
Fully Secure Functional
Encryption Without Obfuscation

Sanjam Garg (IBM Research and UC Berkeley)
Craig Gentry (IBM Research)
Shai Halevi (IBM Research)
Mark Zhandry (Stanford University)

Example: Spam Filter

c=Enc(m)

Filter function f

c: f(m)=0

c: f(m)=1

Solution 0: Give cloud sk ⇒ cloud learns entire message
Solution 1: Use FHE ⇒ cloud only learns Enc(f(m))

Solution 2: Functional encryption: cloud learns f(m), nothing else ✓

✗
✗

Functional Encryption: Semantics [BSW’11]

Gen():
 Output keys (msk, pk)

Enc(pk, m):
 Output ciphertext c

KeyGen(msk, f): Output decryption key skf

Dec(skf, c): Output f(m)

Functional Encryption: Security [BSW’10,O’N’10]

Unbounded full adaptive game-based security:

(msk,pk) ß Gen()

pk

f

skf

m0, m1 : f(m0) = f(m1) ∀f

f : f(m0) = f(m1)

skf

b ß {0,1}

c ß Enc(mpk, mb)

skf = KeyGen(msk,f)

c

skf = KeyGen(msk,f)

b ?

Before Obfuscation
Tons of work on special cases: IBE, ABE, PE…

[SW’05, BSW’10,O’N’10]: Definitions

[BW’07,KSW’08,AFV’11,SSW’09]: Simple functions

[SS10,GVW’12,GKPVZ’12]: Bounded number of secret keys

[AGVW’12]: Impossibility of unbounded simulation-based def

No unbounded constructions until…

After Obfuscation: First Unbounded Constructions

iO
 diO

Fixed (simple)
assumptions Ideal Models

Selective
Security

Adaptive
Security

[GGHRSW’13] [BCP’13] [Wat’14]

[GLSW’14] [GGHRSW’13,BR’13,BGKPS’13]

Uber
assumptions

[PST’13]

Why Obfuscation Seems Inherent

m

f(m)

f

Why Obfuscation Seems Inherent

m

f(m)

f

Decryption must hide
intermediate values

Why Obfuscation Seems Inherent

m

f(m)

f

Decryption must hide
intermediate values

Common ways to hide
intermediate values hide
circuit too. E.g.

•  garbled circuits
•  branching progs
•  obfuscation

f is now hidden

Note: [BCP’13] does not have function hiding

Function Hiding ⇒ IO
iO(C):

(msk,pk) ß Gen()

sk ß KeyGen(msk,C)

Output (pk,sk)

Eval((pk,sk), x):
e = Enc(pk,x)

y = Dec(sk,e)

sk hides C à indistinguishability obfuscation

Takeaway: FE with function hiding implies iO

Can we build FE without iO?

Question 1:

Why avoid Obfuscation?
iO = exponentially many assumptions
• One per pair of circuits

Seems inherent:

Reduction can only work for equiv C0, C1

 ⇒ must somehow decide equivalence (NP-hard)

Assumption(C0,C1):
 iO(C0) ≈ iO(C1)

Reduction

Assumption(C0,C1)
 Fixed Assumption

What about GLSW?
[GLSW’14]: iO from Multilinear Subgroup Elimination (MSE):

iO
 MSE

What about GLSW?
[GLSW’14]: iO from Multilinear Subgroup Elimination (MSE):

•  Need to assume MSE really hard (complexity leveraging)

Note: Adaptive vs selective FE meaningless in this setting

iO

Exponential loss

MSE

Adaptive FE
 Selective FE

Trivial reduction

Can we build (adaptive) FE
from fixed assumptions w/o

complexity leveraging?

Question 2:

YES!

