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Part 1: Regev’s Reduction



Lattices

Imagine dimension in the 100s



Lattices

Basis: minimal set of vectors that generate lattice



Lattices

(Approx.) shortest vector problem (SVP): given lattice 
(described by some basis), find (approx.) shortest vector  



Lattices

(Approx.) closest vector problem (CVP): given lattice 
and point off lattice, find (approx.) closest lattice point



Lattices

Numerous applications:
• Disproving Merten’s conjecture [Odlyzko-te Riele’85]
• Finding “close” algebraic relations
  x à a,b,c  s.t.  a x^2+b x+c≈0
• (Classical) cryptanalysis [Shamir’82, Coppersmith’96]
• Cryptography with amazing functionalities 
 (e.g. computing on encrypted data [Gentry’08,…])
• Crypto with post-quantum security



Why Should Lattice Problems be Quantum Hard?

Lattices are periodic, but lattice/period 
typically known (a basis); SVP/SIS asks to find 

short description (short basis) of period

Period-finding itself doesn’t seem relevant

But, maybe there are other algorithms?



Regev’s “Algorithm” for Approx SVP
[Regev’05]

Step n=4: Construct superposition over 
short lattice points, then measure



Regev’s “Algorithm”



Regev’s “Algorithm”

Step 3: Construct superposition over points close 
to dual lattice à perform QFT to get Step 4



Regev’s “Algorithm”



Regev’s “Algorithm”

Short lattice points Close to dual lattice points
QFT

Convolution Thm:

∑αxβx|x⟩
x

∑αxβy|x+y⟩
x,y

^  ^
QFT

αx = “is lattice point”
βx = “is short”

αx = “is dual lattice point”
βx = “is short”

^
^



Regev’s “Algorithm”

Step 1: Construct superposition over dual lattice 
+ construct superposition over short vectors, 

then add superpositions



Regev’s “Algorithm”

+



Regev’s “Algorithm”

αx = “is dual lattice point”
βx = “is short”

^
^

∑αxβy|x+y⟩
x,y

^  ^∑αx|x⟩
x

^ ∑βy|y⟩
y

^& à

Separately easy to construct



Regev’s “Algorithm”

αx = “is dual lattice point”
βx = “is short”

^
^

∑αxβy| x, x+y⟩
x,y

^  ^∑αx|x⟩
x

^ ∑βy|y⟩
y

^& à

Needed to ensure 
reversibility of addition



Regev’s “Algorithm”

Step 2: Eliminate x by “decoding” x+y



Regev’s “Algorithm”

∑αxβy| x, x+y⟩
x,y

^  ^ ∑αxβy|x+y⟩
x,y

^  ^

In Regev’s case, x+y is close (dual) lattice point, x is lattice point 
Can solve via CVP, but presumed hard!!!

But, we actually have a potentially much easier problem…



Regev’s “Algorithm”

Learning with errors (LWE): solving CVP when point & 
errors are random, and errors are very small 

(Un)fortunately, LWE appears hard, even quantumly

Instead, Regev’s “Algorithm” is viewed as a justification for 
the hardness of LWE

(if it wasn’t hard, then (approx.) SVP would be easy)



Regev’s “Algorithm”

Since Regev’s work, LWE has become a major 
tool for the design of cryptosystem



Part 2: Completing Regev’s 
algorithm in extreme cases

[Chen-Liu-Z’22]



A special case of (approx.) SVP

A ∈ ℤq
n×m

m >> n
LA = {x : A.x mod q = 0}

Thm (trivial): Can efficiently find x ∈ LA with | x |∞ ≤ q/2 
Proof: Gaussian elimination mod q à x’ ∈ ℤq

m s.t. A.x mod q = 0

Coordinate of x = representative of x’ in {-(q-1)/2,…,(q-1)/2}



A special case of (approx.) SVP

A ∈ ℤq
n×m

m >> n
LA = {x : A.x mod q = 0}

Thm (trivial): Can efficiently find x ∈ LA with | x |∞ ≤ q/2 

Can we do any better?



