CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD

Mark Zhandry – Stanford University

* Joint work with Dan Boneh

But First: My Current Work

Indistinguishability Obfuscation (and variants)

- Multiparty NIKE without trusted setup and with small parameters
- Broadcast encryption with short ciphertexts and secret/public keys
- Traitor tracing with short ciphertexts and secret/public keys
- More to come

Talk at NYU 2:30pm Tomorrow (11/20). Ask me for details

Multilinear Maps

• Can above primitives be built directly from multilinear maps?

Back to Quantum

Classical Crypto

Ex: CCA encryption

Quantum Computing Attack

Aka: Post-quantum crypto

Adversary has quantum computer:

Defending against Quantum Computing Attacks

Need crypto based on hard problems for quantum computers

• Ex: lattice problems

Classical security proofs (reductions) often carry through

- Many reductions treat adversary as black box
- Classical interactions → simulate adversary using classical techniques
- Ex: OWF \rightarrow PRF, IBE \rightarrow CCA encryption, etc.
- Exception: rewinding

This Talk: Quantum Channel Attacks

All parties have quantum computers

 $\left(\sum_{x \in \mathcal{X}} |\alpha_x|^2 = 1\right)$

Measurement:

 $X \to X$

(Output **x** with probability $|\alpha_x|^2$)

Can perform any classical op:

$$F \longrightarrow F = \sum_{x \in \mathcal{X}} \alpha_x |F(x)\rangle$$

Motivation

Objection: Can always measure incoming query

Motivation

Objection: Can always measure incoming query

Answer: Implementing measurement securely is non-trivial

- Measurement is physical must trust hardware
- What if adversary has access to device?
- Only way to be certain: entangle fully with query
 - Requires quantum storage ≥ total data measured.

Conservative approach to crypto:

Use schemes secure against quantum channel attacks

Proving Quantum Security

Main difficulty: simulation

- Adversary may query on superposition of all inputs
- Exact simulation:
 - need an answer at every point
 - Distribution of all answers must be same as real setting

Possible solutions:

- Find reduction that answers every point correctly
- Distribution of answers indistinguishable from real setting
- Answer incorrectly on some inputs*

What's to come

- Encryption
- Pseudorandom functions
- Message authentication codes
- Signatures (if time)

Encryption

Proving security against quantum CCA

Goal: find reduction that can decrypt all queries except challenge

Reduction can compute all decryption keys except challenge

Example:

ABB'10 selective IBE

╋

selective IBE \rightarrow CCA

Reduction can decrypt every ciphertext but challenge

• Needs all decryption keys but challenge

Pseudorandom Functions

Pseudorandom Functions

Recall classical def: b ← {0,1} **b=0**: b=1: k ← K $F(\cdot)=F(k, \cdot F \leftarrow Funcs(X,Y)$ Χ

b'

Quantum Security for PRFs

The GGM Construction

Pseudorandom Generators

Quantum Security Proof?

Follow classical steps:

Step 1: Hybridize over levels of tree

Hybrid **3**

Hybrid **n**

PRF distinguisher will distinguish two adjacent hybrids

PRF distinguisher will distinguish two adjacent hybrids

Quantum Security Proof?

Follow classical steps:

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

How It Was Done Classically

Active node: value used to answer query

Adversary only queries polynomial number of points

Quantum Simulation?

Adversary can query on all exponentially-many inputs

Quantum Simulation?

Adversary can query on all exponentially-many inputs

Cannot simulate exactly with polynomial samples!

A Distribution to Simulate

H:

Any distribution **D** on values induces a distribution on functions

For all **x**∈**X**: $y_x \leftarrow D$ $H(x) = y_x$ D D \square D \Box Π

Simulating Hybrids

Goal: simulate $\mathbf{D}^{\mathbf{X}}$ using poly samples of \mathbf{D}

GX

H is periodic \rightarrow period learnable by quantum algorithms

Called small range distributions, **SR**_r^x(**D**)

Small Range Distributions

Theorem: $SR_r^{x}(D)$ is indistinguishable from D^{x} by any qquery quantum algorithm, except with probability $O(q^{3}/r)$

Notes:

- Highly non-trivial
- Distinguishing prob not negligible, but good enough
 - We get to choose r
- Random function **R** not efficiently constructible
 - [Zha'12a] Can simulate **R** using **k**-wise independence

Quantum Security Proof?

