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H : {0,1}mà{0,1}n

We will always think of H 
as being a random oracle

Goal: Understand what adversary can learn about H



Classically “easy”: Adversary knows H(x) 
for every queries point x, knows nothing 

about any other point

Note: still can be non-trivial to actually prove things



Quantumly, very hard…

Reason: adversary “sees” all of H with even a single query



Usual approach: query complexity lower-bounds 
= show that adversary cannot solve particular 

problem with bounded queries



Examples



Lower-bound for pre-image search

H : {0,1}mà{0,1}n

x s.t. H(x)=0n

[Bennett-Bernstein-Brassard-Vazirani’97]



Lower-bound for pre-image search
[Bennett-Bernstein-Brassard-Vazirani’97]

Thm (Adapted from [BBBV’97]): For any algorithm making q 
quantum queries to random oracle H:{0,1}mà{0,1}n and 
producing an output x, Pr[H(x)=0n] ≤ O(q22-n)

Proof idea: early application of hybrid/adversary method

Start H(x)≠0n everywhere (alg fails), then change back to original
Change adds O(√2-n) to root success prob for each query
Summing and squaring gives Pr[H(x)=0n] ≤ O(q22-n) 

Optimal via 
[Grover’96]



Lower-bound for pre-image search

Rough intuition for quadratic speedup: Changing 
norm from 1-norm to 2-norm



Lower-bound for collision-finding

H : {0,1}mà{0,1}n

x0≠x1 s.t. H(x0)=H(x1)

[Aaronson-Shi’04,…]



Lower-bound for collision-finding

Thm (Adapted from [AS’97,Yuen’13,Z’15]): For any algorithm 
making q quantum queries to random oracle H:{0,1}mà{0,1}n 
and producing outputs x0,x1, Pr[H(x0)=H(x1) ∧x0≠x1] ≤ O(q32-n)

Proof idea: polynomial method
Observe that output probabilities are polynomials of degree 
2q in “collision parameter” (e.g. 1/number of preimages of each image)

Optimal via [Brassard-
Høyer-Tapp’98]

[Aaronson-Shi’04,…]

+ show that low-degree polynomials cannot approach 0 too fast
H indistinguishable from injective function



Q’s:
1. Why is collision-bound not O(q4/2n)?

2. Do pre-image and collision bounds really need 
different techniques?

3. Up until 2019, all collision bounds start by 
showing indistinguishability from injective, which 
requires n ≥ m. Extending to n < m requires extra 
steps. Any “direct” proof for n < m case?



Compare to classical

Lower-bound for search

q queries x1,...xq

Except with prob 2-n, can 
assume x ∈{x1,…,xq}

Lazily sample H

For each xi, Pr[H(xi)=0n] = 2-n 
       Pr[∃xi st H(xi)=0n] ≤ q2-n

Lower-bound for collision

q queries x1,...xq

Except with prob 2-n, can 
assume x0,x1 ∈{x1,…,xq}

Lazily sample H

For xi,xj, Pr[H(xi)=H(xj)] = 2-n 
       Pr[∃xi≠xj st H(xi)=H(xj)] ≤ q22-n



Compressed Oracles: An Inherently Quantum Approach



Idea: Purify H, extract info from purification

Usual model:
H ß Funcs({0,1}mà{0,1}n)
Query = apply unitary QH|x,y⟩ = |x,y⊕H(x)⟩

Purified model:
Initialize oracle register to ∑ |H⟩ 

Query = apply unitary Q|x,y,H⟩ = |x,y⊕H(x),H⟩
H



Purified model:
Initialize oracle register to ∑ |H⟩ 

Query = apply unitary Q|x,y,H⟩ = |x,y⊕H(x),H⟩
H

Fourier model: view y,H in Hadamard/Fourier basis
Initialize oracle register to |0⟩ 
Query = apply unitary Q|x,z,J⟩ = |x,z,J⊕Px,z⟩

Px,z(x’) = z iff x=x’

Idea: Purify H, extract info from purification



Fourier model: view y,H in Hadamard/Fourier basis
Initialize oracle register to |0⟩ 
Query = apply unitary Q|x,z,J⟩ = |x,z,J⊕Px,z⟩

Px,z(x’) = z iff x=x’

Observation: after q queries, J register 
will be non-zero at only J points

Idea: Purify H, extract info from purification



Fourier model: view y,H in Hadamard/Fourier basis
Initialize oracle register to |0⟩ 
Query = apply unitary Q|x,z,J⟩ = |x,z,J⊕Px,z⟩

Compressed Fourier model:
Initialize oracle register to |{}⟩ 
Query = apply unitary Q|x,z,D⟩ = |x,z,D⊕{(x,z)}⟩

D⊕{(x,z)} = 
D\{(x,z)}       if (x,z)∈D
(D\{(x,z’)}) ⋃ {(x,z⊕z’)} if (x,z’)∈D, z’≠z
D⋃{(x,z)}        if no pair (x,z’)∉D