Our answer to questions 1 & 2:

Generalization: Slotted Functional Encryption

Ciphertext

m0 = 2
0

1

2

3

4

m1 = 1

m3 = 0

Secret Key

f0(x) = x2-3

f3(x) = 1

f4(x) = x+1

Decryption

f0(m0) = 1

f3(m3) = 1

1

Active slots

Slotted Functional Encryption
Private (slotted) encryption: encrypt in all slots

Ciphertext

m0

m1

m3

m0

m1

⊥

m3

⊥

msk

Slotted Functional Encryption
Public (unslotted) encryption: encrypt in slot 0

Ciphertext

m

m

pk

Slotted Functional Encryption
Slotted keygen: secret keys in all slots

Secret Key

f0

f3

f4

f0

⊥

⊥

f3

f4

msk

Slotted Functional Encryption
Unslotted keygen: secret keys in slot 0
• Derived from slotted alg Secret Key

f

msk

f

Slotted Functional Encryption
Decryption: decrypt all active slots, output result if agree

m0

m1

m3

f0

f3

f4

f0(m0) = 1

f3(m3) = 1

1

f0(m0)=1

f3(m3)=0

N/A

Slotted FE to (Unslotted) FE
Throw away slotted algorithms

Enc(msk, (m0, m1, m2, …))

Enc(pk, m)

KeyGen(msk, (f0, f1, f2, …)

KeyGen(msk, f)

Enc(pk, m)

KeyGen(msk, f)

Security of Slotted Functional Encryption
Ideal: can’t learn anything except through decryption

m0 = 1

m1 = 2

m3 = -1

f0(x) = x2

f3(x) = 2x+3

f4(x) = 9

1

m1 = 4

m2 = 1

m3 = 1

f0(x) = x(x+1)-x

f1(x) = (x/2)-1

f3(x) = 2x-1

f4(x) = -2x+2

1

≈

Too strong: implies function hiding in unslotted scheme

Security of Slotted Functional Encryption
Strategy: define desired property:
• Strong ciphertext indistinguishability

Derive from other simpler properties:
• Slot Duplication
• Slot symmetry
• Single use hiding
• Ciphertext moving
• Weak key moving
• Strong key moving
• New slot
• Weak ciphertext indistinguishability

Security of Slotted Functional Encryption

m0 = -1

m3 = 1

f0(x) = x2

 f’0(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

m0 = -1 à m0 = 1 does not affect decryption

Ciphertext Secret Keys

Strong Ciphertext Indistinguishability: change ciphertext slot
(possibly in slot 0) as long as decryption unaffected

Security of Slotted Functional Encryption
Strong Ciphertext Indistinguishability: change ciphertext slot
(possibly in slot 0) as long as decryption unaffected

m0 = 1

m3 = 1

f0(x) = x2

 f’0(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

m0 = -1 à m0 = 1 does not affect decryption

Ciphertext Secret Keys

Security of Slotted Functional Encryption

m0 = 1

m3 = 1

f0(x) = x2

 f’0(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Slot Duplication: Copy any slot (inc. slot 0) into unused slot
(except slot 0) (don’t have to copy everything)

Security of Slotted Functional Encryption
Slot Duplication: Copy any slot (inc. slot 0) into unused slot
(except slot 0) (don’t have to copy everything)

m0 = 1

m1 = 1

m3 = 1

f0(x) = x2

f1(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Security of Slotted Functional Encryption
New Slot: In unused slot (except slot 0), put any ciphertext val

m0 = 1

m1 = 1

m3 = 1

f0(x) = x2

f1(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Security of Slotted Functional Encryption
New Slot: In unused slot (except slot 0), put any ciphertext val

m0 = 1

m1 = 1

m2 = -1

m3 = 1

f0(x) = x2

f1(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Security of Slotted Functional Encryption
Slot Symmetry: Swap two slots (except slot 0)

m0 = 1

m1 = 1

m2 = -1

m3 = 1

f0(x) = x2

f1(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Security of Slotted Functional Encryption
Slot Symmetry: Swap two slots (except slot 0)

m0 = 1

m1 = -1

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’2(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Security of Slotted Functional Encryption
Strong Key Moving: Move any secret key slot into inactive slot
(neither can be slot 0) as long as decryption unaffected

m0 = 1

m1 = -1

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’2(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Security of Slotted Functional Encryption
Strong Key Moving: Move any secret key slot into inactive slot
(neither can be slot 0) as long as decryption unaffected

m0 = 1

m1 = -1

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Security of Slotted Functional Encryption

m0 = 1

m1 = -1

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Weak Key Moving: Move any secret key slot into an empty slot
(neither can be slot 0) as long as ciphertext identical

