APPLICATIONS OF
INDISTINGUISHABILITY
OBFUSCATION

Mark Zhandry — Stanford University

*Joint work with Dan Boneh

Program Obfuscation

Intuition: Scramble a program
- Same functionality as original
- Hides all implementation details

Potential uses:

- |P protection

- Prevent tampering
- Cryptography

Applications

Crypto

- Give out program with embedded secrets

- Obfuscate to hide secrets

- Ex: symmetric key to public key encryption

m

NncC

Keygen:
* Publish Encg, as pk
= k remains secret

* Keep k as sk

Virtual Black Box (VBB) Obfuscation [Bcirsvyo1]

What can we learn about P from an obfuscation P5?
-Output on any input
-Anything derivable from polynomial number of outputs

VBB Obfuscation: can’t learn anything else

O «0 ..D! X

 m X

Virtual Black Box (VBB) Obfuscation [Bcirsvyo1]

What can we learn ab
-Output on any In
-Anything deriv

bfuscation P5?

of outputs

VBB Obfusc anything

[Theorem ([BGI*'01]): Can’t achieve for all programs J

1

J

b=0,1

e
More on VBB Impossibility

BGI* construct program P with embedded secret k where:
- k Is secret even given black box access to P
- Given any program computing P, can recover k

Main takeaways:
- Need weaker notion of obfuscation
- Obfuscation alone cannot guarantee secret hiding

Example:
- Some encryption schemes cannot be obfuscated

- Perhaps specific encryption schemes can be obfuscated?
- e.g. public key encryption schemes

Indist. Obfuscation (10) Bciro1, GrRo7]

If two programs have same functionality, obfuscations are
iIndistinguishable

P1(X) = P2(x) VX

0

’
10

b L4

P, =P,

BGI* counter(?xample dOEB not apply to IO
However, big questions: How to build? How to use?

-
Indistinguishability Obfuscation (10)

Answer:

[GGHRSW’13] First candidate iO construction
- Functional encryption

Exploding field:
-[BR'13, BGKPS'13, ...] Additional constructions

[SW'13, GGHR'13, BZ’13, ABGSZ’13, ...] Uses

- Public key encryption, signatures, deniable encryption, multiparty
key exchange, MPC, ...

-[BCPR’13, MR'13, BCP’13, ...] Further Investigation

Our Results

Non-interactive multiparty key exchange e

- First scheme without trusted setup

Efficient broadcast encryption
- Constant size ciphertext and secret keys
- First distributed system: users generate keys themselves

Efficient traitor tracing
- Shortest secret keys, ciphertexts, known
- Resolves open problem in Differential Privacy [DNR*09]

MULTIPARTY KEY
EXCHANGE

(Non- Interactlve) I\/Iultlparty Key Exchange

KABCD KABCD

-
History

2 parties: Diffie Hellman Protocol [DH’76]
3 parties: Bilinear maps [Joux'2000]

n>3 parties: Multilinear maps [BS'03,GGH’13,CLT’'13]
-Requires trusted setup phase

Our work: n parties, no trusted setup

Prior Constructions for n>3

First achieved using multilinear maps [GGH'13,CLT’13]

-These constructions all require trusted setup before
protocol is run

‘Trusted authority can also learn group key

= =
S - - - o a2 =T e e r— if
: 22D 2
A L
,

params

Starting point for our construction

Building blocks:
- One-way function G:S 2 X
- Pseudorandom function (PRF) F

Shared key: F, (X, X5, X3, X,) «<— how to compute securely?

Introduce Trusted Authority (for now)

k [P(Xq . Xy, 8,1) 4
If G(s) # X;, output L
Otherwise, output F, (X', ..., X',)

}

1
[,

'_f

O\

F - “TEL

Kagep = Pio(X1: X2, X3, X4, Sq, 1)
Problems:

- k not guaranteed to be hidden using 10
- Still have trusted authority

Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated
iIndependently of publishing step

k | P(X4q, . X, 8, 1) 4
If G(s) # X', output L - |O - i)i

Otherwise, output F (X', ..., X',)

}

O

Untrusted setup: designate user 1 as “master party”
-generates P,,, sends with x,

Multiparty Key Exchange Without Trusted Setup

Security equivalent to security of previous scheme

e
Hiding k

Follow “punctured program” paradigm of SW'13
-Use pseudorandom generator for G
G:S=>X [X]|>>]S]
G(s), s€S indist. from x€X
-Use special “punctured PRF” for F [Bw'13, KPTZ’13, BGI'13, SW'13]
Punctured key k?z = compute F, (=) everywhere but z
kZ
¥
X— F

F(K,X) IfX# 2z
é .

