The Magic of ELFs

Mark Zhandry – Princeton University

(Work done while at MIT)

Prove this secure:

 $Enc(m) = (TDP(r), H(r) \oplus m)$

(CPA security, many-bit messages, arbitrary TDP)

Random Oracle Model [BR'93]

Model **H** as random oracle **O**

Power of Random Oracles

- Great extractors, even for comp. unpredictability
 O(x) pseudorandom given OWF(x)
- Hard to find outputs with trapdoors
 (x,O(x)) with trapdoor T for O(x)
- Selective to adaptive security for Sigs, IBE
 Sign(m) ⇒ Sign(O(m))

Limitations of Random Oracles

Random oracles don't exist!

• RO "proof" = heuristic security argument

 Heuristic known to fail in some cases [CGH'98,BBP'03,BFM'14]

Standard-model defs

Standard-model Security Defs for H

Standard defs: Assume **H** is a OWF, PRG, CRHF, etc

- Simple, easy to state definitions
- Can base on standard, plausible assumptions
- Limited usefulness for instantiating RO's

Standard-model Security Defs for H

Standard defs: Assume **H** is a OWF, PRG, CRHF, etc

- Simple, easy to state definitions
- Can base on standard, plausible assumptions
- Limited usefulness for instantiating RO's

Exotic defs: UCE's [BHK'15], "strong" OWF/PRG, etc

- Useful for some RO constructions
- Usually require "tautological assumptions"

Assumption Families

Ex: Strong PRG (strengthens strong OWF of [BP'11, Wee'05])

- Parameterized by sampler S() → (x, aux)
- Assume x is "computationally unpredictable" given aux
- Security requirement: H(x) pseudorandom given aux

Assumption Families

Ex: Strong PRG (strengthens strong OWF of [BP'11,Wee'05])

- Parameterized by sampler S() → (x, aux)
- Assume x is "computationally unpredictable" given aux
- Security requirement: **H(x)** pseudorandom given **aux**

How to gain confidence in assumption?

- Attempt cryptanalysis, post challenges, etc.
- Problem: which S to target?

Similar weaknesses for UCEs and other exotic assumptions

Security Properties vs Assumptions

UCE's, strong OWF/PRGs are useful as security properties

However, highly undesirable as security assumptions

Ideal scenario:

Single, simple, well-studied assumption

Strong security properties

This Work:

Extremely Lossy Functions (ELFs)

Standard Lossy Functions [PW'08]

Notes:

- Lossy Mode image size typically exponential
- Generally also include trapdoor in injective mode

Injective Mode:

Lossy Mode:

C

Img | = polynomial

Problem: | Img |- time attack

- Query on | Img |+1 points
- Look for collision

Injective Mode:

Lossy Modes:

^{*} Must also consider adversary's success probability

Constructing ELFs

Step 1: Bounded-adversary ELFs

Step 1: Bounded-adversary ELFs

Use standard lossy functions based on elliptic curves

[PW'08, FGKRS'10]

$$x \in Z_p^n \implies g^{A \cdot x} = (g^A) \cdot x$$

Hand out **g**^A as description of function

Injective mode: A random full rank matrix

Lossy mode: A random rank-1 matrix

Lossy image size $\mathbf{p} \Rightarrow \operatorname{Set} \mathbf{p}$ to be some polynomial

Thm [Adapt FGKRS'10]: Exponential DDH assumption \Rightarrow modes indistinguishable to p^c -time adversaries (O<c<1)

Plausibility of Exponential DDH

Non-standard assumption

• Not truly falsifiable in the sense of [Naor'03]

However, still very "reasonable"

- "Complexity assumption" [GK'15]
- On elliptic curves, best known attack: **p**^½
 - "Generic attack", essentially no non-trivial attacks known
- In practice, parameters set assuming $p^{1/2}$ is optimal

If exponential DDH is false, much more to worry about

Iterate at many security levels

ith lossy mode image size at most 2ⁱ, security against (2ⁱ)^c-time adversaries

Iterate at many security levels

ith lossy mode image size at most 2ⁱ, security against (2ⁱ)^c-time adversaries

Given \dagger -time , invoke lossiness at i such that $\dagger < 2^{ic} \le 2 \dagger$ \Rightarrow Image size at most $(2 \dagger)^{1/c}$

Iterate at many security levels

ith lossy mode image size at most 2ⁱ, security against (2ⁱ)^c-time adversaries

Given \dagger -time , invoke lossiness at i such that $\dagger < 2^{ic} \le 2 \dagger$ \Rightarrow Image size at most $(2 \dagger)^{1/c}$

Problem: output size grows too fast!

Keep output small by pairwise-independent hashing

Using ELFs

A Strong PRG

Security Proof Sketch

Guarantee: x computationally unpredictable, given aux

Step 1: Invoke ELF Magic

Step 1: Invoke ELF Magic

Step 2: Invoke Goldreich-Levin

Step 2: Invoke Goldreich-Levin

Step 3: Undo ELF Magic

Step 3: Undo ELF Magic

$$x, aux \leftarrow S()$$

$$x, aux \leftarrow S()$$

Lemma: If $\mathbf{b_i}$ are uniform, \mathbf{y} is statistically close to random, given all the \mathbf{a} s and \mathbf{b} s (w.h.p.)

Theorem: For any computationally unpredictable (x,aux),

(H, H(x), aux) \approx_c (H, random, aux)

Also:

Theorem: H is injective w.h.p.

- (Injective) one-way function satisfying [BP'11]
- Auxiliary Input Point Obfuscation (AIPO)

$$Obf(I_x) = H, H(x)$$

- Poly-many hardcore bits for any computationally unpredictable source
- Enc(m) = (TDP(r), H(r) \oplus m) is CPA secure

(Injective) one-way function satisfying [BP'11]

Previous constructions:

- Tautological assumption [BP'11]
 - Assumption "family"
- Canetti's strong variant of DDH [Can'97]
 - Assumption "family"
 - Incompatible with certain forms of obfuscation [BST'15]
- Enc(m) = $(TDP(r), H(r) \oplus m)$ is CPA secure

- (Injective) one-way function satisfying [BP'11]
- Auxiliary Input Point Obfuscation (AIPO)

$$Obf(I_x) = H, H(x)$$

Previous constructions:

- Canetti's strong variant of DDH [Can'97]
- [BP'11]-one-way permutations
 (our **H** is not a permutation)

Previous constructions:

- UCE's [BHK'13]
 - "Tautological" assumption "family"
- Differing inputs obfuscation [BST'14] or extractable witness PRFs [Zha'14]
 - Only for OWF (for injective OWF, can use iO)
 - Assumption "family"
 - Believed to implausible in general [GGHW'14]
 - Extraordinarily inefficient
- Poly-many hardcore bits for any computationally unpredictable source
- Enc(m) = (TDP(r), H(r)
 m) is CPA secure

- (Injective) one-way function satisfying [BP'11]
- Auxiliary Input Point Obfuscation (AIPO)

$$Obf(I_x) = H, H(x)$$

Poly-many hardcore bits for any computationally

Follows from hardcore bits for injective OWF

• Enc(m) = (TDP(r), H(r) • m) is CPA secure

Other Results

Selective to Adaptive security in Sigs/IBE

Other Results

Selective to Adaptive security in Sigs/IBE

Proof:

Other Results

 Output intractable hash functions (captures using hash functions to generate crs's)

For proofs and more results, see paper

Conclusion

Open questions:

- ELFs from other assumptions
- Post-quantum ELFs
- More applications

Conclusion

Open questions:

- ELFs from other assumptions
- Post-quantum ELFs
- More applications

Thanks!