# How to Idealize Generic Groups

Mark Zhandry (NTT Research)

### **Cryptographic Groups**

[Diffie-Hellman'76]

(Cyclic) group with efficient multiplication  $(q, h \rightarrow q \times h \text{ easy})$ 

#### Tons of hardness assumptions:

Discrete log:  $g, g^a \rightarrow a$ 

 $g, g^a, g^b \rightarrow g^{ab}$ CDH:

 $g,g^a,g^b,g^{ab}$  vs  $g,g^a,g^b,g^c$   $g,g^a,g^a,g^a,g^b,g^c$ DDH:

DHI:

### Generic/Idealized Groups

For certain well-designed groups, best known practical attacks on many assumptions are *generic* (independent of group itself)



Generic Group Model (GGM): Only consider adversaries that are independent of group

[Nechaev'94, Shoup'97, Maurer'04]

## Shoup'97: Random Labels

Random injection  $L:\mathbb{Z}_p \to \{0,1\}^n$ 

Interpret L(x) as  $g^x$ 

Adversary computes group operation using oracle:

$$\mathsf{M}: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$$
$$\mathsf{M}(L(x),L(y)) = L(x+y)$$

**Thm** (Informal) [Shoup'97,...]: "Most" interesting problems are hard in Shoup's GGM

Idea: Show that solving problem requires exponentially-many queries to Mult. Query count then lower-bounds running time

#### Discussion

Many (reasonable) criticisms of generic groups (e.g. [Fischlin'00, Dent'02, Koblitz-Menezes'06])

**Thm** [Dent'02, building on Canetti-Goldreich-Halevi'98]: ∃ (contrived) assumptions secure in GGM that are insecure in *any* concrete group

#### Discussion

Due to [Dent'02], generic proofs do not prove actual hardness, but are interpreted as heuristic evidence

Nevertheless, the GGM remains a critical tool in the design of both practical and theoretical constructions. As such, studying GGM is crucial

There is another...

### Maurer'05: Pointers/Type Safety

```
Mult(Element h1, Element h2) {
    return new Element(h1.value * h2.value);
}
EqualQ(Element h1, Element h2) {
    return h1.value==h2.value;
}
```

No other operations on Element variables allowed

Motivating question for this work:

# Which model to use?

### Most Literature Treats the Two Equivalently



### Maybe it doesn't matter?

#### On the Equivalence of Generic Group Models

Tibor Jager and Jörg Schwenk

Horst Görtz Institute for IT Security Ruhr-University Bochum, Germany

Abstract. The generic group model (GGM) is a commonly used tool try tography especially in the malysis of fundamental cryptographic

notion, t is not of that seculty profined model. Security in the other odel. Thus the validity of a proven statement may depend on the choice of the model. In this paper we prove the equivalence of the models proposed by Shoup 2 and Maurer 3.

#### But...





#### This Talk

eprint 2022/226

- 1. Comparing Maurer vs Shoup models
- 2. Comparison to *Algebraic* Group Model (AGM) [Fuchsbauer-Kiltz-Loss'18]
- 3. Generic quantum models for group *actions*

eprint 2023/1097

Part 1: Maurer vs Shoup

#### **TLDR**

[Shoup'97]



[Maurer'05]

When in doubt, choose Shoup

### More nuanced summary

Black-box impossibilities

Single-stage games

Security games

Multi-stage games

[Shoup'97] 

[Maurer'05]

[Maurer'05]

### More nuanced summary

Black-box Typical definitions (e.g. PRGs, aurer'05] impossibilities PRFs, PKE, Signatures, etc) Single-stage [Maurer'05] [Shoup'97] games Security proofs Multi-stage E.g. deterministic encryption, games leakage resilience, etc













### Shoup >> Maurer for *Impossibilities*

**Thm** (Implicit from [Chen-Lombardi-Ma-Quach'20]+[Döttling-Hartmann-Hofheinz-Kiltz-Schäge-Ursu'21], formalized and extended in our work): There exist generic and textbook primitives that work in Shoup and standard models, but do not exist in Maurer (e.g. PRPs, unbounded CRHFs, rate-1 encryption)

**Thm** (our work): Any construction that works in Maurer also works in Shoup

Black box separations in Maurer must be taken with grain of salt

**Historical note:** Generic groups originally only used for analyzing hardness of computational problems. Use for *impossibilities* came later

[Dodis-Haitner-Tentes'12, Cramer-Damgård-Kiltz-Zakarias-Zottarel'12, Papakonstantinou-Rackoff-Vahlis'12]



```
Mult(Element' h1, Element' h2) {
    return new Element'( M(h1.label , h2.label) );
}
EqualQ(Element' h1, Element' h2) {
    return h1.label==h2.label;
}
```



Proof: lazy sample labelling function 
$$T = \begin{bmatrix} E_1 & \ell_1 \\ E_2 & \ell_2 \\ E_3 & \ell_3 \\ E_4 & \ell_4 \\ E_5 & \ell_5 \end{bmatrix}$$
 Look for  $(E_x, l_x), (E_y, l_y)$  in T;  $E_z = \text{Mult}(E_x, E_y);$  Look for  $(E_z, l_z)$  in T;  $l_z \leftarrow \{\emptyset, 1\}^n$  Add  $(E_z, l_z)$  to T Output  $l_z$ 

#### **Two Observations:**

- Jager-Schwenk only makes sense if game makes sense in both models
- Simulation in second case requires keeping state

