
Cryptography in the Age
of Quantum Computers
Mark Zhandry – MIT

Based on joint works with:
Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner

Typical Crypto Application

m!

Solution: (Private Key) Encryption

m = Dec(, c)!c = Enc(, m)!

c!

� m!

Major question: How is security defined?

c!+!

Definition 1: 1-time security

c0 = Enc(, m0)!
For any m0,m1:

c1 = Enc(, m1)!≈!

Statistical security: statistical closeness
•  [Sha’49]: | | ≥ |m|!

Computational security: computational indistinguishability
•  Restrict adversaries running efficiently
•  Now possible to have | | << |m|!

Question: what if I encrypt a second message?

Definition 2: CPA Security
Indistinguishability under chosen plaintext attack

 Challenger Adversary

Def: CPA-Security � � efficient , | Pr[b’=b] – � | < negl!

Random bit b, Random key

m0, m1!
c = Enc(, mb)! c!

b’!

Definition 3: CCA Security
Indistinguishability under chosen ciphertext attack

 Challenger Adversary

Random bit b, Random key
Empty table T!

m0, m1!c = Enc(, mb)! c!

b’!

Add c to T!
c!

m = Dec(, c)! m if c�T!

Def: CCA-Security � � efficient , | Pr[b’=b] – � | < negl!

Other Scenarios
Circular security:

Side-channel attacks:

Enc(,)!

f()!

Takeaway:
Models should give adversary as much power as possible!

Quantum Computers
So far, assumed adversary obeys classical physics

What about quantum physics?

Quantum computing = using quantum physics to perform
certain computations
• Active research area
•  [Sho’94]: quantum computers can break lots of crypto

Post-Quantum CCA Security

Challenger Adversary
Random bit b, Random key
Empty table T!

m0, m1!c = Enc(, mb)! c!

b’!

Add c to T!
c!

m = Dec(, c)! m if c�T!

Def: CCA-Security � � efficient , | Pr[b’=b] – � | < negl!

Interaction still classical

Post-Quantum Security

All interaction is classical

Post-quantum = end-users are classical

Full Quantum Security
Full quantum = end-users are quantum

Quantum messages

Quantum Background
Quantum states:

Measurement:

Simulate classical ops in superposition:

m = superposition of all messages
= ��m|m⟩ (�|�m|2 = 1)!

m m with probability |�m|2!

m F! F(m)! = ��m|F(m)⟩

Full Quantum CCA Security?

Challenger Adversary
Random bit b, Random key

b’!

c!

Def: CCA-Security � � efficient , | Pr[b’=b] – � | < negl!

c = Enc(, mb)!
m0, m1!

c!

m!m = Dec(, c)!

Are Full Quantum Attacks Plausible?
Objection: can always “classicalize” by sampling

 � Reduce attack to post-quantum attack!

Reasons to still use full quantum notions:
• Classicalization is burden on hardware designer
• What if adversary can bypass?
• Classicalization amounts to a hardware assumption

m!m!

c!

This Work
[BDFLSZ’11,Zha’12a,Zha’13]: Quantum random oracle model

[Zha’12b]: Pseudorandom functions

[BZ’13a]: Message Authentication Codes

[BZ’13b]: Digital signatures and encryption

Theorem: Full-quantum security > Post-quantum security!

Theorem (Informal): Full-quantum security can be obtained
with “minimal” overhead w.r.t. post-quantum security!

Efficient keyed functions that “look like” random functions
•  Fundamental building block in symmetric crypto

Example: Pseudorandom Functions

Func(X,Y)!
F!

Choose random bit b!

[GGM’84]

PRF!

Classical security:

b=1!

x!

Def: Security � � efficient , | Pr[b’=b] – � | < negl!

b’!

F(x)!

Efficient keyed functions that “look like” random functions
•  Fundamental building block in symmetric crypto

Example: Pseudorandom Functions

Func(X,Y)!
F!

Choose random bit b!

[GGM’84]

PRF!

Post-quantum security:

b=1!

x!

Def: PQ-Security � � efficient , | Pr[b’=b] – � | < negl!

b’!

F(x)!

