Failing to Generalize Cocks' IBE

Mark Zhandry

NTT Research

Identity-Based Encryption (IBE)

[Shamir'84]

$$c \leftarrow \mathsf{Enc}(\mathsf{PP}, \mathsf{Alice}, m)$$

Cocks' IBE

[Cocks'01]

$$\begin{split} \mathsf{PP} &= N \ \ (= p \cdot q) \\ \mathsf{sk_{Alice}} &= x \ \mathsf{such that} \ x^2 = H(\mathsf{Alice}) \ \mathsf{mod} \ N \\ m &\in \{-1,1\} \\ \mathsf{Enc}(\mathsf{PP}, \mathsf{Alice}, m) = \frac{4t^2 + H(\mathsf{Alice})}{4t} \ \ \mathsf{where} \ \ \left(\frac{t}{N}\right) = m \\ \mathsf{Dec}(\mathsf{PP}, x, c) &= \left(\frac{c + x}{N}\right) \end{split}$$

Jacobi symbol

Correctness of Cocks' IBE

[Cocks'01]

$$c + x = \frac{4t^2 + H(\text{Alice})}{4t} + x = \frac{4t^2 + 4tx + x^2}{4t} = \frac{(t + x/2)^2}{t}$$

$$\left(\frac{c+x}{N}\right) = \left(\frac{t+x/2}{N}\right)^2 \left(\frac{t}{N}\right)^{-1} = \left(\frac{t}{N}\right) = m$$

Cocks' IBE

[Cocks'01]

$$\mathsf{PP} = N \ (= p \cdot q)$$

$$\mathsf{sk_{Alice}} = x \text{ such that } x^2 = H(\mathtt{Alice}) \bmod N$$

$$m \in \{-1,1\}$$

$$\operatorname{Enc}(\operatorname{PP},\operatorname{Alice},m) = \frac{4t^2 + H(\operatorname{Alice})}{4t} \text{ where } \left(\frac{t}{N}\right) = m$$

$$\mathsf{Dec}(\mathsf{PP}, x, c) = \left(\frac{c + x}{N}\right)$$

Can think of Cocks' IBE as encrypting to $x^2-H(\mathtt{Alice})$

Our Goal

$$\begin{aligned} \mathsf{PP} &= N \ (= p \cdot q) \end{aligned} \qquad \boxed{k > 2} \\ \mathsf{sk_{Alice}} &= x \text{ such that } x^k = H(\texttt{Alice}) \bmod N \\ m \in \{-1,1\} \end{aligned}$$

Enc(PP, Alice, m) = ???

Keep "linear" decryption

$$\mathsf{Dec}(\mathsf{PP}, x, c) = \left(\frac{c + x}{N}\right)$$

That is, encrypt to roots of polynomial $x^k-H(\mathtt{Alice})$

Why Higher-Order Roots?

1

Encrypt to $(x^2 - H(\mathrm{Alice}))(x^2 - H(\mathrm{Bob}))(x^2 - H(\mathrm{Charlie}))$

Broadcast encryption

2

Can't obliviously hash into quadratic residues

With cube roots, for appropriate N, all users have secret keys

Cocks' scheme = very interesting technique, worthy of exploration

Related Work: [Boneh-LaVigne-Sabin'13]

$$\begin{split} \mathsf{PP} &= N \ (= p \cdot q) \\ \mathsf{sk_{Alice}} &= x \ \mathrm{such \ that} \ x^k = H(\mathtt{Alice}) \ \mathrm{mod} \ N \end{split}$$

$$m \in \mathbb{F}_k$$

Degree k-1 poly described in ctxt

$$\operatorname{Dec}(\operatorname{PP},x,c) = \left(\frac{c(x)}{N}\right)_{k}$$
 kth power residue symbol

Our Scheme for Cube Roots

$$a = H(\texttt{Alice})$$

$$sk_{Alice} = x \text{ such that } x^3 = a \mod N$$

$$\operatorname{Enc}(\operatorname{PP},\operatorname{Alice},m) = \frac{t(t^3 - 8a)}{4(t^3 + a)} \bmod N$$

where
$$\left(\frac{t^3 + a}{N}\right) = m$$

Correctness of Our Scheme

$$\left(\frac{c+x}{N}\right) = \left(\frac{(t^2 + 2tx - 2x^2)^2 2^{-2} (t^3 + a)^{-1}}{N}\right) = \left(\frac{t^3 + a}{N}\right) = m$$