Idea: Purify H, extract info from purification



Compressed Fourier model:
Initialize oracle register to |{}⟩ 
Query = apply unitary Q|x,z,D⟩ = |x,z,D⊕{(x,z)}⟩

D⊕{(x,z)} = 
D\{(x,z)}       if (x,z)∈D
(D\{(x,z’)}) ⋃ {(x,y⊕y’)} if (x,z’)∈D, z’≠z
D⋃{(x,z)}        if no pair (x,z’)∉D

Compressed Standard model: move z registers back 
to primal values y…

Idea: Purify H, extract info from purification



Oracle “database” D looks a lot like list of query input/output 
pairs (i.e. what a classical-query adversary would know about H)

Key differences: 
• D(x) not quite equal to adversary’s understanding of H(x) 

since support is orthogonal to ∑y |y⟩
• Always ready to remove record from database to indicate 

forgetting info 

Joint state of adversary and oracle is pure à oracle register 
contains all information about adversary



Key Lemma [Z’19]: Let R be some relation on tuples of pairs 
(x1,y1),…,(xk,yk). Let A be a quantum query algorithm. Define
 - p = Pr[A outputs a tuple in R such that yi = H(xi) for all I
 - p’ = Pr[compressed standard database D contains tuple in R]

Then √p ≤ √p’ + √(k2-n)

Examples:
 - If A can find pre-image of 0, then D must contain (x,0) pair
 - If A can find collision, then D must contain pairs (x0,y),(x1,y) with x0≠x1



Lemma [Z’19]: After q queries, oracle’s state supported on D of 
size at most q

In particular, compressed oracle gives a 
way to lazily sample random oracles



Lemma [Z’19]: Let ti be amplitude (root probability) after i queries 
on databases containing a (x,0n) pair. Then ti+1 ≤ ti + O(√2-n)

Corollary (reproving [BBBV’97]): For any algorithm making q 
quantum queries to random oracle H:{0,1}mà{0,1}n and 
producing an output x, Pr[H(x)=0n] ≤ O(q22-n)

Proof: t0 = 0. By Lemma, tq ≤ O(q √2-n). 
Then by Key Lemma, √p ≤ O(q √2-n) + √(2-n) = O(q √2-n)
Thus p ≤ O(q2 / 2n)



Lemma [Z’19]: Let ti be amplitude (root probability) after i 
queries on databases containing pairs (x0,y),(x1,y) with x0≠x1. 
Then ti+1 ≤ ti + O(√i √2-n)

Corollary (reproving [AS’97,Yuen’13,Z’15]): For any algorithm 
making q quantum queries to random oracle H:{0,1}mà{0,1}n 
and producing outputs x0,x1, Pr[H(x0)=H(x1) ∧x0≠x1] ≤ O(q32-n)

Proof idea: Can replace 0n in pre-image search with Lemma with 
any of the current entries in D. Naively summing over all ≤i such 
entries gives O(i √2-n). But error corresponding to each entry is 
orthogonal à summing error vectors gives O(√i √2-n) 



Proofs for pre-image search and collision-finding only differ in a 
few lines! (though pre-image search admittedly more complex)

Proof for collision-finding directly handles small-output regime

Why O(q4/2n) for collision? One of the classical q’s gets squared due 
to changing norms, but the other q doesn’t since the collisions with 
the existing database are orthogonal



Challenge: how far can similarities to classical take us?

We know this intuition must sometimes fail…



Example: Feistel/Luby-Rackoff
[Luby-Rackoff’88]

≈ P

Under classical queries:

Very rough idea: look at queries 
to H on the left, show that no 
collisions in w

H⊕

H ⊕

H⊕

w



Example: Luby-Rackoff

≈ P

[Kuwakado-Morii’10]: False under quantum queries!

H⊕

H ⊕

H⊕

✘
Idea: 
f(x,0) = f(x ⊕ H(y0) ⊕ H(y1), 1)
Simon’s alg à H(y0) ⊕ H(y1)

x y0,y1 

f(x,b)



Example: Yamakawa-Z’22

H : {0,1}mà{0,1}

Classical queries

x1,x2,…,xn such that
H(xi) = 1 ∀i, and
(x1,…,xn) in linear code C

Theorem [YZ’22]: For appropriate 
code C, exponential classical 
queries required

Idea: C guarantees only a 
few valid solutions amongst 
queries made by adversary 



Example: Yamakawa-Z’22

H : {0,1}mà{0,1}

x1,x2,…,xn such that
H(xi) = 1 ∀i, and
(x1,…,xn) in linear code C

Theorem [YZ’22]: For appropriate 
code C (consistent with classical 
hardness) polynomial quantum 
queries sufficient

In particular, a random code will do if we don’t care about computation



Takeaway: if we try to classically reason 
about oracle database in Luby-Rackoff or 
Yamakawa-Z, we will get wrong answer



Variants of compressed oracles

Don’t compress after Fourier domain
 Simpler oracle, but may have to work harder to extract adversary’s knowledge

Non-uniform outputs
 Naively needs independence between inputs

Uniform in over other output domains
 For {0,1}, can remove y register all together



Some open questions I would 
like to see answered



Q1: Better intuitive understanding of when 
compressed oracles work, when they don’t



Q2: Cleaner techniques for using 
compressed oracles



Q3a: 4-round Feistel quantum secure? 
[Hosoyamada-Iwata’19, Bhaumik-Cogliati-Ethan-Jha’24]: non-adaptive queries

Q3b: 5-round secure under inverse queries?