Efficient keyed functions that “look like” random functions
•  Fundamental building block in symmetric crypto

Example: Pseudorandom Functions

Func(X,Y)!
F!

Choose random bit b!

[GGM’84]

PRF!

Full-quantum security:

b=1!

Def: FQ-Security � � efficient , | Pr[b’=b] – � | < negl!

b’!

x!
F(x)!

How to build QPRFs?
Hope that existing PQ-secure PRFs are FQ secure

Examples: GGM, NR, BPR

Questions:

• Do classical security analyses carry over?

•  If not, what new tools are needed?

Pseudorandom Generators

s!

y!
G!

G0(s)! G1(s)!

S!

Y!

≈!
Indistinguishable by efficient
 quantum adversaries

The GGM Construction

x0 ⟶

k!

G

x1 ⟶ G G

x2 ⟶ G G G G

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!

The GGM Construction

x0 ⟶

k!

G

x1 ⟶ G G

x2 ⟶ G G G G

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!

The GGM Construction

x0 ⟶

k!

G

x1 ⟶ G G

x2 ⟶ G G G G

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!

The GGM Construction

x0 ⟶

k!

G

x1 ⟶ G G

x2 ⟶ G G G G

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!

The GGM Construction

x0 ⟶

k!

G

x1 ⟶ G G

x2 ⟶ G G G G

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!

The GGM Construction

x0 ⟶

k!

G

x1 ⟶ G G

x2 ⟶ G G G G

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!

Quantum Security Proof?
Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Hybridize Over Levels

Hybrid 0:

S!

Hybridize Over Levels

Hybrid 1:
S! S!

Hybridize Over Levels

Hybrid 2:
S! S! S! S!

Hybridize Over Levels

Hybrid 3:

S! S! S! S! S! S! S! S!

Hybridize Over Levels

Hybrid n:

S! S! S! S! S! S! S! S! S! S! S! S! S! S! S! S!

Hybridize Over Levels

S!S!S!S!S!S!S!S!
S!S!S!S!S!S!S!S!S!S!S!S!S!S!S!S!

Distinguish PRF from Func(X,Y) with adv. ε
Distinguish two adjacent hybrids with adv. ε/n!

n polynomial � acceptable loss

Hybridize Over Levels

S!S!S!S!S!S!S!S!
Y!Y!Y!Y!Y!Y!Y!Y!

Argument carries over to quantum setting unmodified

Distinguish PRF from Func(X,Y) with adv. ε
Distinguish two adjacent hybrids with adv. ε/n!

n polynomial � acceptable loss

Quantum Security Proof?
Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

	

Simulating Hybrids

Y!Y!Y!Y!Y!Y!Y!Y!
S!S!S!S!S!S!S!S!

S!S!S!
Y!Y!Y!

Hybrid distinguisher

Distinguisher for
several samples

How It Was Done Classically

Adversary only queries polynomial number of points

Only need to fill active nodes

Active node: value used to answer query

� need poly-many samples

Quantum Simulation?

Adversary can query on all exponentially-many inputs

Quantum Simulation?

Adversary can query on all exponentially-many inputs

Need exponentially many samples to simulate!

All nodes are active!

Quantum Security Proof?
Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

Step 3: Hybrid over samples

?
	

Hybrid Over Samples
S!S!S!

Y!Y!Y!

Distinguisher for t samples
with advantage ε

Distinguisher for 1 sample
with advantage ε/t!

S!
Y!

Argument carries over to quantum setting unmodified

Quantum Security Proof?
Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

Step 3: Hybrid over samples
• Exponential samples � exponential security loss
• Can only handle poly-many samples

?
	

	

Quantum Security Proof?
Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using PRG/Random samples

Step 3: Hybrid over samples
• Exponential samples � exponential security loss
• Can only handle poly-many samples

X
	

	

A Distribution to Simulate
Distribution D on Y � induces distribution on functions

For all x�X:
!yx ! D!
!H(x) = yx

H:

H ! DX!

D D D D D D D D D D D D D D D D

Goal: simulate using poly-many samples

Solution: Small-Range Distributions

D D

…!