Security of Slotted Functional Encryption

m0 = 1

m1 = -1

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Weak Key Moving: Move any secret key slot into an empty slot
(neither can be slot 0) as long as ciphertext identical

Security of Slotted Functional Encryption

m0 = 1

m1 = -1

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = (-1)x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Single Use Hiding: Change ctxt and 1 sk in otherwise unused
slot (except slot 0) as long as decryption unaffected

Security of Slotted Functional Encryption

m0 = 1

m1 = 2

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = 3-2x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Single Use Hiding: Change ctxt and 1 sk in otherwise unused
slot (except slot 0) as long as decryption unaffected

Security of Slotted Functional Encryption

m0 = 1

m1 = 2

m2 = 1

m3 = 1

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = 3-2x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Ciphertext Moving: Move ciphertext into an empty slot
(possibly slot 0) as long as secret keys are all identical

Security of Slotted Functional Encryption

m0 = 1

m2 = 1

m3 = 1

m4 = 2

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = 3-2x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Ciphertext Moving: Move ciphertext into an empty slot
(possibly slot 0) as long as secret keys are all identical

Security of Slotted Functional Encryption

m0 = 1

m2 = 1

m3 = 1

m4 = 2

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = 3-2x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Weak Ciphertext Indistinguishability: change ciphertext slot
(except slot 0) as long as decryption unaffected

Security of Slotted Functional Encryption

m0 = 1

m2 = 1

m3 = -1

m4 = 2

f0(x) = x2

f2(x) = x2

f’0(x) = (-1)x

f’1(x) = 3-2x

f’4(x) = 3-2x

f’’0(x) = 1

f’’3(x) = -(-1)x

Ciphertext Secret Keys

Weak Ciphertext Indistinguishability: change ciphertext slot
(except slot 0) as long as decryption unaffected

Reductions!

Slot Symm

Ctxt Moving

New Slot Strong Sk Moving

Lose 1 slot

Weak Ctxt Indist
Lose 1 slot

Strong Ctxt Indist

Lose 1 slot

Sanity Check: Slot 0 in secret keys cannot change ⇒ no function hiding

Lose 1 slot

Slot Dup Single-use Hiding Weak Sk Moving

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

f0(x) = x2

f1(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Dummy slot

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

f0(x) = x2

f1(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Slot Duplication

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f1(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Slot Duplication

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f1(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Weak Sk Moving

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Weak Sk Moving

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Single Use Hiding

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = 1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Single Use Hiding

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = 1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Weak Sk Moving

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = 1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Weak Sk Moving

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

m4 = 1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Slot Duplication

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Slot Duplication

Example Reduction: Strong Sk Moving

m0 = 1

m1 = -1

m2 = 1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: move f1 to slot 3

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Another dummy slot

Goal: change m2 to -1

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

New Slot

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

New Slot

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Strong Sk Moving

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Strong Sk Moving

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Strong Sk Moving

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’4(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Strong Sk Moving

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’4(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Strong Sk Moving

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’4(x) = -1

f’’0(x) = 1

f’’4(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Strong Sk Moving

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = 1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’4(x) = -1

f’’0(x) = 1

f’’4(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

New Slot

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’4(x) = -1

f’’0(x) = 1

f’’4(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

New Slot

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m4 = -1

f0(x) = x2

f3(x) = 1-x

f4(x) = 2-x2

f’0(x) = (-1)x

f’1(x) = 2x+1

f’4(x) = -1

f’’0(x) = 1

f’’4(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Slot Symmetry

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = -1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Slot Symmetry

