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Typical Crypto Application




Solution: (Private Key) Encryption

m = Dec( -, ¢)

c-l-@@ =>®

Major question: How is security defined?



-
Definition 1: 1-time security

For any m,,m;:

co = Enc(C=m,) = ¢, = Enc(c= m,)

Statistical security: statistical closeness
* [Sha’49]: |&=] 2 |ml

Computational security: computational indistinguishability
Restrict adversaries running efficiently
- Now possible to have |€=| << |ml

Question: what if | encrypt a second message?



Definition 2: CPA Security

Indistinguishability under chosen plaintext attack

Challenger Adversary
Random bit b, Random key

mo, ml

¢ = Enc("=, m,) ) D q

bl

[Def: CPA-Security = V efficient g | Prib’=b] - % | < negl}




Definition 3: CCA Security

Indistinguishability under chosen ciphertext attack

Challenger Adversary

Random bit b, Random key
Empty table T
mo, ml

¢ = Enc(C=, m,) <

Addcto T D

J

i

m = Dec( =, ¢) m if c&T

’

[Def: CCA-Security = V efficient Q | Prib’=b] - % | < negl}




Other Scenarios

Circular security:

Enc(C =, O=) > q

Side-channel attacks:

f(e=) > g

Takeaway:
Models should give adversary as much power as possible




-
Quantum Computers

So far, assumed adversary obeys classical physics
What about quantum physics?

Quantum computing = using quantum physics to perform
certain computations

- Active research area

- [Sho’94]: quantum computers can break lots of crypto



e
Post-Quantum CCA Security

Interaction still classical
Challenger Adversary

Random bit b, Random key
Empty table T

m,, M,
c = Enc("=, m,) <
Addcto T ¢
C
<€
m = Dec(c =, ¢) m if c&




Post-Quantum Security

Post-quantum = end-users are classical




Full Quantum Security

Full quantum = end-users are quantum




e
Quantum Background

Quantum states:

¢m; = superposition of all messages
=2Zaym (Zla,l?=1)
Measurement:
‘m '\ m with probability | & |2

Simulate classical ops in superposition:

i e
t'}l} — F {(I@ = 2 OZmlF(m)>




e
Full Quantum CCA Security?

Challenger Adversary
Random bit b, Random key

")

¢ c= Enc(o=, mg) <

Vv

tm?z Dec( ,\ca




Are Full Quantum Attacks Plausible?

Objection: can always “classicalize” by sampling

= Reduce attack to post-quantum attack!

Reasons to still use full guantum notions:

- Classicalization is burden on hardware designer

- What if adversary can bypass?

- Classicalization amounts to a hardware assumption



I
This Work

[BDFLSZ’11,Zha’12a,Zha’13]: Quantum random oracle model
[Zha’12b]: Pseudorandom functions
[BZ’13a]: Message Authentication Codes

[BZ’13Db]: Digital signatures and encryption

[ Theorem: Full-quantum security > Post-quantum security J

Theorem (Informal): Full-quantum security can be obtained
with “minimal” overhead w.r.t. post-quantum security




Example: Pseudorandom Functions

[GGM’84]

Efficient keyed functions that “look like” random functions
- Fundamental building block in symmetric crypto

Classical security:
Choose random bit b

L )@
Fbs1 ) i)
l

bl

[ Def: Security = V efficient @ | Prlb’=b] - % | < negl }




Example: Pseudorandom Functions

[GGM’84]

Efficient keyed functions that “look like” random functions
- Fundamental building block in symmetric crypto

Post-quantum security:
Choose random bit b

b’/o m <

F(Q

[ Def: PQ-Security = V efficien, | Pr(b’=b] - % | < negl }




Example: Pseudorandom Functions

[GGM’84]

Efficient keyed functions that “look like” random functions
- Fundamental building block in symmetric crypto

Full-quantum security:
Choose random bit b

b’/o m <

F(Q

[ Def: FQ-Security = V efficien, | Pr(b’=b] - % | < negl }




e
How to build QPRFs?

