fake money state from x in many natural settings

Cor: Scheme from [Khesin-Lu-Shor'22] is insecure

Along the way, improve known results about k-LWE problem

Learning With Errors (LWE)

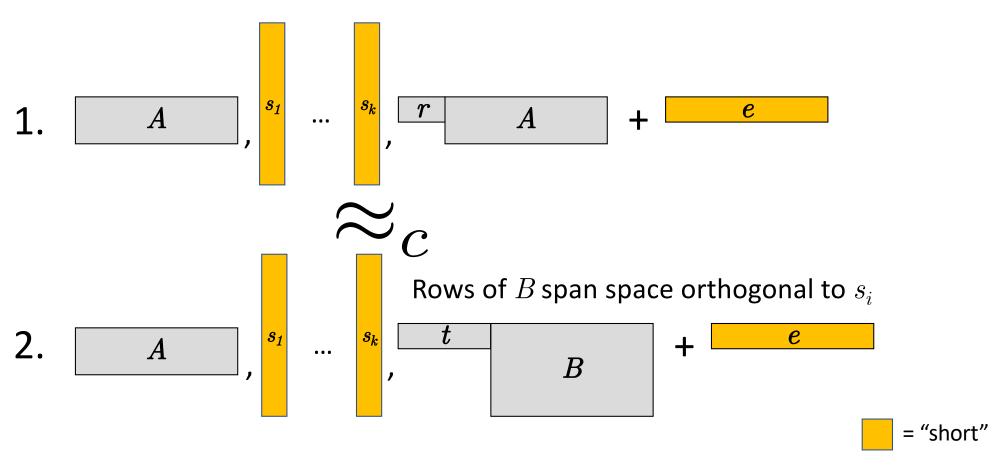
[Regev'05]

$$A$$
, A $+$ e $\sim c$

(everything defined mod q)

= "short"

k-LWE[Ling-Phan-Stehlé-Steinfeld'14]



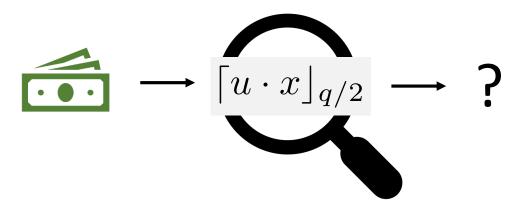
Thm [Ling-Phan-Stehlé-Steinfeld'14]:

LWE \rightarrow k-LWE for polynomial k, if s_i are Gaussian

Thm (this work):

LWE \rightarrow k-LWE for constant k, for arbitrary short s_i

Sample u as in either case 1. or 2. as in k-LWE

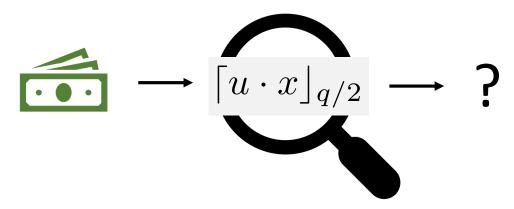


Case 1:
$$u \cdot x = (r \cdot A + e) \cdot x = r \cdot y + e \cdot x \approx r \cdot y$$

→ minimal collapse of • • •

$$\lceil \cdot \rfloor_{q/2}$$
 = Round to θ or $q/2$

Sample u as in either case 1. or 2. as in k-LWE

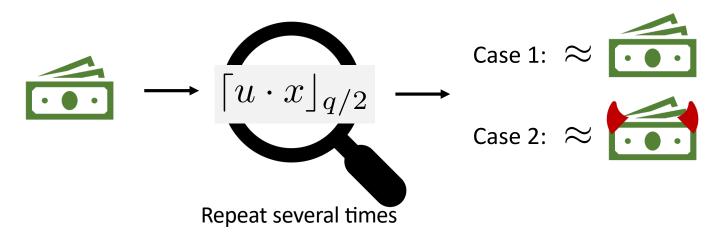


Case 2:
$$u \cdot x = (t \cdot B + e) \cdot x \approx t \cdot B \cdot x$$

→ collapse "toward"

 $\lceil \cdot \rfloor_{q/2}$ = Round to θ or q/2

Sample u as in either case 1. or 2. as in k-LWE



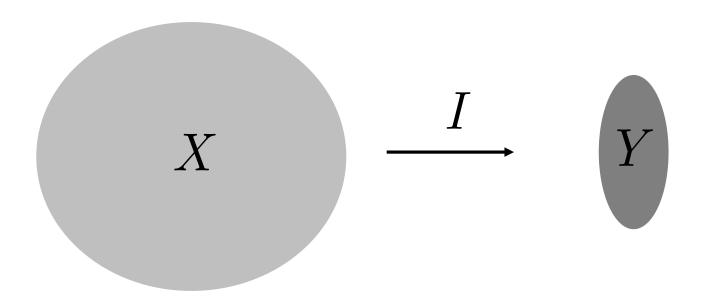
Problem: error scales as $1/q \rightarrow$ non-negligible for poly q