1 fxX=2
Security: given k#, cannot compute t=F,(z)
Construction: GGM’'84

-
Security of Our Construction

K |P(Xq ..., X, S,i){
If G(s) # X,
output L
Otherwise,
output F (X4, ..., X'y)
}
L s
l G G

J

- v v
.)i X1 1 X,
. Adversary’s goal:

O Learn F (X4, ...,X,)

-
Step 1: Replace x;

Real World Alternate World 1
P(Xy, ..., X, S, 1) { P(Xy, ..., X1, S, 1) {
If G(s) # X, If G(s) # X,
output L output L
Otherwise, Otherwise,
output F (X', ..., X,) output F (X', ..., X,)
} }
| S |
O 3t iO X
| | G G | | / \
v "
Xl . Xn

')i)21 :)v(n

O Security of G = words indis€hguishable

Step 1: Replace x;

Alternate World 1

Observation: K

P(X'q, -y X1y S, 1) {

Since |X]| >> |S],
w.h.p. no s,i s.t. G(s)=x;

Never pass check when

b J —
X1y X' = Xyq, ea X,

If G(s) # X,

output L
Otherwise,
output F (X', ..., X,)

)
!
10

X
T/
.)i)%1:§l(n

O

Step 2: Puncture

Alternate World 2

Alternate World 1

kZ

P(Xy ., X, S, 1) {

/

If G(s) # X,
output L

If (X'¢, ..., X') = Z,
output L

Otherwise,

output F (X4, ..., X',

P(Xy ..o, X, S, 1) {
If G(s) # X,
output L
Otherwise,

output F (X', ..., X,)

_.'
|O / \

\ iJI . %
Letz (xL ey Xp)

!
O

! /X\

W.h.p. m))grgr?ls identical + IO = Worlc@mdlstlngwshable

e
Security

Alternate World 2

kz |P(X', o X 8, 1) 4 Adversary’s goal: learn F,(z)
If G(s) # X,
output L |
If (X4, ..., X,) = 2, Success in Real World
output L = success in World 2
Otherwise,
output F (X', ..., X,)
! . In World 2:
X Adversary only sees k2
10 X = cannot learn F,(2)
] / \
/ \

'Ji X1 Xn /

O L?t’z:(xl, ceey Xp)

Minimal Assumptions

Building blocks:

iO

-Pseudorandom generator G: S — X (|X| >>|S])
-Puncturable PRFF. K X X" Y)

[GGM’84] [HILL'99]

. '13 .
IO+ NP & Co-RPM One-way functions

Our constructions can be built from 10 and worst-case
complexity assumptions

ACTIVE SECURITY

Active Notions of Security

Key exchange protocol may be used multiple times

- Adversary may take part as well (even multiple times)

Y — = E— — == — —— i

Active Notions of Security

Implications for our scheme:
‘Everyone must be ready to be “master party”
= everyone must publish own program P,

AW | Malicious programs may g
run on honest secrets!

Active Notions of Security

Potential attack:

- Step 1: Attacker creates and publishes malicious
program; g

P(Yi ooy Yo S0 1) {
output s
}

Active Notions of Security

Potential attack:
-Step 2: Attacker and Bob use attacker’s program:

Kge(BoDb) = Pe(Xg.Xe, Sg: B) = S

Active Notions of Security

Potential attack:
-Step 3: Attacker steals Bob’s shared keys:

Kge(BOb) = sg

Active Notions of Security

Potential attack:
- Step 4: Attacker can compute any future shared key:

Problems with Basic Scheme

Malicious programs run on honest secrets

Ways to fix?
- Ensure programs are honest
Problematic since program obfuscated

- Never run untrusted programs on secrets —
(Assume inputs to completely leak)

Our Solution

- Replace user secret with signing key for signature scheme

- Publish public key

- Input to program is signature on set of users
F | P(pky, ..., pky, S, 0,1)1

If Ver(pk;, S, 0) rejects, output L
Otherwise, output F(k, pky, ..., pk.)

}

Intuition: Even after seeing many signatures, cannot learn
signature on challenge set

[Theorem: IO + “constrained signature” + “constrained PRF” }

/' = “semi-static” security T\

[BW’13]: build from MLM
Build from iO Intermediate sec. notion Or, build from iO

REDUCING PARAMETER
SIZES

Reducing Parameter Sizes [ABGsz'13]

Key exchange program:

k [P(Xq oy Xy S, 1) {
If G(s) # X’;, output L
Otherwise, output F(k, X4, ..., X',,)

}

Size of input: Q(n)
For circuits, size of program: Q(n)
- Also true for Turing Machines (less obvious)
To reduce program size, must reduce input size

= Must derive key from small string

Reducing Parameter Sizes

Idea: use hash of public values to derive key

h < H(Xq, ..., X,)
k € F(k,h)

User supplies h to program
Question: How does user i prove h is correct?
‘Need proof that h=H(x’,, ..., X’,) where x;” = X;

-Need proof to be small

Answer: Merkle Hash Trees

Merkle Hash Trees

Proof size: O(log n)

Our Construction

k P(h,m,x,s,i){

If 1T is an invalid proof for (h,x,i), output L
If G(s) # X, output L

Otherwise, output F(k,h)

}

Program size: poly(log n)

Problem: false proofs exist (though hard to compute)
- Must use stronger notion of obfuscation: diO

Open Questions

Reduce program sizes using i0?
Other primitives from iO

- FHE?
- Multilinear maps?

Thanks!

