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But First: My Current Work 

Indistinguishability Obfuscation (and variants) 

• Multiparty NIKE without trusted setup and with small parameters 

• Broadcast encryption with short ciphertexts and secret/public keys 

• Traitor tracing with short ciphertexts and secret/public keys 

• More to come 

 

Talk at NYU 2:30pm Tomorrow (11/20).  Ask me for details 

 

Multilinear Maps 

• Can above primitives be built directly from multilinear maps? 



Back to Quantum 

 



Classical Crypto 

Ex: CCA encryption 

pk sk 
c = E(pk,m) 

Computational power and 

interactions are classical 



Quantum Computing Attack 

Adversary has quantum computer: 

pk = (N,e) sk = (N,d) 
c = E(pk,m) 

N  p,q (Shor’s alg) 

d = e-1 mod ϕ(N) 

m = D(sk,c) 

Interactions remain 

classical 

Aka: Post-quantum crypto 



Defending against Quantum Computing Attacks 

Need crypto based on hard problems for quantum 

computers 

• Ex: lattice problems 

 

Classical security proofs (reductions) often carry through 

• Many reductions treat adversary as black box 

• Classical interactions  simulate adversary using 

classical techniques 

• Ex: OWF  PRF, IBE  CCA encryption, etc. 

• Exception: rewinding 



This Talk: Quantum Channel Attacks 

All parties have quantum computers 

pk sk 
c = E(pk,m) 

Computational power and 

interactions are quantum 



Quantum Background 

x = 

Measurement: 

x x (Output x with probability |αx|
2) 

Can perform any classical op: 

F x y = 



Motivation 

Objection: Can always measure incoming query 

pk sk 
c = E(pk,m) 

Attack reduced to 

classical channel attack 



Motivation 

Objection: Can always measure incoming query 

 

Answer: Implementing measurement securely is non-trivial 

• Measurement is physical – must trust hardware 

• What if adversary has access to device? 

• Only way to be certain: entangle fully with query 

• Requires quantum storage ≥ total data measured. 

Conservative approach to crypto:  

 Use schemes secure against quantum channel attacks 



Proving Quantum Security 

Main difficulty: simulation 

• Adversary may query on superposition of all inputs 

• Exact simulation:  

• need an answer at every point 

• Distribution of all answers must be same as real setting 

 

Possible solutions: 

• Find reduction that answers every point correctly 

• Distribution of answers indistinguishable from real setting 

• Answer incorrectly on some inputs* 

 

 

 

 

 



What’s to come 

• Encryption 

• Pseudorandom functions 

• Message authentication codes 

• Signatures (if time) 



Encryption 

 



Quantum CCA Attack 
(sk,pk)  G() 

b  {0,1} 
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Proving security against quantum CCA 

Goal: find reduction that can decrypt all queries except 

challenge 

 

Example: 

 
ABB’10 selective IBE 

+ 

selective IBE  CCA 

Reduction can decrypt every ciphertext 

but challenge 

• Needs all decryption keys but challenge 

Reduction can compute all decryption 

keys except challenge 



Pseudorandom Functions 

 



Pseudorandom Functions 

Recall classical def: 

b  {0,1} 

b=0: 

k  K 

F(・)=F(k,・) 

b=1: 

FFuncs(X,Y) 

F 
x 

y 

b’ 



Quantum Security for PRFs 

b  {0,1} 

b=0: 

k  K 

F(・)=F(k,・) 

b=1: 

FFuncs(X,Y) 

F 

b’ 

x 

y 



The GGM Construction 

 



Pseudorandom Generators 

s 

y 

G 

G0(s) G1(s) 

S 

Y 

≈ 



The GGM Construction 

x0  ⟶ 

k 

G 

x1  ⟶ 
G G 

x2  ⟶ G G G G 

Fk(000) Fk(001) Fk(010) Fk(011) Fk(100) Fk(101) Fk(110) Fk(111) 

S 



Quantum Security Proof? 

Follow classical steps: 

 

Step 1: Hybridize over levels of tree 

 



Hybridize Over Levels 

Hybrid 0 



Hybridize Over Levels 

Hybrid 1 



Hybridize Over Levels 

Hybrid 2 



Hybridize Over Levels 

Hybrid 3 



Hybridize Over Levels 

Hybrid n 



Hybridize Over Levels 

PRF distinguisher will distinguish two adjacent hybrids 

Y Y Y Y 

Y Y Y Y Y Y Y Y 



Hybridize Over Levels 

PRF distinguisher will distinguish two adjacent hybrids 

Y Y Y Y Y Y Y Y 

S S S S S S S S 



Quantum Security Proof? 

