INDISTINGUISHABILITY
OBFUSCATION

Mark Zhandry — Stanford University

* Joint work with Dan Boneh



Program Obfuscation

Intuition: Mangle a program
- Same functionality as original
- Hides all implementation details

Potential uses:
- IP protection
- Prevent tampering

- Cryptography



Virtual Black Box Obfuscation gci+osj

Having source code no better than black box access

P ' «Ol«P' _
'l B
"‘%:ﬁl

l

b=0,1 b




Virtual Black Box Obfuscation

Potential Cryptographic Applications:
- Public key encryption from private key encryption:

Enc(:) = O | = 8P’

- Homomorphic encryption:

P(Cy,Cyy OE(H, X} ) {
m, €< Dec(c,)

m, € Dec(c,) - O - .3,

return Enc(m;©m,)

}

- Functional Encryption




Virtual Black Box Obfuscation

Potential Cryptographj
- Public key encr encryption:

- Functional Encrypti



Indistinguishability Obfuscation (10) saivo1)

If two programs have same functionality, obfuscations are
iIndistinguishable

P1(X) = P2(x) VX




-
Indistinguishability Obfuscation (10)

BGI* counter example does not apply to IO

An exploding field:
-[BGI*'01] Original definition
(GR’07] Further investigation

-[GGH*’13] First candidate construction
- Functional encryption

-[BR'13, BGK*'13, ...] Additional constructions

[SW'13, HSW’'13, GGHR’13, BZ'13, ...] Uses

- Public key encryption, signatures, deniable encryption, multiparty
key exchange, MPC, ...

-[BCPR’13, MR'13, BCP’13, ...] Further Investigation




Our Results

- Non-interactive multiparty key exchange without trusted
setup
- All existing protocols required trusted setup

- Efficient broadcast encryption « This talk
 Distributed
- Use existing keys

- Efficient traitor tracing
- Shortest secret keys and ciphertexts known

All constructions from IO and one-way functions



(Non-Interactive) Multiparty Key Exchange

bulletin board |

N

ABCD KABCD



Prior Constructions

First achieved using multilinear maps

- These constructions all require trusted setup before
protocol is run

- Trusted authority can also qurn groupkey
‘ -~ < ' = A'-‘ ~:"
paral ns |




Prior Constructions

First achieved using multilinear maps

- These constructions all require trusted setup before
protocol is run

- Trusted authority can also qurn group key B

=_——_— — 8

i

- e AT S ST {
‘ R N T e e S L RSP R e aateu o e NSRS e SRR s e
A - T = R ) e~ e e s ==~ d

:—; : T o = R s = " o s o = =r e = b =t i [

. 1

{

{

params




Our Construction (w/ Trusted Setup)

Building blocks:

- 10

- Pseudorandom function F

- Pseudorandom generator G: S2>X

|ldea: shared key is F applied to published values
- F itself kept secret

- Publish program that computes F,
- but only if user supplies proof that they are allowed to



Our Construction (w/ Trusted Setup)

How to establish shared group key?



Our Construction (w/ Trusted Setup)

F P(Yy oy Vi Sy 1) {
If G(s) # vy, output L
Otherwise, output F(y,, ..., ¥,)

}

L
10
L

—

"




Our Construction (w/ Trusted Setup)

Kagep = P (X1y X5, X3, X4, Sq, 1)



Security of Our Construction

Adversary sees P’ and the X;, wants to learn F(x;

F P(Yy oo Y S, 1) {
If G(s) # y;, output L -}
Otherwise, output F(y4, ..., Y,) IO

}




Step 1: Replace x;

Draw Xx; uniformly at random

- Security of G: adversary cannot tell difference g

F P(Yy oo Ve Sy 1) {
If G(s) #y,;, output L
Otherwise, output F(y,, ..., ¥,)

}

Observation: if X is much larger than S,
all x; are outside range of G, w.h.p.

-

10

X/

\




Punctured PRFs w13 kp1713, BGI13,sw13]

Can give out code to evaluate F at all but a single point z

-

1

X——

FZ

F(X) IfX#z

1 fx=2z

Security: given F?, t=F(z) indistinguishable from random

I:Z

t=F(2)

N
e

I:Z

t< T




Step 2: Puncture F

Let z = (Xq, ...y Xp,)
Puncture F at z, and abort if input is z

FZ | Py s Yo Si 1)

If G(s) # y,, output L

If (y4, ..., ¥n) =z, output L
Otherwise, output F#(y,, ..., Y,,)

}
Inputs where P, differs from P? 7 X1
- Only (X4,...,X,,,S,1) where G(s) = X; Xé/’ -
- W.h.p. no such input exists —] X

- 10: P, indistinguishable from P




Step 3: Simulate

Simulate view of adversary, given F?

FZ | Po(Y1 - Yo S 1) 4

If G(s) # y,, output L

If (Y, ..., Yp) = Z, output L
Otherwise, output F#(y,, ..., Y,,)

}
Security of F: k = F(z) indist. / P
from a random key Xé/ ..
>




Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated
iIndependently of publishing step

F (P(Yy oo Yni S 1)

If G(s) # ;, output L - i) |- oY
Otherwise, output F(y4, ..., ¥) IO .:)

}

Untrusted setup: user 1 generates P’, sends with x,



Multiparty Key Exchange Without Trusted Setup




Broadcast Encryption

(((i)))




Broadcast Encryption




Broadcast Encryption

* Replace unintended recipients with dummy

« Compute shared key for protocol
((.)) * EX: k = F(X{,Xp:Xp:Xy)

Use shared key to encrypt message




Broadcast Encryption

Private key scheme: empty ciphertext header
Public broadcast key scheme: a single x; value

Additional Properties:
-Distributed — users and broadcaster each generate their
own parameters

-Can be used with existing RSA keys (under plausible
assumptions)



Other Constructions

Recipient private broadcast encryption
-Ciphertext size: A+n

-Secret key size: A

-Public key size: poly(n, A)

Traitor tracing

-Ciphertext size: A+log(n)
-Secret key size: A

-Public key size: poly(log(n), A)



Open Questions

Reduce public key sizes
-Using differing-inputs obfuscation [ABGSZ'13]
‘From 107

Other primitives from iO
‘FHE?

Thanks!