#### Single stage



Jager-Schwenk applies

#### Multi-stage



Jager-Schwenk fails since cannot maintain consistent state between adversaries

## Shoup vs Maurer for Proving Security

**Thm** (our work): Maurer construction → Shoup construction

**Thm** (our work): For Maurer games, Shoup security → Maurer

Thm (our work): Amongst single-stage Maurer games,

Maurer security → Shoup security

**Thm** (our work): ∃ multi-stage Maurer game secure in Maurer but not in Shoup

(Also insecure in any standard-model group)

### More nuanced summary

Black-box impossibilities

Single-stage games

Security games

Multi-stage games

[Shoup'97] 

[Maurer'05]

[Maurer'05]

Part 2: Algebraic Group Model

## Algebraic Group Model (AGM) Intuition

Suppose given  $g_1, g_2, g_3, \cdots$ 

Can construct new group elements as  $h = g_1^{a_1} g_2^{a_2} g_3^{a_3} \cdots$  for known  $(a_1, a_2, a_3, \cdots)$ 

For "sufficiently good" groups, seems no other way to generate new group elements

### Algebraic Group Model (AGM)

[Fuchsbauer-Kiltz-Loss'18], building on [Paillier-Vergnaud'05]



Non-black box access to group

Often claimed to be "between" generic groups and standard model

### Algebraic Group Model (AGM)

[Fuchsbauer-Kiltz-Loss'18], building on [Paillier-Vergnaud'05]

#### No unconditional security:

AGM does *not* imply that Dlog is hard (Dlog game doesn't ask for group elements)

Instead, AGM facilitates reductions to assumptions

(e.g. Dlog implies CDH in AGM)

How does AGM compare to GGM?

**Observation:** AGM not fully defined by FKL



[FKL]: Syntactically distinguish group elements from non-group elements, non-group elements must not "depend" on group elements

What does "depend" mean?

# Our position: AGM only applies to Maurer games

[Katz-Zhang-Zhou'22]: Different interpretation

#### **Our AGM Results**

Consequence of our interpretation and our results:

- AGM is no "worse" than Mauer (and therefore no worse than Shoup for proving single-stage games)
- AGM probably shouldn't be used for black-box impossibilities (not that anyone has advocated for it)

On the other hand, not clear if AGM is actually "better":

**Thm** (our work):  $\exists$  single-stage Maurer game secure in AGM but not in real world



Maurer games that are insecure in GGM



AGM = GGM

Maurer games that don't ask for group elements



AGM = standard model

Our take: justifying that AGM > GGM would require finding a game non-trivially outside of these categories

Maurer games secure \
in AGM under "standard"
assumptions



AGM = GGM

Part 3: Quantum

## Quantum Computers Break Groups [Shor'94]

Suppose  $h=g^a$ , want to find a

Define 
$$F(x,y) = g^x h^y$$

$$F$$
 is periodic:  $F((x,y)+(-a,1))=F(x,y)$ 

**Thm** [Shor'94]: Quantum algorithms can easily find periods

#### Cryptographic Group Actions

[Brassard-Yung'91]

(Abelian) group  $\mathbb G$  efficiently acting on set  $\mathcal X$ 

$$g * (h * x) = (gh) * x$$

Discrete log:  $(x, a*x) \rightarrow a$ 

Groups are special case of group actions:

$$\mathbb{Z}_p^*$$
 acts on  $\mathbb{G}$  via  $a*x=x^a$ 

#### Cryptographic Group Actions

[Brassard-Yung'91]

Good enough for some cryptosystems, but not others



#### Idealized models for group actions

## Not hard to define Shoup, Maurer, AG(A)M models for group actions

[Montgomery-**Z**'22,Liu-Montomgery-**Z**'23, Boneh-Guan-**Z**'23, Duman-Hartmann-Kiltz-Kunzweiler-Lehmann-Riepel'23, Orsini-Zanotto'23]

#### (Classical) AGAM for group actions:



#### Using idealized group actions to prove security?

Thm [Ettinger-Høyer'00]: Inefficient but query-bounded quantum algorithm for DLog (works in Shoup or Maurer)

Don't know how to prove generic lowerbounds except through query complexity



GGAM for group actions (Shoup or Maurer) useless?

#### What About Quantum AGAM?

**Observation** [Duman-Hartmann-Kiltz-Kunzweiler-Lehmann-Riepel'23]: Still meaningful to assume Dlog and use AGAM for reductions, thus advocate for using AGAM for group action security proofs

However...

#### Problem with quantum AGAM

Recall implicit assumption in (classical) AGM:

If at some point you "knew" some data (e.g.  $a_1, a_2, \cdots$ ), you will always know it

$$g_1, g_2, g_3, \cdots \longrightarrow h = g_1^{a_1} g_2^{a_2} g_3^{a_3} \cdots$$

can also output  $a_1, a_2, \cdots$ 

#### Problem with quantum AGAM

Analog for quantum data is simply false!

**Thm** (our work): Can construct quantum superposition over set elements with provably unknown DLogs

In particular, can construct:

Very different from:

$$\frac{1}{\sqrt{|\mathbb{G}|}} \sum_{g} e^{i2\pi g^2} |g * x\rangle \qquad \frac{1}{\sqrt{|\mathbb{G}|}} \sum_{g} e^{i2\pi g^2} |g * x\rangle |g\rangle$$

Using idealized group actions to prove quantum security

#### Summary:

- Quantumly, AGAM actually incomparable with GGAM
- Should be skeptical of AGAM
- Can't get unconditional hardness in GGAM

Largely open\*: maybe GGAM can help prove security based on computational assumption

e.g. Dlog → DDH?

<sup>\*</sup> We give some examples in paper

### Thanks!