This work: More fine-grained analysis \rightarrow handle poly q

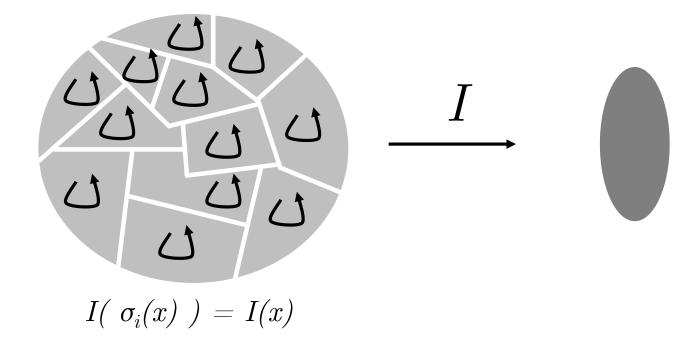
Solution: use classical techniques for sampling short vectors in lattices, but "in superposition"

Walkable Invariant Framework

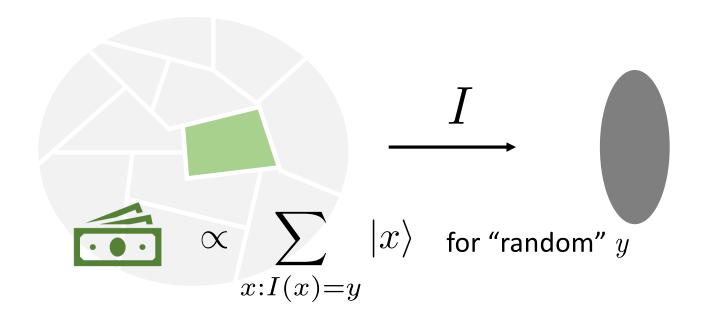
(abstraction of [FGHLS'12])



Permutations $\sigma_i:X o X$



Assume for purposes of talk that it is possible to go between any two elements in the same part via a sequence of σ_i . In the paper we handle the case where the parts are disconnected.



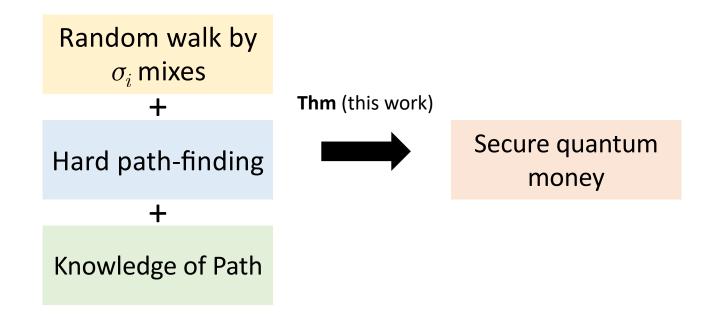
- 1. Creates uniform superposition over \boldsymbol{X}
- 2. Measure I(x)

Verification:

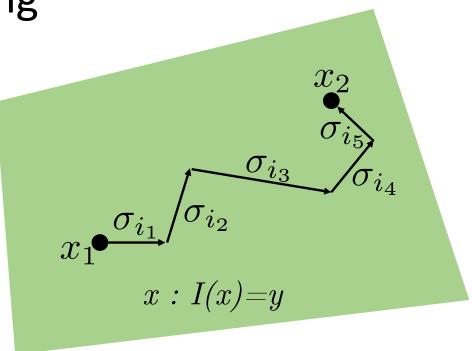
- 1. Test that support is on x s.t. I(x)=y
- 2. Test that state is unchanged under action by σ_i

Use version of swap test

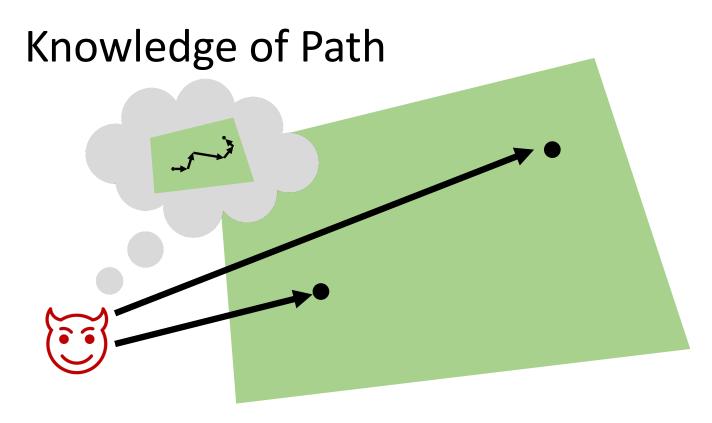
Recipe for Quantum Money from Invariants



Path-finding



Given random x_1, x_2 with same invariant, compute a "path" = $i_i, i_2, ...$



Impossible to generate x_1, x_2 with same invariant without knowing path

Measure each $\bullet \bullet \bullet$, get uniform independent x,y s.t. I(x)=I(y)

Knowledge of path \rightarrow can construct path between x and y \rightarrow contradicts hardness of path-finding

[FGHLS'12]

X = knot diagrams I(x) = Alexander polynomial σ_i = Reidemeister moves

Security previously merely conjectured, with minimal analysis

Hardness of path-finding and knowledge of path seem plausible, mixing unclear but possible

New Instantiations

Isogenies over (supersingular) elliptic curves

Path finding = computing isogenies, widely believe to be hard

Knowledge of Path = analog of knowledge of exponent from groups

Seems quite plausible, but need more cryptanalysis effort

Problem: unknown how to create uniform superposition over X for minting

Closely related to major open question of obliviously sampling super-singular elliptic curves

Other instantiations

Re-randomizeable Functional Encryption

Group actions + classical oracle

Thanks!