A special case of (approx.) SVP

A ∈ ℤq
n×m

m >> n
LA = {x : A.x mod q = 0}

Thm (trivial): Can efficiently find x ∈ LA with | x |∞ ≤ q/2 

Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Attempt Regev’s algorithm with:

αx = “is in LA (mod q)”
βx = “| x |∞ ≤ (q-c)/2”

(   ∑ |x ⟩   )⊗m
x =- (q-c)/2

(q-c)/2



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: separately construct

∑αx|x⟩
x

∑βy|y⟩
y



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof:

∑αx|x⟩
x

^ ∑βy|y⟩
y

^
QFT QFT

∑αx|x⟩
x

∑βy|y⟩
y



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof:

∑αx|x⟩
x

^ ∑βy|y⟩
y

^ ∑αx βy |x, x+y ⟩
x,y

^ ^
QFT QFT

∑αx|x⟩
x

∑βy|y⟩
y

+



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof:

∑αx|x⟩
x

^ ∑βy|y⟩
y

^ ∑αx βy |x, x+y ⟩
x,y

^ ^
QFT QFT

∑αx|x⟩
x

∑βy|y⟩
y

+

∑αx βy |x+y ⟩
x,y

^ ^

x+y à x ???



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Our decoding problem:

αx = “x = AT.r mod q”
βx =

Still seems hard to decode



Our Decoding Problem



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Idea 1 - Look at superposition over errors

∑ βy |A.r+y ⟩
y

^ r
Goal



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Zoom in on one coordinate

∑ βy |d+y ⟩
y

^ d
Goal

If we can find d for all coordinates, 
we can find r via linear algebra 

Search space is 
small, so maybe easy 



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Zoom in on one coordinate

∑ βy |d+y ⟩
y

^ d
Goal

Problem: |Ψd⟩ are not orthogonal (only have rank q-c)

|Ψd⟩ = 

Impossible to compute d perfectly 



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Idea 2: Unambiguous state discrimination

∑ βy |d+y ⟩
y

^|Ψd⟩ = 

Project onto Span( { |Ψd⟩ }-(q-c)/2+1 ≤ d ≤ (q-c)/2 )

Don’t learn much :-(

Accept Reject

(q-c)/2+1 ≤ d ≤ q-(q-c)/2=(q+c)/2 
set S of size c



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof:

A , 

Accept
Reject
Reject
Accept
Reject
…



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof:

a1, Accept
a2, Reject
a3, Reject
a4, Accept
a5, Reject
…



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof:

a2, Reject
a3, Reject

a5, Reject
…

di = ai . r ∈ S



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Idea 3: Re-linearization a la Arora-Ge

di ∈ S ∏(di-s) = 0
s ∈ S

Degree c



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Idea 3: Re-linearization a la Arora-Ge

di ∈ S ∏(di-s) = 0
s ∈ S

Degree c
Each reject gives us degree c polynomial in r

Linear in degree-c monomials



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof: Each reject à linear constraint over degree-c monomials

O(nc) such monomials

Intuitively, once we have O(nc) constraints (rejects), should 
be able to compute monomials with linear algebra

r



Thm [Chen-Liu-Z’22]: For any constant c, can quantumly 
efficiently find x ∈ LA with | x |∞ ≤ (q-c)/2, assuming 

m > nc+1 poly(q) 
Proof:

Issues to work out:
• Probability of reject
• Guarantee re-linearized system is uniquely solvable



Part 3: Completing Regev’s 
algorithm using ECCs

[Yamakawa-Z’22]



fi(xi) = 0fi:∑à{0,1}



Our Decoding Problem

Assuming fi ”random-looking”



Thm [Yamakawa-Z’22]: If A is generator matrix for a “good” 
error-correcting code and each fi are ”random-looking”, 
then can solve decoding problem 
à can find points in LA such that fi(xi) = 0 



Thm [Yamakawa-Z’22]: If A is parity-check matrix for a “good” 
error-correcting code, no efficient classical algorithm 
making ”black-box” queries to fi

Reasonable model for 
cryptographic hash functions



Consequences
Relative to random oracle, or alternatively 
under assumption about hash functions, 
∃ NP-search problem in BQP \ BPP

Hash functions considered 
much milder than prior 

assumptions (e.g. Factoring)

Additionally under Aaronson-Ambainis 
conjecture or appropriate hash function 
assumption, ∃ publicly verifiable certified 
randomness

Public verification previously 
unknown except under very 

strong assumptions