Dream theorem?: The exists are generalization of Cocks' IBE to enter any polynomial

Proof by example? ect pools for degree 2,3

This Work

Theorem 1: For relatively prime constants k,e, any (k,e) – scheme is insecure

$$\begin{array}{ll} \textbf{Def of } (k,e) - \textbf{scheme:} & f \text{ a polynomial derived} \\ \textbf{Dec}(\mathsf{PP},x,c) = \left(\frac{f(x)}{N}\right)_e & x \text{ any root of public} \\ & \text{degree-}k \text{ poly } s(\cdot) \end{array}$$

Theorem 2: No "natural" correct schemes with decryption $\left(\frac{c+x}{N}\right)$ for degree ≥ 4

Theorem 1: For rel. prime k, e, any (k, e)-scheme is insecure

Proof: $f(\alpha_1)f(\alpha_2)\cdots f(\alpha_k)$ symmetric in α_1,\cdots,α_k

Write as poly $F(e_1,\cdots,e_k)$ where e_j are elementary symmetric polys in α_1,\cdots,α_k

Let $\alpha_1, \cdots, \alpha_k$ be (unknown) roots of $s(\cdot)$

- e_i are derived from coefficients of $s(\cdot)$
- Can compute $F(e_1,\cdots,e_k)=f(lpha_1)f(lpha_2)\cdots f(lpha_k)$ from public information

Theorem 1: For rel. prime k, e, any (k, e)-scheme is insecure

Proof:

$$\left(\frac{F(e_1, \dots, e_k)}{N}\right)_e^{k^{-1} \bmod e} = \left(\frac{f(\alpha_1) \cdots f(\alpha_k)}{N}\right)_e^{k^{-1} \bmod e} \\
= \left(\left(\frac{f(\alpha_1)}{N}\right)_e \cdots \left(\frac{f(\alpha_k)}{N}\right)_e\right)^{k^{-1} \bmod e} \\
= \left(m^k\right)^{k^{-1} \bmod e} \\
= m$$

Theorem 1: For rel. prime k, e, any (k, e)-scheme is insecure

Example: Our scheme

$$\left(\frac{c^3 + H(\text{Alice})}{N}\right) = m$$

Proof: Natural scheme:

$$c + X = v \times g(X)^2 \bmod (X^k - a)$$

where
$$a=H({\tt Alice})$$

$$\left(\frac{v}{N}\right) = m$$

v,g secret, chosen by encrypter

c,v, coefs of g are rational funcs in underlying randomness and a

Proof: Case k=4

Recall
$$c + X = v \times g(X)^2 \mod (X^k - a)$$

Write
$$g(X) = g_0 + g_1 X + g_2 X^2 + g_3 X^3$$

$$2g_0g_2 + g_1^2 + ag_3^2 = 0$$
$$g_1g_2 + g_0g_3 = 0$$

Proof:
$$2g_0g_2 + g_1^2 + ag_3^2 = 0$$
 $g_1g_2 + g_0g_3 = 0$

$$\Rightarrow 2\left(-\frac{g_1g_2}{g_3}\right)g_2 + g_1^2 + ag_3^2 = 0$$

$$\Rightarrow -2g_1g_2^2 + g_1^2g_3 + ag_3^3 = 0$$
Now write $x = g_1/g_3$ $y = g_1g_2/g_3^2$

$$\Rightarrow (-2y^2/x + x^2 + a)g_3^2 = 0$$

$$\Rightarrow y^2 = x^3/2 + ax/2$$

Proof:

$$y^2 = x^3/2 + ax/2$$

Elliptic curve with no-zero discriminant

x,y rational functions of underlying randomness i.e. rational parameterization of curve

Impossible!

Recap

Theorem 1: For relatively prime constants k,e , any (k,e) – scheme is insecure

Theorem 2: No "natural" correct schemes with decryption $\left(\frac{c+x}{N}\right)$ for degree ≥ 4

No natural (k,2)-scheme with one ciphertext component other than Cocks scheme

Moving to higher e just seems to make things harder

Future Directions?

Use higher-degree decryption?

Use more than 1 ctxt component?