Follow classical steps: 

 

Step 1: Hybridize over levels of tree 

 

Step 2: Simulate hybrids using PRG/Random samples 

 

✓ 



Simulating Hybrids 

Y Y Y Y Y Y Y Y 

S S S S S S S S 

S S S 
Y Y Y 



How It Was Done Classically 

Adversary only queries polynomial number of points 

Only need to fill active nodes 

Active node: value used to answer query 



Quantum Simulation? 

 

Adversary can query on all exponentially-many inputs 



Quantum Simulation? 

 

Adversary can query on all exponentially-many inputs 

Cannot simulate exactly with polynomial samples! 

All nodes are active! 



A Distribution to Simulate 

H: 

For all x∈X: 

 yx  D 

 H(x) = yx 

      

Any distribution D on values induces a distribution on functions 

Dx 

D D D D D D D D D D D D D D D D 



Simulating Hybrids 

Y Y Y Y Y Y Y Y 

S S S S S S S S 

GX 

UX 

Goal: simulate DX using poly samples of D 



Attempt 1: Systematic 

D D D D 

y1 y2 y3 y4 

y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4 

H(x) = yx mod r 

H is periodic  period learnable by quantum algorithms 



Attempt 2: Random 

D D D D 

y1 y2 y3 y4 

y4 y3 y1 y3 y2 y4 y4 y4 y1 y2 y2 y2 y2 y3 y3 y2 

R  Funcs([r],X) 

H(x) = yR(x) 

Called small range distributions, SRr
X(D) 



Small Range Distributions 

Theorem: SRr
X(D) is indistinguishable from DX by any q-

query quantum algorithm, except with probability O(q3/r) 

Notes: 

• Highly non-trivial 

• Distinguishing prob not negligible, but good enough 

• We get to choose r 

• Random function R not efficiently constructible 

• [Zha’12a] Can simulate R using k-wise independence 



Quantum GGM Proof 

PRF distinguisher will 

distinguish two adjacent 

hybrids 

S S S S S S S S 
Y Y Y Y Y Y Y Y 

Y Y Y Y 
S S S S 

≈ ≈ (SR distributions) (SR distributions) 



Quantum Security Proof? 

Follow classical steps: 

 

Step 1: Hybridize over levels of tree 

 

Step 2: Simulate hybrids approximately using 

PRG/Random samples 

 

Step 3: Hybrid over samples 

 

✓ 

✓ 

✓ 



Quantum GGM Proof 

PRF distinguisher will 

distinguish two adjacent 

hybrids 

S S S S S S S S 
Y Y Y Y Y Y Y Y 

Y Y Y Y 
S S S S 

≈ ≈ 

≈ 

(SR distributions) (SR distributions) 

(PRG security) 



Message Authentication Codes (MACs) 

 



Message Authentication Codes (MACs) 

Recall classical def: 

K  {0,1}λ 

S k > 

mi 

σi 

m,σ 

Requirements:

 V(k,m,σ) accepts, 

 m ≠ mi for any i 

m
1 

m

2 

… 

 

 

 

 



Quantum Security? 

S k > 

m
1 

m

2 

… 

 

 

 

 
m,σ 

Requirements:

 V(k,m,σ) accepts, 

 m ≠ mi for any i 

mi 

σi 

? 

Cannot copy quantum info! 

• Must define success without 

reference to queries 

K  {0,1}λ 



Quantum Security 

S k > 

(m0*,σ0*),..., (mq*,σq*) 

mi 

σi 

K  {0,1}λ 

q queries 

Adversary must produce q+1 (distinct) forgeries 

after making q queries 



PRF as a MAC 

Try classical construction: 

S 

 
 

k F > 

x 

σ=F(x) 

S 

 
 

 

k F > 

x σ 

= 

accept/reject 



Security of PRF as a MAC 

F k > 

(m0*,σ0*),..., (mq*,σq*) 

mi 

σi 

K  {0,1}λ 

q queries 

Adversary must produce q+1 (distinct) 

input/output pairs of F after making q queries 



Security of PRF as a MAC 

Replace F with a random function 

F 

(m0*,σ0*),..., (mq*,σq*) 

mi 

σi 

F  Funcs(M,T) 

q queries 

Adversary must produce q+1 (distinct) input/output 

pairs of random function after making q queries 

Oracle Interrogation: 



Quantum Oracle Interrogation 

Classically: hard  Adv[q+1 points]: 1/|T| 
 

Quantum: not so fast 

   [vD’98]: random function F: X  {0,1} 

  q quantum queries   ⇒   1.9q points w.h.p. 

 

   Also true for small range size: 

 ex: random function F: X  {0,1}2 

  q quantum queries   ⇒   1.3q points w.h.p. 

Question: What about large range size? 