Follow classical steps:

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids approximately using PRG/Random samples

Step 3: Hybrid over samples

Message Authentication Codes (MACs)

Message Authentication Codes (MACs)

Recall classical def:

V(k,m,σ) accepts, m ≠ m_i for any i

Quantum Security?

Quantum Security

Adversary must produce **q+1** (distinct) forgeries after making **q** queries

PRF as a MAC

Try classical construction:

Security of PRF as a MAC

Adversary must produce **q+1** (distinct) input/output pairs of **F** after making **q** queries

Security of PRF as a MAC

Replace **F** with a random function

F ← Funcs(M,T)

Oracle Interrogation:

Adversary must produce **q+1** (distinct) input/output pairs of random function after making **q** queries

Quantum Oracle Interrogation

Classically: hard Adv[q+1 points]: 1/|T|

(1/2ⁿ for n-bit tags)

Quantum: not so fast

[vD'98]: random function **F:** $X \rightarrow \{0,1\}$ **q** quantum queries \Rightarrow **1.9q** points w.h.p.

Also true for small range size:

ex: random function $F: X \rightarrow \{0,1\}^2$

q quantum queries \Rightarrow **1.3q** points w.h.p.

Question: What about large range size?

Quantum Oracle Interrogation

Our result:

Theorem: Random function $F: X \rightarrow T$ Adv[q queries \Rightarrow q+1 points] \leq (q+1)/|T|

(only lose factor of **q+1** relative to classical case)

Highly nontrivial

Invented new quantum impossibility tool: The Rank Method

Takeaway: Quantum Oracle Interrogation easier, but still hard

Back to MAC Security

Classical CMA:

secure PRF \Rightarrow secure MAC (Adv: 1/|T|)

Quantum CMA:

quantum-secure PRF \Rightarrow quantum-secure MAC (Adv: (q+1)/|T|)

Both cases:

MAC size super-logarithmic \Rightarrow MAC is secure

Signatures

Naturally extend MAC definition

Proof Difficulties

Aborts are problematic

Can't both abort and continue

Adversary can tell if signatures are invalid

Need to sign all messages correctly

Previous quantum proof techniques leave query intact

- Known limitations in quantum setting:
 - MPC [DFNS'11]
 - Fiat-Shamir in QROM [DFG'13]
- Cannot prove security for unique signatures (Ex: Lamport)

Building Quantum-Secure Signatures

First attempt: do classical constructions work? **Examples:**

- From lattices [CHKP'10, ABB'10]
- Using random oracles [BR'93, GPV'08]
- From generic assumptions [Rom'90]

Short answer: sometimes yes, with small modifications

Hash and Sign

Many classical signature schemes hash before signing:

Classical Advantages:

- Only sign small hash \rightarrow more efficient
- Weak security requirements for S' if H modeled as random oracle

Our Goal:

Prove quantum security of S assuming only classical security of S'

First Step: Simulate using only classical queries to S'

Problem: exponentially many h

 \rightarrow must query **S'** too many times

Now **S'** only queried on **r** inputs \rightarrow Can simulate **Next Step:** Use one of the σ_i as a forgery for **S' Problem:** # of sigs (**q+1**) << # of **S'** queries (**r**)

Intermediate Measurement

New quantum simulation technique:

Only **q** queries to $S' \rightarrow$ One of the σ_i must be forgery for **S'** Success probability non-negligible for constant **q**

Many-time Secure Scheme

To sign each message, draw

- A random salt
- A pairwise indep function R

Theorem: If **S'** is classical many-time secure, then **S** is quantum many-time secure

Other Signature Constructions

Theorem: (Slight variant of) GPV is quantum-secure

Uses entirely different techniques

Non-Random Oracle Schemes:

Theorem: Generic conversion using Chameleon hash

Theorem: Collision resistance \Rightarrow quantum-secure signatures

Follow-up work: signatures from one-way functions

Result Summary

Quantum CCA Encryption

One specific example

Quantum PRFs

 From generators [GGM'84], synthesizers [NR'95], or LWE [BPR'11]

Quantum MACs

- PRF as a MAC
- Modification of Carter-Wegmen [WC'81]

Quantum CMA-secure Signatures

- Two generic conversions
- From collision resistance

Open Problems

Prove quantum security for more existing schemes

• CBC-MAC, NMAC, etc.

. . .

Hash and Sign without salting

Improve tightness of reductions

Most of our security reductions are very loose