
INDISTINGUISHABILITY

OBFUSCATION
Mark Zhandry – Stanford University

* Joint work with Dan Boneh

Program Obfuscation

Intuition: Mangle a program

• Same functionality as original

• Hides all implementation details

Potential uses:

• IP protection

• Prevent tampering

• Cryptography

Virtual Black Box Obfuscation [BGI+’01]

Having source code no better than black box access

P P’ O

b=0,1 b

Virtual Black Box Obfuscation

Potential Cryptographic Applications:

• Public key encryption from private key encryption:

• Homomorphic encryption:

• Functional Encryption

P(c1 , c2 , ⨀∈{+,×}) {

 m1 Dec(c1)

 m2 Dec(c2)

 return Enc(m1⨀m2)

}

O P’

Enc(⋅) O P’

Virtual Black Box Obfuscation

Potential Cryptographic Applications:

• Public key encryption from private key encryption:

• Homomorphic encryption:

• Functional Encryption

P(c1 , c2 , ⨀∈{+,×}) {

 m1 Dec(c1)

 m2 Dec(c2)

 return Enc(m1⨀m2)

}

O P’

Enc(⋅) O P’

Theorem ([BGI+’01]): VBB for all programs is impossible

Indistinguishability Obfuscation (iO) [BGI+’01]

If two programs have same functionality, obfuscations are

indistinguishable

P1

iO

P1 ’

P2

iO

P2 ’

P1(x) = P2(x) ∀x

≈

Indistinguishability Obfuscation (iO)

BGI+ counter example does not apply to iO

An exploding field:

•[BGI+’01] Original definition

•[GR’07] Further investigation

•[GGH+’13] First candidate construction

• Functional encryption

•[BR’13, BGK+’13, …] Additional constructions

•[SW’13, HSW’13, GGHR’13, BZ’13, …] Uses

• Public key encryption, signatures, deniable encryption, multiparty

key exchange, MPC, …

•[BCPR’13, MR’13, BCP’13, …] Further Investigation

Our Results

• Non-interactive multiparty key exchange without trusted

setup

• All existing protocols required trusted setup

• Efficient broadcast encryption

• Distributed

• Use existing keys

• Efficient traitor tracing

• Shortest secret keys and ciphertexts known

All constructions from iO and one-way functions

This talk

(Non-Interactive) Multiparty Key Exchange

Public bulletin board

KABCD KABCD KABCD KABCD

?

Prior Constructions

First achieved using multilinear maps

• These constructions all require trusted setup before

protocol is run

• Trusted authority can also learn group key

params

Prior Constructions

First achieved using multilinear maps

• These constructions all require trusted setup before

protocol is run

• Trusted authority can also learn group key

params

Our Construction (w/ Trusted Setup)

Building blocks:

• iO

• Pseudorandom function F

• Pseudorandom generator G: SX

Idea: shared key is F applied to published values

• F itself kept secret

• Publish program that computes F,

• but only if user supplies proof that they are allowed to

Our Construction (w/ Trusted Setup)

s1S
s2 s3

s4

How to establish shared group key?

x1 x2

x3
x4

Our Construction (w/ Trusted Setup)

F P(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 Otherwise, output F(y1, ..., yn)

}

iO

P’

Our Construction (w/ Trusted Setup)

s1 s2 s3
s4

x1 x2

x3
x4

P’

KABCD = P’(x1, x2, x3, x4, s1, 1)

Security of Our Construction

Adversary sees P’ and the Xi, wants to learn F(x1,...,xn)

F P(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 Otherwise, output F(y1, ..., yn)

}

iO P’

s1 G x1

sn G xn

… … S

Step 1: Replace xi

Draw xi uniformly at random

• Security of G: adversary cannot tell difference

Observation: if X is much larger than S,

 all xi are outside range of G, w.h.p.

F P(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 Otherwise, output F(y1, ..., yn)

}

iO P’

x1

xn
X

…

Punctured PRFs [BW’13, KPTZ’13, BGI’13,SW’13]

Can give out code to evaluate F at all but a single point z

Security: given Fz, t=F(z) indistinguishable from random

F

Fz x F(x) if x ≠ z

⊥ if x = z

Fz

t = F(z)
≈

Fz

t T

Step 2: Puncture F

Let z = (x1, ..., xn)

Puncture F at z, and abort if input is z

Inputs where P2 differs from P?

• Only (x1,...,xn,s,i) where G(s) = xi

• W.h.p. no such input exists

• iO: P2 indistinguishable from P

Fz P2(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 If (y1, ..., yn) = z, output ⊥

 Otherwise, output Fz(y1, ..., yn)

}

iO P’

x1

xn
X

…

Step 3: Simulate

Simulate view of adversary, given Fz

Security of F: k = F(z) indist.

 from a random key

Fz P2(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 If (y1, ..., yn) = z, output ⊥

 Otherwise, output Fz(y1, ..., yn)

}

iO P’

x1

xn
X

… ✓

Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated

independently of publishing step

Untrusted setup: user 1 generates P’, sends with x1

F P(y1, ..., yn, s, i) {

 If G(s) ≠ yi, output ⊥

 Otherwise, output F(y1, ..., yn)

}

iO P’

Multiparty Key Exchange Without Trusted Setup

s1 s2 s3
s4

x1

P’
x2

x3
x4

Broadcast Encryption

✗ ✗

Broadcast Encryption

s1 s2 s3
s4

x1
x2

x3
x4

P’ xD

dummy user

Broadcast Encryption

• Replace unintended recipients with dummy

• Compute shared key for protocol

• Ex: k = F(x1,xD,xD,x4)

• Use shared key to encrypt message

✗ ✗

Broadcast Encryption

Private key scheme: empty ciphertext header

Public broadcast key scheme: a single xi value

Additional Properties:

•Distributed – users and broadcaster each generate their

own parameters

•Can be used with existing RSA keys (under plausible

assumptions)

Other Constructions

Recipient private broadcast encryption

•Ciphertext size: λ+n

•Secret key size: λ

•Public key size: poly(n, λ)

Traitor tracing

•Ciphertext size: λ+log(n)

•Secret key size: λ

•Public key size: poly(log(n), λ)

Open Questions

Reduce public key sizes

•Using differing-inputs obfuscation [ABGSZ’13]

•From iO?

Other primitives from iO

•FHE?

Thanks!