Hope that existing PQ-secure PRFs are FQ secure
Examples: GGM, NR, BPR

Questions:
- Do classical security analyses carry over?

- If not, what new tools are needed?



-
Pseudorandom Generators

<« W

X «—<

~
Indistinguishable by efficient
quantum adversaries



-
The GGM Construction

F.(000) | F,(001) | F,(010) | F(011) | F(100) | F (101) | F,(110) | F(111)
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-
The GGM Construction

F.(000) | F,(001) | F,(010) | F (011) | F(100) | F (101) | F,(110) | F(111)




e
Quantum Security Proof?

|dea: follow classical steps
- Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree



Hybridize Over Levels
S

Hybrid O:




e
Hybridize Over Levels

S S
Hybrid 1: l l




e
Hybridize Over Levels

Hybrid 2:




e
Hybridize Over Levels

Hybrid 3:




Hybridize Over Levels

Hybrid n:

V) —>

V) —>

V) —>

V) —>

V) —>

V) —>

V) —>

V) —>

V) —

V) —>

V) —

V) —>

V) —>

V) —

V) —>

V) —




e
Hybridize Over Levels

Distinguish PRF from Func(X,Y) with adv. €

Distinguish two adjacent hybrids with adv. £/n
n polynomial = acceptable loss

SSSSSSSS
Vi vvy vy

4




e
Hybridize Over Levels

Distinguish PRF from Func(X,Y) with adv. €

Distinguish two adjacent hybrids with adv. £/n
n polynomial = acceptable loss

SSSSSSSS
Yy v vy YYYYYYYY
 AZAAAAAN’

Argument carries over to quantum setting unmodified



e
Quantum Security Proof?

|dea: follow classical steps
- Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree /

Step 2: Simulate hybrids using PRG/Random samples



Simulating Hybrids

SSS
V¥V YYY
=
1 Distinguisher for 1
several samples
SSSSSSSS '
bhyon by YYYYYYYY
A A A A

Hybrid distinguisher

/N




-
How It Was Done Classically

Active node: value used to answer query

Only need to fill active nodes = need poly-many samples

v

Adversary only queries polynomial number of points



-
Quantum Simulation?

Adversary can query on all exponentially-many inputs



-
Quantum Simulation?

All nodes are active!

L IANNN

Adversary can query on all exponentially-many inputs

Need exponentially many samples to simulate!




e
Quantum Security Proof?

|dea: follow classical steps
- Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree /
Step 2: Simulate hybrids using PRG/Random samples 7

Step 3: Hybrid over samples



Hybrid Over Samples

SSS
v v ¥ YYY
Distinguisher for t samples
with advantage €
S Distinguisher for 1 sample

with advantage &/t Y

B/ ~

Argument carries over to quantum setting unmodified



e
Quantum Security Proof?

|dea: follow classical steps
- Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree /
Step 2: Simulate hybrids using PRG/Random samples 7
Step 3: Hybrid over samples v

- Exponential samples = exponential security loss
- Can only handle poly-many samples



e
Quantum Security Proof?

|dea: follow classical steps
- Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree /
Step 2: Simulate hybrids using PRG/Random samples X
Step 3: Hybrid over samples v

- Exponential samples = exponential security loss
- Can only handle poly-many samples



e
A Distribution to Simulate

Distribution D on Y = induces distribution on functions

For all xEX:

H € DX

Goal: simulate using poly-many samples



e
Solution: Small-Range Distributions

DD D
R € Funcs(X, [r]) i l l
HOA = Yo Vi Y2 Y

H: (Y4 Y3 Y1(Y31Y2 Y4 YalYslY1Y2 Y2 Y2 Y2 Y3 Y3 Y2
H < SR.*(D)




e
Small-Range Distributions

Theorem: SR X(D) is indistinguishable from DX by any q-
query quantum algorithm, except with advantage 0(q3/r)