Q3: Quantum security of Feistel? 

Note: other inefficient constructions do have proven security [Z’16]



Q4: Online, small output time-space tradeoffs

Q4a: What is the time-space complexity of collisions?



Thm (Based on [Pollard’75, ‘78]): Can find collisions 
classically in O(2n/2) queries and space poly(n)

Thm [Brassard-Høyer-Tapp’98]: Can find collisions 
quantumly in O(2n/3) queries and space 2n/3poly(n). 
More generally, with space S poly(n), can find 
collisions in q ≥ Ω(2n/3) queries, provided q2S ≥ Ω(2n)

However, known lower-bounds consistent 
with O(2n/3) queries and poly(n) space 



Essentially all existing results for random oracles: either bound 
offline (preprocessing) space only, or consider large-output problems

Quantum Preprocessing model ([Nayebi-Aaronson-Belovs-
Trevisan’15, Chung-Guo-Liu-Qian’20, Guo-Li-Liu-Zhang’21, 
Akshima-Guo-Liu’22,…]): 
• Unbounded offline phase produces short “advice”. 
• Query-bounded online stage. Unlimited storage

Large output problems ([Klauck-Špalek-de Wolf’04, Hamoudi-
Magniez’23]):
• Large output size T (e.g. find T collisions)
• Online storage less than ~T



Idea for time-space lower-bound for collisions

Observation: Any purification can be 
compressed to adversary’s storage

Idea: Since compressed oracle is purification, 
maybe, if adversary’s storage is as most S, 

then at most S records in database D

Doesn’t work: compressed oracle is 
not optimal-space purification



Idea for time-space lower-bound for collisions

New Idea: If we can compress database further, it means 
some entries are mostly un-entangled with adversary

Maybe for such entries, each query can only add 2-n to 
amplitude (root probability), as opposed to √2-n

Each query adds O(√S √2-n) + (√q) 2-n)=O(√S √2-n) to amplitude
q queries adds O(q √S √2-n) to amplitude
Constant amplitude requires q2S ≥ Ω(2n)

(seems plausible, but I don’t know how to prove it…)



Idea for time-space lower-bound for collisions

Another issue: technique only works for 
non-measuring collision-finders 

Reason: if adversary measures, then 
oracle is no longer a purification

[Z’24]: highly structured oracle relative to which non-
measuring algorithms strictly weaker than measuring ones



Q5: Building Oracles from Other Oracles

Q5a: Are ideal ciphers and random oracles equivalent?



Can you “lift” separations in one oracle model to another?

e.g. Suppose you have an oracle separation relative 
to a permutation oracle P (with inverse). Can you 
turn it into a separation using a random oracle H?



Attempt 1: Indistinguishability

Consider a PRP built from a random function H 
(e.g. [Z’16]). Can this lift impossibilities?

P PRPH

Separation using P Separation using H???



Attempt 1: Indistinguishability

P PRPH

Can clearly distinguish since no H on left H

v.s.

Consider a PRP built from a random function H 
(e.g. [Z’16]). Can this lift impossibilities?



Attempt 2: Indifferentiability

P PRPH

SimP H

≈

[Maurer-Renner-Holenstein’03, Carstens-Ebrahimi-Tabia-Unruh’18, Z’19]

Indifferentiability sufficient for “efficient” 
games (e.g. most crypto)



Why compressed oracles useful?

Compressed oracles provide a stateful way to 
simulate H, which is often inherent for 

indifferentiability results



Classical world: 
• Domain extension [Coron-Dodis-Malinaud-Puniya’07]
• Permutation à function [Bertoni-Daemen-Peeters-Van Assche’08]
• Function à Permutation (several-round Feistel) [Coron-Holenstein-

Künzler-Patarin-Seurin-Tessaro’16]

Quantum world: 
• Domain Extension [Z’19]
• Permutation à function [Z’21, Alagic-Carolan-Majenz-Tokat’15]
• Function à Permutation completely open



Note: for separations of complexity classes involving 
witnesses (e.g. NP, QMA), indifferentiability isn’t even 

enough, since need to simulate witness, which is inefficient

Very strong forms of indifferentiability do suffice, 
but in general I don’t think the “right” definition 

has been found


