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Typical Crypto Application 

m!



Solution: (Private Key) Encryption 

m = Dec(   , c)!c = Enc(   , m)!

c!

� m!

Major question: How is security defined? 

c!+!



Definition 1: 1-time security 
 
 

c0 = Enc(   , m0)!
For any m0,m1: 

c1 = Enc(   , m1)!≈!

Statistical security: statistical closeness 
•  [Sha’49]: |     | ≥ |m|!

Computational security: computational indistinguishability 
•  Restrict adversaries running efficiently 
•  Now possible to have |     | << |m|!

Question: what if I encrypt a second message? 



Definition 2: CPA Security 
Indistinguishability under chosen plaintext attack 
 
 Challenger Adversary 

Def: CPA-Security  � � efficient        , | Pr[b’=b] – � |  < negl!

Random bit b,  Random key 

m0, m1!
c = Enc(   , mb)! c!

b’!



Definition 3: CCA Security 
Indistinguishability under chosen ciphertext attack 
 
 Challenger Adversary 

Random bit b,  Random key 
Empty table T!

m0, m1!c = Enc(   , mb)! c!

b’!

Add c to T!
c!

m = Dec(   , c)! m if c�T!

Def: CCA-Security  � � efficient        , | Pr[b’=b] – � |  < negl!



Other Scenarios 
Circular security: 
 
 
 
 
Side-channel attacks:  

Enc(   ,    )!

f(    )!

Takeaway:  
Models should give adversary as much power as possible!



Quantum Computers 
So far, assumed adversary obeys classical physics 
 
What about quantum physics? 
 
Quantum computing = using quantum physics to perform 
certain computations 
• Active research area 
•  [Sho’94]: quantum computers can break lots of crypto 



Post-Quantum CCA Security 

Challenger Adversary 
Random bit b,  Random key 
Empty table T!

m0, m1!c = Enc(   , mb)! c!

b’!

Add c to T!
c!

m = Dec(   , c)! m if c�T!

Def: CCA-Security  � � efficient        , | Pr[b’=b] – � |  < negl!

Interaction still classical 



Post-Quantum Security 

All interaction is classical 

Post-quantum = end-users are classical 



Full Quantum Security 
Full quantum = end-users are quantum 

Quantum messages 



Quantum Background 
Quantum states: 
 
 

 
Measurement: 
 
 
 
Simulate classical ops in superposition: 

m =  superposition of all messages 
= ��m|m⟩    (�|�m|2 = 1)!

m m with probability |�m|2!

m F! F(m)! = ��m|F(m)⟩  



Full Quantum CCA Security? 

Challenger Adversary 
Random bit b,  Random key 

b’!

c!

Def: CCA-Security  � � efficient        , | Pr[b’=b] – � |  < negl!

c = Enc(   , mb )!
m0, m1!

c!

m!m = Dec(   , c )!



Are Full Quantum Attacks Plausible? 
Objection: can always “classicalize” by sampling 
 
 
 
 
 

 � Reduce attack to post-quantum attack! 
 
Reasons to still use full quantum notions: 
• Classicalization is burden on hardware designer 
• What if adversary can bypass? 
• Classicalization amounts to a hardware assumption 

m!m!

c!



This Work 
[BDFLSZ’11,Zha’12a,Zha’13]: Quantum random oracle model 
 
[Zha’12b]: Pseudorandom functions 
 
[BZ’13a]: Message Authentication Codes 
 
[BZ’13b]: Digital signatures and encryption 
 
 
 
 

Theorem: Full-quantum security > Post-quantum security!

Theorem (Informal): Full-quantum security can be obtained 
with “minimal” overhead w.r.t. post-quantum security!



Efficient keyed functions that “look like” random functions 
•  Fundamental building block in symmetric crypto 

Example: Pseudorandom Functions 

Func(X,Y)!
F!

Choose random bit b!

[GGM’84] 

PRF!

Classical security: 

b=1!

x!

Def: Security � � efficient        , | Pr[b’=b] – � |  < negl!

b’!

F(x)!



Efficient keyed functions that “look like” random functions 
•  Fundamental building block in symmetric crypto 

Example: Pseudorandom Functions 

Func(X,Y)!
F!

Choose random bit b!

[GGM’84] 

PRF!

Post-quantum security: 

b=1!

x!

Def: PQ-Security � � efficient        , | Pr[b’=b] – � |  < negl!

b’!

F(x)!



Efficient keyed functions that “look like” random functions 
•  Fundamental building block in symmetric crypto 

Example: Pseudorandom Functions 

Func(X,Y)!
F!