Notes:

 Highly non-trivial

- Distinguishing prob not negligible, but good enough
* We get to choose r

- Random function R not efficiently constructible

[ Theorem: Can simulate R using k-wise independence J




-
Quantum GGM Proof

$SSSSSSSS
EREEERER PRF distinguisher will YYYYYYYY
distinguishtwo adjacent | v v ¢ v v ¥ ¥

% (SR distributions) 22 (SR distributions)

S S
>3 YYYY
LA 22 /
Poly-many samples




e
Quantum Security Proof

|dea: follow classical steps
- Turn PRF distinguisher into PRG distinguisher

Step 1: Hybridize over levels of tree /
Step 2: Approx. sim. hybrids using poly-many samples ./

Step 3: Hybrid over samples v

Result: PRG distinguisher
Impossible by assumption = PRF distinguisher impossible



-
Quantum Query Results



-
Quantum Collision Finding

Recall small-range distributions when D is uniform:

Y Y Y
R € Funcs(X, [r]) l l l
HOA = Yo Vi Y2 Y

Yo Y3 Y1 Y3 Y2 Ya Y Ve Y1(Y2Y2 Y2 Y2 Y3 Y3 Y2
H < SR.X(Y)




Quantum Collision Finding

Another view:

>ﬁ@f<©

Theorem: H is indistinguishable from random by any gq-
query quantum algorithm, except with advantage 0O(q3/r)

\.

Corollary: If |YI>>|X|2, impossible to find collision in H \
unless q2Q(r!/3)




-
Quantum Collision Finding

Corollary: If |Y|>>|XI|2, impossible to find collision in H
unless q20(r'/3)

What about truly random functions with |Y] << |X|2 ?

Theorem: q2Q(r'/3) quantum queries are required to find
collisions in a random function R:X-=>[r]

Previous r!/3 lower bounds known for different settings
- E.g. k-to-1 functions [AS’01]

- All prior settings required |[Rangel 2 |Domainl

- Our works for all domain/range sizes

Bound is tight: [BHT’97] q=0(r/3)



-
Quantum Oracle Interrogation

Using q queries, determine function at k>q points

( %, F(x,) ), ( x5, F(x;) ), ... (x,, F(x,) )

Important for MAC, signature security



Quantum Oracle Interrogation

Classically: hard Adv = 1/]|Y|-q
- Large outputs: Adv = negl even for k=q+1
- Small outputs: Adv = negl fork = ¢ q

Quantum: not so fast

Theorem [vD’98]: For F:X->{0,1},
q quantum queries = k = 1.9q points w.h.p

Also true for small ranges:
[ Theorem: For F:X->{0,1}2, ]
q

quantum queries = K = 1.3q points w.h.p

Question: What about large range sizes?



-
Quantum Oracle Interrogation

Theorem: For F:X->{0,1}",
q quantum queries = Pr[k=q+1 points] ¢ (q+1)/2"

N

Highly non-trivial

New quantum impossibility tool: The Rank Method

Therefore:
- Small range: Pr[q+1 points] large
- Large range: Pr[q+1 points] small



e
Quantum Polynomial Interpolation

Using q queries to a polynomial, determine polynomial

Classical: q=d+1 > easy Quantum: q=d/2 - hard [KK’10]
q<d+1 - hard

4 )

Theorem: (quantum) q=d - easy

. .
4 )

Theorem: (quantum) q=(d+1)/2, “large” d > hard

. A




-
Conclusion

Studying full qguantum security notions important
- Quantum computers seem inevitable

- Unclear what attacks are possible

- Strive for strongest definitions

- Bonus: quantum query complexity results

Future work: more advanced primitives
- Identity-based encryption

- Functional encryption

- Fully homomorphic encryption

- Other quantum query questions






