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Part 1: Regev’s Reduction



Lattices

Imagine dimension in the 100s



Lattices

Basis: minimal set of vectors that generate lattice



Lattices

(Approx.) shortest vector problem (SVP): given lattice
(described by some basis), find (approx.) shortest vector




Lattices
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(Approx.) closest vector problem (CVP): given lattice
and point off lattice, find (approx.) closest lattice point




Lattices

Numerous applications:
* Disproving Merten’s conjecture [Odlyzko-te Riele’85]
* Finding “close” algebraic relations
X =2 a,b,c s.t. a x"2+b x+c=0

e (Classical) cryptanalysis [Shamir’82, Coppersmith’96]
 Cryptography with amazing functionalities

(e.g. computing on encrypted data [Gentry’08S,...])
 Crypto with post-quantum security



Why Should Lattice Problems be Quantum Hard?

Lattices are periodic, but lattice/period
typically known (a basis); SVP/SIS asks to find
short description (short basis) of period

4

Period-finding itself doesn’t seem relevant

But, maybe there are other algorithms?



Regev’s “Algorithm” for Approx SVP

[Regev’05]

Step n=4: Construct superposition over
short lattice points, then measure



Regev’s “Algorithm”




Regev’s “Algorithm”

Step 3: Construct superposition over points close
to dual lattice = perform QFT to get Step 4



Regev’s “Algorithm”



Regev’s “Algorithm”

Short lattice points Close to dual lattice points

Convolution Thm:
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A . . °
o, = “is lattice point” o, = ”'/S\ dual lattice point”
B, = “is short” B, = “is short”



Regev’s “Algorithm”

Step 1: Construct superposition over dual lattice
+ construct superposition over short vectors,
then add superpositions



Regev’s “Algorithm”



Regev’s “Algorithm”

Separately easy to construct
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sa ) & IBlv =D 3B, lxw)

A ] . ]
o, = ”'/S\ dual lattice point”
B, = “is short”



Regev’s “Algorithm”

Needed to ensure
reversibility of addition

e

sa ) & By =P sab,lx )

A ] . ]
o, = ”'/S\ dual lattice point”
B, = “is short”



Regev’s “Algorithm”

Step 2: Eliminate x by “decoding” x+y



Regev’s “Algorithm”
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In RegeVv’s case, x+y is close (dual) lattice point, x is lattice point
mm) Can solve via CVP, but presumed hard!!!

But, we actually have a potentially much easier problem...



Regev’s “Algorithm”

Learning with errors (LWE): solving CVP when point &
errors are random, and errors are very small

(Un)fortunately, LWE appears hard, even quantumly

Instead, Regev’s “Algorithm” is viewed as a justification for
the hardness of LWE

(if it wasn’t hard, then (approx.) SVP would be easy)



Regev’s “Algorithm”

Since Regev’s work, LWE has become a major
tool for the design of cryptosystem



Part 2: Completing Regev’s
algorithm in extreme cases
[Chen-Liu-2'22]



A special case of (approx.) SVP

A€ Z
m>>n

L, ={x : A.x mod g = 0}

Thm (trivial): Can efficiently find x € L, with | x |.. £ q/2

Proof: Gaussian elimination mod q 2 x’ € Z," s.t. Axmod q =0

Coordinate of x = representative of x’ in {-(q-1)/2,...,(q-1)/2}




A special case of (approx.) SVP

A€ Z
m>>n

L, ={x: A.x mod q = 0}

Thm (trivial): Can efficiently find x € L, with | x |.. £ q/2

Can we do any better?



A special case of (approx.) SVP

A€ Z
m>>n

L, ={x : A.x mod g = 0}

Thm (trivial): Can efficiently find x € L, with | x |.. £ q/2

Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Attempt Regev’s algorithm with:

a, = “isin L, (mod q)”
Bx="1 x| =(q-c)/2”
EEDZAN

(g-c)/2

(3]x) )®m

X =- (q-c)/2




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: separately construct

gaxIX) gByIv)




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof:




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof:
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Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof:

gﬁyh/) ,(\lx é\y | x+y )

X,y

‘QFT ‘x+y9x???
SB,ly) 4@ SoB

nyax B, X, x+y )
ndi




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Our decoding problem:

a, = “x=Alr mod q”

B, = W

Still seems hard to decode
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Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Idea 1 - Look at superposition over errors




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Zoom in on one coordinate Search space is

small, so maybe easy

Goal V

2B ldry) -

If we can find d for all coordinates,
we can find r via linear algebra




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Zoom in on one coordinate

A Goal
de)=§By|d+y) )

Problem: |W,) are not orthogonal (only have rank q-c)
m) Impossible to compute d perfectly




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Idea 2: Unambiguous state discrimination

|wd>=gﬁy|d+v>

Project onto Span( { [Wy) }.(q-c/2+1 <d < (q-0)/2)

Acce p’i/ \ Reject

Don’t learn much :-( (q-c)/2+1 < d < g-(q-c)/2=(q+c)/2

set S'of Size ¢




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof:
Accept

Reject
A , Reject
Accept
Reject




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof:
a,, Accept

a,, Reject
a3, Reject
a,, Accept
as, Reject




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof:
a,, Reject )

a3, Reject

as, Reject




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Idea 3: Re-linearization a la Arora-Ge

deS mmmp T(d-s)=0

SES
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|
Degree ¢




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Idea 3: Re-linearization a la Arora-Ge

desS mmmp T[(d-s)=0

SES
|

|
Degree

Each reject gives us degree ¢ polynomial inr
=) Linearin degree-c monomials




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof: Each reject = linear constraint over degree-c monomials

O(n¢) such monomials

Intuitively, once we have O(n¢) constraints (rejects), should
be able to compute monomials with linear algebra

r




Thm [chen-Liu-2722]: FOr any constant ¢, can quantumly
efficiently find x € L, with | x | .. £(g-c)/2, assuming
m > n°*! poly(q)

Proof:

Issues to work out:
* Probability of reject
 QGuarantee re-linearized system is uniquely solvable




Part 3: Completing Regev’s
algorithm using ECCs
[Yamakawa-2'22]



f.3-2>{0,1} ®f(x)=0



Assuming f. “random-looking”



Thm [vamakawa-z7221: If A is generator matrix for a “good”
error-correcting code and each f, are “random-looking”,
then can solve decoding problem

—> can find points in L, such that fi(x,) =0




Thm [vamakawa-z221: If A is parity-check matrix for a “good”
error-correcting code, no efficient classical algorithm
making "black-box” queries to f:

N

Reasonable model for
cryptographic hash functions




Consequences

Relative to random oracle, or alternatively
under assumption about hash functions,
3 NP-search problem in BQP \ BPP

Public verification previously k

Hash functions considered
unknown except under very : .
, much milder than prior
strong assumptions

assumptions (e.g. Factoring)
N—"

Additionally under Aaronson-Ambainis
conjecture or appropriate hash function

assumption, 3 publicly verifiable certified
randomness