Choose random bit b!

[GGM’84] 

PRF!

Full-quantum security: 

b=1!

Def: FQ-Security � � efficient        , | Pr[b’=b] – � |  < negl!

b’!

x!
F(x)!



How to build QPRFs? 
Hope that existing PQ-secure PRFs are FQ secure 

Examples: GGM, NR, BPR 
 
Questions: 

• Do classical security analyses carry over? 

•  If not, what new tools are needed? 

 
 



Pseudorandom Generators 

s!

y!
G!

G0(s)! G1(s)!

S!

Y!

≈!
Indistinguishable by efficient 
 quantum adversaries 



The GGM Construction 

x0  ⟶ 

k!

G 

x1  ⟶ G G 

x2  ⟶ G G G G 

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!
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x2  ⟶ G G G G 

Fk(000)! Fk(001)! Fk(010)! Fk(011)! Fk(100)! Fk(101)! Fk(110)! Fk(111)!

S!



Quantum Security Proof? 
Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 
 
Step 1: Hybridize over levels of tree 



Hybridize Over Levels 

Hybrid 0: 

S!



Hybridize Over Levels 

Hybrid 1: 
S! S!



Hybridize Over Levels 

Hybrid 2: 
S! S! S! S!



Hybridize Over Levels 

Hybrid 3: 

S! S! S! S! S! S! S! S!



Hybridize Over Levels 

Hybrid n: 

S! S! S! S! S! S! S! S! S! S! S! S! S! S! S! S!



Hybridize Over Levels 

S!S!S!S!S!S!S!S!
S!S!S!S!S!S!S!S!S!S!S!S!S!S!S!S!

Distinguish PRF from Func(X,Y) with adv. ε  
Distinguish two adjacent hybrids with adv. ε/n!

n polynomial � acceptable loss 



Hybridize Over Levels 

S!S!S!S!S!S!S!S!
Y!Y!Y!Y!Y!Y!Y!Y!

Argument carries over to quantum setting unmodified 

Distinguish PRF from Func(X,Y) with adv. ε  
Distinguish two adjacent hybrids with adv. ε/n!

n polynomial � acceptable loss 



Quantum Security Proof? 
Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 
 
Step 1: Hybridize over levels of tree 
 
Step 2: Simulate hybrids using PRG/Random samples 
 

	 



Simulating Hybrids 

Y!Y!Y!Y!Y!Y!Y!Y!
S!S!S!S!S!S!S!S!

S!S!S!
Y!Y!Y!

Hybrid distinguisher 

Distinguisher for 
several samples 



How It Was Done Classically 

Adversary only queries polynomial number of points 

Only need to fill active nodes  

Active node: value used to answer query 

� need poly-many samples 



Quantum Simulation? 

Adversary can query on all exponentially-many inputs 



Quantum Simulation? 

Adversary can query on all exponentially-many inputs 

Need exponentially many samples to simulate! 

All nodes are active! 



Quantum Security Proof? 
Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 
 
Step 1: Hybridize over levels of tree 
 
Step 2: Simulate hybrids using PRG/Random samples 
 
Step 3: Hybrid over samples  
 

? 
	 



Hybrid Over Samples 
S!S!S!

Y!Y!Y!

Distinguisher for t samples 
with advantage ε 

Distinguisher for 1 sample 
with advantage ε/t!

S!
Y!

Argument carries over to quantum setting unmodified 



Quantum Security Proof? 
Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 
 
Step 1: Hybridize over levels of tree 
 
Step 2: Simulate hybrids using PRG/Random samples 
 
Step 3: Hybrid over samples 
• Exponential samples � exponential security loss 
• Can only handle poly-many samples 

? 
	 

	 



Quantum Security Proof? 
Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 
 
Step 1: Hybridize over levels of tree 
 
Step 2: Simulate hybrids using PRG/Random samples 
 
Step 3: Hybrid over samples 
• Exponential samples � exponential security loss 
• Can only handle poly-many samples 

X 
	 

	 



A Distribution to Simulate 
Distribution D on Y � induces distribution on functions 
 

For all x�X: 
!yx ! D!
!H(x) = yx  

H: 

H ! DX!

D D D D D D D D D D D D D D D D 

Goal: simulate using poly-many samples 



Solution: Small-Range Distributions 

D D 

…!

D 

y1!y2! yr!

y4!y3!y1! y3!y2!y4!y4! y4!y1!y2!y2! y2!y2!y3!y3! y2!