(1/2n for n-bit tags) 



Quantum Oracle Interrogation 

Our result: 

 

 

 

 

 

 

Highly nontrivial 

• Invented new quantum impossibility tool: The Rank Method 

 

Takeaway: Quantum Oracle Interrogation easier, but still hard 

Theorem: Random function F: X  T 

       Adv[q queries   ⇒   q+1 points] ≤ (q+1)/|T| 

(only lose factor of q+1 relative to classical case) 



Back to MAC Security 

Classical CMA:    

   secure PRF   ⇒   secure MAC     (Adv: 1/|T|)  

 

Quantum CMA:    

   quantum-secure PRF   ⇒   quantum-secure MAC    

      (Adv: (q+1)/|T|) 

 

Both cases: 

   MAC size super-logarithmic   ⇒   MAC is secure 



Signatures 



Signatures 

Naturally extend MAC definition 

S sk > 

(m0*,σ0*),..., (mq*,σq*) 

mi 

σi 

(sk,pk)  G() 

q queries 

pk 



Proof Difficulties 

Aborts are problematic 

• Can’t both abort and continue 

 

Adversary can tell if signatures are invalid 

• Need to sign all messages correctly 

 

Previous quantum proof techniques leave query intact 

• Known limitations in quantum setting: 

• MPC [ DFNS’11 ] 

• Fiat-Shamir in QROM [ DFG’13 ] 

• Cannot prove security for unique signatures (Ex: Lamport) 

 



Building Quantum-Secure Signatures 

First attempt: do classical constructions work? 

Examples: 

• From lattices [ CHKP’10, ABB’10 ] 

• Using random oracles [ BR’93, GPV’08 ] 

• From generic assumptions [ Rom’90 ] 

 

Short answer: sometimes yes, with small modifications 



Hash and Sign 

Many classical signature schemes hash before signing: 

 

 

 

 

 

Classical Advantages: 

• Only sign small hash  more efficient 

• Weak security requirements for S’ if H modeled as random oracle 

 

Our Goal: 

• Prove quantum security of S assuming only classical security of S’ 

S 

 H S’ m 
h 

σ 

sk 
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First Step: Simulate using only classical queries to S’ 

Problem: exponentially many h  

  must query S’ too many times 

Quantum Security of Hash and Sign 

H 

sk 

m 

h 

σ 

Success prob: 

ε 

S’ 
V 

(m0, σ0), ..., (mq, σq)  



 

 

 

 

 

 

 

 

 

Now S’ only queried on r inputs    Can simulate 

Next Step: Use one of the σi as a forgery for S’ 

Problem: # of sigs  ( q+1 )  <<  # of S’ queries  ( r ) 

 

Step 1: Use S.R. Distribution for H 
sk 

m 

h 

σ 

P Q 
i 

Success prob: 

ε/2 

S’ 
V 

(m0, σ0), ..., (mq, σq)  

S.R. function on r samples 
Codomain [r] 



Intermediate Measurement 

New quantum simulation technique: 

x 

y in out Success prob: 

σ 

x 

y in out 

Theorem: Success prob: ≥σ/t 

x 

t possible outcomes 



 

 

 

 

 

 

 

 

 

Only q queries to S’  One of the σi must be forgery for S’ 

Success probability non-negligible for constant q 

Step 2: Measure Output of P 

S’ 

sk 

m 

P Q 
i 

Success prob: 

ε/2rq 

i h 

σ 

V 

(m0, σ0), ..., (mq, σq)  



Many-time Secure Scheme 

To sign each message, draw 

• A random salt  

• A pairwise indep function R 

 

 S 

 

 

 
 

R 

sk 

H 
m 

salt σ, salt 
h 

r 

S’ 
 

V 

$ 

Theorem: If S’ is classical many-time secure, then S 

is quantum many-time secure 



Other Signature Constructions 

 

 

• Uses entirely different techniques 

 

Non-Random Oracle Schemes: 

 

 

 

 

• Follow-up work: signatures from one-way functions 

Theorem: Collision resistance  ⇒  quantum-secure signatures 

Theorem: (Slight variant of) GPV is quantum-secure 

Theorem: Generic conversion using Chameleon 

hash 



Result Summary 

Quantum CCA Encryption 

• One specific example 

 

Quantum PRFs 

• From generators [GGM’84], synthesizers [NR’95], or  LWE 
[BPR’11] 

 

Quantum MACs 

• PRF as a MAC 

• Modification of Carter-Wegmen [WC’81] 

 

Quantum CMA-secure Signatures 

• Two generic conversions 

• From collision resistance 



Open Problems 

Prove quantum security for more existing schemes 

• CBC-MAC, NMAC, etc. 

• Hash and Sign without salting 

• … 

 

Improve tightness of reductions 

• Most of our security reductions are very loose 

 