Example Reduction: Weak Ctxt Indist

m0 = 1

m1 = -1

m2 = -1

f0(x) = x2

f2(x) = 2-x2

f3(x) = 1-x

f’0(x) = (-1)x

f’1(x) = 2x+1

f’2(x) = -1

f’’0(x) = 1

f’’2(x) = -(-1)x

Ciphertext Secret Keys

Goal: change m2 to -1

Instantiating Slotted FE
We give construction for NC1 circuits from composite-order graded
encodings
• Slot Symmetry/Single-use Hiding: Information theoretic
• Slot Duplication/Ctxt Moving/Sk Moving: simple assumptions

Construction requires new extension procedure on encodings
•  bind ctxt (or sk) components together (no “mixing and matching”)
• Do not need to modify underlying encodings

Theorem: Relatively simple assumptions on mmaps
⇒ (adaptively) secure FE for NC1

But I promised FE for all circuits…

Achieving FE for All Circuits

Slotted FE for NC1

Randomized FE for NC1

FE for all circuits

Punctured PRFs in NC1
[BLMR’13, NR’97]

Randomized Encodings in NC1
[Yao’86, IK’00]

iO: [GJKS’13]

Randomized FE for NC1
Basic idea: ctxt contains PRF key which generates randomness

EncR(mpk, m):
k ß {0,1}λ

c ß Enc(mpk, (m,k))

Output c

Define: g[f,s](m,k) := f(m ; PRF(k,s))

KeyGenR(msk, f):
s ß {0,1}λ

skf ß KeyGen(msk, g[f,s])

Output skf

Actual scheme more complicated

Randomized FE for NC1

m0, k
 g[f1,s1]
 g[f2,s2]
 g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Randomized FE for NC1

m0, k
 g[f1,s1]
 g[f2,s2]
 g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Slot Duplication

Randomized FE for NC1

m0, k
 g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Slot Duplication

Randomized FE for NC1

m0, k
 g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Ciphertext Moving

Randomized FE for NC1

m0, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Ciphertext Moving

Randomized FE for NC1

m0, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

New Slot

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

New Slot

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

“Super Strong Secret Key Moving”

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

“Super Strong Secret Key Moving”

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

“Super Strong Secret Key Moving”

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

“Super Strong Secret Key Moving”

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

“Super Strong Secret Key Moving”

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

“Super Strong Secret Key Moving”

Randomized FE for NC1

m0, k

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

New Slot

Randomized FE for NC1

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

New Slot

Randomized FE for NC1

m1, k

g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Ciphertext Moving

Randomized FE for NC1

m1, k
 g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Ciphertext Moving

Randomized FE for NC1

m1, k
 g[f1,s1]

g[f1,s1]

g[f2,s2]

g[f2,s2]

g[f2,s2]

g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Slot Duplication

Randomized FE for NC1

m1, k
 g[f1,s1]
 g[f2,s2]
 g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Slot Duplication

Randomized FE for NC1

m1, k
 g[f1,s1]
 g[f2,s2]
 g[f2,s2]

Ciphertext Secret Keys

Proof idea:

Achieving “Super Strong Secret Key Moving”

Outputs different, even though indistinguishable
 ⇒ strong secret key moving not enough

More involved proof:
• Puncture k at s

• Hardcode f(m0, PRF(k, s))

•  In ciphertext if secret key before ciphertext. Use ctxt indist.
•  In secret key if secret key after ciphertext. Use single-use hiding+

• Replace with f(m1, PRF(k, s))

•  Using PRF security and sample indistinguishability

• Move secret key
• Un-puncture

FE for all Circuits
Basic idea: Output randomized encoding rather than actual val

EncC(mpk, m):
c ß EncR(mpk, m)

Output c

KeyGenC(msk, f):
f’(m; r) := Encodef(m ; r)

skf ß KeyGenR(msk, f’)

Output skf

DecC(skf, c):

e ß DecR(skf, c)

o ß Decode(e)

 Output o

Conclusion and Open Problems
Simple assumptions à Slotted FE à Fully-secure unbounded FE
•  iO/complexity leveraging/function hiding not inherent to FE

New tools on graded encodings

Open Problems:
• Other apps for slotted FE?
• Simplify: remove punctured PRFs / randomized encodings?
• Other iO apps à simple assumptions

•  Deniable encryption
•  Multiparty NIKE w/o trusted setup

