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Prove this secure:

Enc(m) = ( TDP(r), H(r) e m )

(CPA security, many-bit messages, arbitrary TDP)



[Random Oracles}




Random Oracle Model [BR’93]

Model H as random oracle O

Enco(m) =
( TOP(r), O(r) © m )




Power of Random QOracles

* Great extractors, even for comp. unpredictability

O(x) pseudorandom given OWF(x)

* Hard to find outputs with trapdoors
(x,0(x)) with trapdoor T for O(x)

 Selective to adaptive security for Sigs, IBE
Sign(m) = Sign( O( m ) )



Limitations of Random Oracles

e Random oracles don’t exist!

* RO “proof” = heuristic security argument

 Heuristic known to fail in some cases
[CGH’98,BBP’'03,BFM’14]



N\ [ Standard-model defs }
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Standard-model Security Defs for H

Standard defs: Assume H is a OWF, PRG, CRHF, etc
* Simple, easy to state definitions

e Can base on standard, plausible assumptions

* Limited usefulness for instantiating RO’s
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Standard defs: Assume H is a OWF, PRG, CRHF, etc
* Simple, easy to state definitions

e Can base on standard, plausible assumptions

* Limited usefulness for instantiating RO’s

Exotic defs: UCE’s [BHK’15], “strong” OWF/PRG, etc
e Useful for some RO constructions
e Usually require “tautological assumptions”



Assumption Families

Ex: Strong PRG (strengthens strong OWF of [BP’11,Wee’05])

 Parameterized by sampler S() = (X, aux)
* Assume X is “computationally unpredictable” given aux

* Security requirement: H(x) pseudorandom given aux



Assumption Families

Ex: Strong PRG (strengthens strong OWF of [BP’11,Wee’05])

 Parameterized by sampler S() = (X, aux)
* Assume X is “computationally unpredictable” given aux
* Security requirement: H(x) pseudorandom given aux

How to gain confidence in assumption?

e Attempt cryptanalysis, post challenges, etc.
* Problem: which S to target?

Similar weaknesses for UCEs and other exotic assumptions



Security Properties vs Assumptions

UCE’s, strong OWF/PRGs are useful as security properties

However, highly undesirable as security assumptions

Ideal scenario:
Single, simple, well-studied assumption

[l

Strong security properties



This Work:
Extremely Lossy Functions

(ELFs)




Standard Lossy Functions [PW’08]

Injective Mode Lossy Mode
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Notes:

* Lossy Mode image size typically exponential
e Generally also include trapdoor in injective mode



Extremely Lossy Functions (ELFs)

Injective Mode: Lossy Mode:
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Extremely Lossy Functions (ELFs)

Injective Mode: Lossy Mode:
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| Img | = polynomial

Problem: | Img |- time attack
* Query on | Img |+1 points
* Look for collision



Extremely Lossy Functions (ELFs)

Injective Mode: Lossy Modes:




Extremely Lossy Functions (ELFs)

/Rough* security statement: \

* Must also consider adversary’s success probability



Constructing ELFs



Step 1: Bounded-adversary ELFs
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Step 1: Bounded-adversary ELFs

Use standard lossy functions based on elliptic curves
[PW’08, FGKRS'10]
xezpn —> gA°x - (gA) ¢ X

Hand out g as description of function

Injective mode: A random full rank matrix
Lossy mode: A random rank-1 matrix

Lossy image size p = Set p to be some polynomial

Thm [Adapt FGKRS’10]: Exponential DDH assumption =
modes indistinguishable to p¢-time adversaries (0O<c<l)




Plausibility of Exponential DDH

Non-standard assumption
* Not truly falsifiable in the sense of [Naor’03]

However, still very “reasonable”
e “Complexity assumption” [GK'15]
* On elliptic curves, best known attack: p*
* “Generic attack”, essentially no non-trivial attacks known
* In practice, parameters set assuming p” is optimal

s . . R
If exponential DDH is false,

much more to worry about
\ Y




Step 2: Bounded to Unbounded

Iterate at many security levels

ith lossy mode image size at most 2/,
security against (2')¢-time adversaries



Step 2: Bounded to Unbounded

Iterate at many security levels

ith lossy mode image size at most 2/,
security against (2')¢-time adversaries

Given t-time @, invoke lossiness at i such that t < 2 ¢ 2t
= Image size at most (2t)V/¢



Step 2: Bounded to Unbounded

Iterate at many security levels

ith lossy mode image size at most 2/,
security against (2')¢-time adversaries

Given t-time @, invoke lossiness at i such that t < 2 ¢ 2t
= Image size at most (2t)V/¢

Problem: output size grows too fast!



Step 2: Bounded to Unbounded

Keep output small by pairwise-independent hashing
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Using ELFs



A Strong PRG




Security Proof Sketch
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X, a?;c < S()

Guarantee: X computationally unpredictable, given aux



Step 1: Invoke ELF Magic
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Step 2: Invoke Goldreich-Levin
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Step 2: Invoke Goldreich-Levin
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Step 2: Invoke Goldreich-Levin




Step 3: Undo ELF Magic

L'(Rl' L'(Rz’ ) L‘(Rs' ) Lb,,é{o,l}




Step 3: Undo ELF Magic




Step 4: Repeat
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Step 4: Repeat
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Step 5: Randomness of y
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Lemma: If b; are uniform, Yy is statistically close

to random, given all the gs and "*s (w.h.p.)
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Theorem: For any computationally
unpredictable (x,aux),

(H, H(x), aux) =. (H, random, aux)
\ %

Also:

[ Theorem: H is injective w.h.p. }




Applications

* (Injective) one-way function satisfying [BP'11]

* Auxiliary Input Point Obfuscation (AIPO)
Obf(I,) = H, H(x)

* Poly-many hardcore bits for any computationally
unpredictable source

« Enc(m) = ( TDP(r), H(r) ® m ) is CPA secure
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/Previous constructions: \
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e Canetti’s strong variant of DDH [Can’97]
e Assumption “family”
\ * Incompatible with certain forms of obfuscation [BST’15]/




Applications

* Auxiliary Input Point Obfuscation (AIPO)
Obf(I,) = H, H(x)

Previous constructions:
e Canetti’s strong variant of DDH [Can’97]
 [BP’11]-one-way permutations

N (our H is not a permutation)




Applications
ﬁrevious constructions: \

e UCE’s [BHK'13]
 “Tautological” assumption “family”
* Differing inputs obfuscation [BST’14] or
extractable witness PRFs [Zha'14]
* Only for OWF (for injective OWF, can use iO)
e Assumption “family”

* Believed to implausible in general [GGHW’14]
\ e Extraordinarily inefficient /

I”

* Poly-many hardcore bits for any computationally
unpredictable source



Applications

[Follows from hardcore bits for injective OWF

« Enc(m) = ( TDP(r), H(r) ® m ) is CPA secure



Other Results

* Selective to Adaptive security in Sigs/IBE
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Other Results

* Selective to Adaptive security in Sigs/IBE

m — ¢ — Sign — o
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Other Results

* Output intractable hash functions (captures using
hash functions to generate crs’s)

* For proofs and more results, see paper



Conclusion

This work:
Exponential "l Interesting
DDH Y A% Applications

Open questions:
* ELFs from other assumptions

* Post-quantum ELFs
* More applications
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Open questions:
* ELFs from other assumptions
* Post-quantum ELFs

* More applications Th a n kS !