D

y1!y2! yr!

y4!y3!y1! y3!y2!y4!y4! y4!y1!y2!y2! y2!y2!y3!y3! y2!

R ! Funcs(X, [r])!
H(x) = yR(x)!

H ! SRr
X(D)!

H:

Small-Range Distributions

Theorem: SRr
X(D) is indistinguishable from DX by any q-

query quantum algorithm, except with advantage O(q3/r)!

Notes:
•  Highly non-trivial
•  Distinguishing prob not negligible, but good enough

•  We get to choose r!
•  Random function R not efficiently constructible

Theorem: Can simulate R using k-wise independence

Quantum GGM Proof

PRF distinguisher will
distinguish two adjacent

hybrids

S!S!S!S!S!S!S!S!
Y!Y!Y!Y!Y!Y!Y!Y!

Y!Y!Y!Y!S!S!S!S!
≈! ≈!(SR distributions) (SR distributions)

Poly-many samples

Quantum Security Proof
Idea: follow classical steps
•  Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree

Step 2: Approx. sim. hybrids using poly-many samples

Step 3: Hybrid over samples

Result: PRG distinguisher

Impossible by assumption � PRF distinguisher impossible

	

	

	

Quantum Query Results

Quantum Collision Finding

Y Y

…!

Y

y1!y2! yr!

y4!y3!y1! y3!y2!y4!y4! y4!y1!y2!y2! y2!y2!y3!y3! y2!

R ! Funcs(X, [r])!
H(x) = yR(x)!

H ! SRr
X(Y)!

Recall small-range distributions when D is uniform:

Quantum Collision Finding
Another view:

X! Y!

[r]!R! S!

H = S�R
Theorem: H is indistinguishable from random by any q-

query quantum algorithm, except with advantage O(q3/r)!
Corollary: If |Y|>>|X|2, impossible to find collision in H

unless q≥Ω(r1/3)!

Quantum Collision Finding

What about truly random functions with |Y| << |X|2 ?

Previous r1/3 lower bounds known for different settings
• E.g. k-to-1 functions [AS’01]
• All prior settings required |Range| ≥ |Domain|!
• Our works for all domain/range sizes

Bound is tight: [BHT’97] q=O(r1/3)!

Corollary: If |Y|>>|X|2, impossible to find collision in H
unless q≥O(r1/3)!

Theorem: q≥Ω(r1/3) quantum queries are required to find
collisions in a random function R:X"[r]

Quantum Oracle Interrogation
Using q queries, determine function at k>q points

Func(X,Y)!F!
x!

F(x)!

(x1, F(x1)), (x2, F(x2)), … (xk, F(xk))!

Important for MAC, signature security

Quantum Oracle Interrogation
Classically: hard Adv = 1/|Y|k-q!
•  Large outputs: Adv = negl even for k=q+1!
• Small outputs: Adv = negl for k = c q!
!
Quantum: not so fast

Also true for small ranges:

Question: What about large range sizes?

Theorem [vD’98]: For F:X"{0,1},
q quantum queries � k = 1.9q points w.h.p !

Theorem: For F:X"{0,1}2,
q quantum queries � k = 1.3q points w.h.p !

Quantum Oracle Interrogation

Theorem: For F:X"{0,1}n,
q quantum queries � Pr[k=q+1 points] ≤ (q+1)/2n!

Highly'non*trivial'

New quantum impossibility tool: The Rank Method

Therefore:
•  Small range: Pr[q+1 points] large
•  Large range: Pr[q+1 points] small

Quantum Polynomial Interpolation
Using q queries to a polynomial, determine polynomial

Poly(d)!F!
x!

F(x)!

F!
Classical: q=d+1 " easy Quantum: q=d/2 " hard [KK’10]

 q<d+1 " hard

Theorem: (quantum) q=d " easy!

Theorem: (quantum) q=(d+1)/2, “large” d " hard!

Conclusion
Studying full quantum security notions important
• Quantum computers seem inevitable
• Unclear what attacks are possible
• Strive for strongest definitions
• Bonus: quantum query complexity results

Future work: more advanced primitives
•  Identity-based encryption
•  Functional encryption
•  Fully homomorphic encryption
• Other quantum query questions

?