R ! Funcs(X, [r])!
H(x) = yR(x)!

H ! SRr
X(D)!

H: 



Small-Range Distributions 

Theorem: SRr
X(D) is indistinguishable from DX by any q-

query quantum algorithm, except with advantage O(q3/r)!

Notes: 
•  Highly non-trivial 
•  Distinguishing prob not negligible, but good enough 

•  We get to choose r!
•  Random function R not efficiently constructible 

Theorem: Can simulate R using k-wise independence 



Quantum GGM Proof 

PRF distinguisher will 
distinguish two adjacent 

hybrids 

S!S!S!S!S!S!S!S!
Y!Y!Y!Y!Y!Y!Y!Y!

Y!Y!Y!Y!S!S!S!S!
≈! ≈!(SR distributions) (SR distributions) 

Poly-many samples 



Quantum Security Proof 
Idea: follow classical steps 
•  Turn PRF distinguisher into PRG distinguisher 
 
Step 1: Hybridize over levels of tree 
 
Step 2: Approx. sim. hybrids using poly-many samples 
 
Step 3: Hybrid over samples 
 
 
Result: PRG distinguisher 

Impossible by assumption � PRF distinguisher impossible 

	 

	 

	 



Quantum Query Results 



Quantum Collision Finding 

Y Y 

…!

Y 

y1!y2! yr!

y4!y3!y1! y3!y2!y4!y4! y4!y1!y2!y2! y2!y2!y3!y3! y2!

R ! Funcs(X, [r])!
H(x) = yR(x)!

H ! SRr
X(Y)!

Recall small-range distributions when D is uniform: 



Quantum Collision Finding 
Another view: 

X! Y!

[r]!R! S!

H = S�R 
Theorem: H is indistinguishable from random by any q-

query quantum algorithm, except with advantage O(q3/r)!
Corollary: If |Y|>>|X|2, impossible to find collision in H 

unless q≥Ω(r1/3)!



Quantum Collision Finding 

What about truly random functions with |Y| << |X|2 ?  
 
 
 
 
Previous r1/3 lower bounds known for different settings 
• E.g. k-to-1 functions [AS’01] 
• All prior settings required |Range| ≥ |Domain|!
• Our works for all domain/range sizes 
 
Bound is tight: [BHT’97] q=O(r1/3)!

Corollary: If |Y|>>|X|2, impossible to find collision in H 
unless q≥O(r1/3)!

Theorem: q≥Ω(r1/3) quantum queries are required to find 
collisions in a random function R:X"[r] 



Quantum Oracle Interrogation 
Using q queries, determine function at k>q points 
 
 
 
 
 
 
 
 

Func(X,Y)!F!
x!

F(x)!

( x1, F(x1) ), ( x2, F(x2) ), … (xk, F(xk) )!

Important for MAC, signature security 



Quantum Oracle Interrogation 
Classically: hard   Adv = 1/|Y|k-q!
•  Large outputs: Adv = negl even for k=q+1!
• Small outputs: Adv = negl for k = c q!
!
Quantum: not so fast 
 

 
Also true for small ranges: 
 
 

Question: What about large range sizes? 
 

Theorem [vD’98]: For F:X"{0,1}, 
q quantum queries  � k = 1.9q points w.h.p !

Theorem: For F:X"{0,1}2, 
q quantum queries  � k = 1.3q points w.h.p !



Quantum Oracle Interrogation 
 
 
 
 

Theorem: For F:X"{0,1}n, 
q quantum queries  � Pr[k=q+1 points] ≤ (q+1)/2n!

Highly'non*trivial'

New quantum impossibility tool: The Rank Method 
 
Therefore: 
•  Small range: Pr[q+1 points] large 
•  Large range: Pr[q+1 points] small 



Quantum Polynomial Interpolation 
Using q queries to a polynomial, determine polynomial 

Poly(d)!F!
x!

F(x)!

F!
Classical:  q=d+1 " easy   Quantum: q=d/2 " hard [KK’10] 

   q<d+1 " hard 

Theorem: (quantum) q=d " easy!

Theorem: (quantum) q=(d+1)/2, “large” d " hard!



Conclusion 
Studying full quantum security notions important 
• Quantum computers seem inevitable 
• Unclear what attacks are possible 
• Strive for strongest definitions 
• Bonus: quantum query complexity results 

Future work: more advanced primitives 
•  Identity-based encryption 
•  Functional encryption 
•  Fully homomorphic encryption 
• Other quantum query questions 
 



? 


