BEYOND POST–QUANTUM CRYPTOGRAPHY

Mark Zhandry – Stanford University

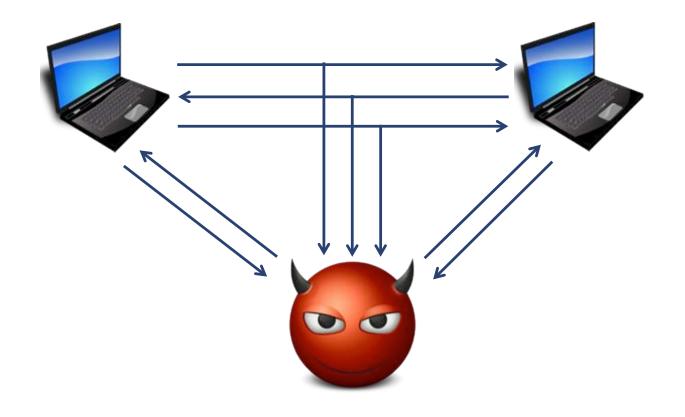
Joint work with Dan Boneh

MACs

Signatures

Encryption

Classical Cryptography

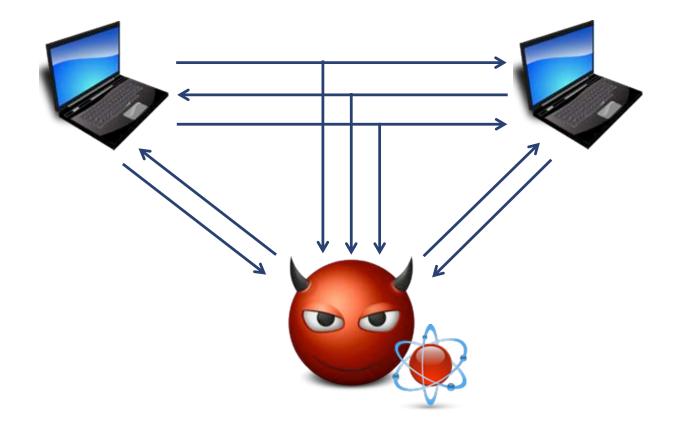


Signatures

Encryption

Conclusion

Post-Quantum Cryptography

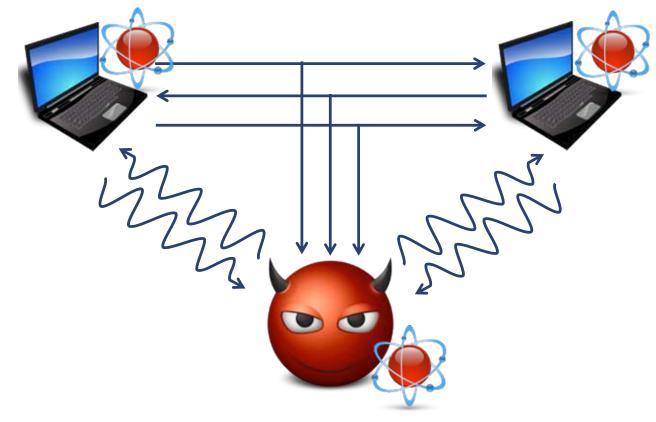


All communication stays classical

Intro

Beyond Post-Quantum Cryptography

Eventually, all computers will be quantum



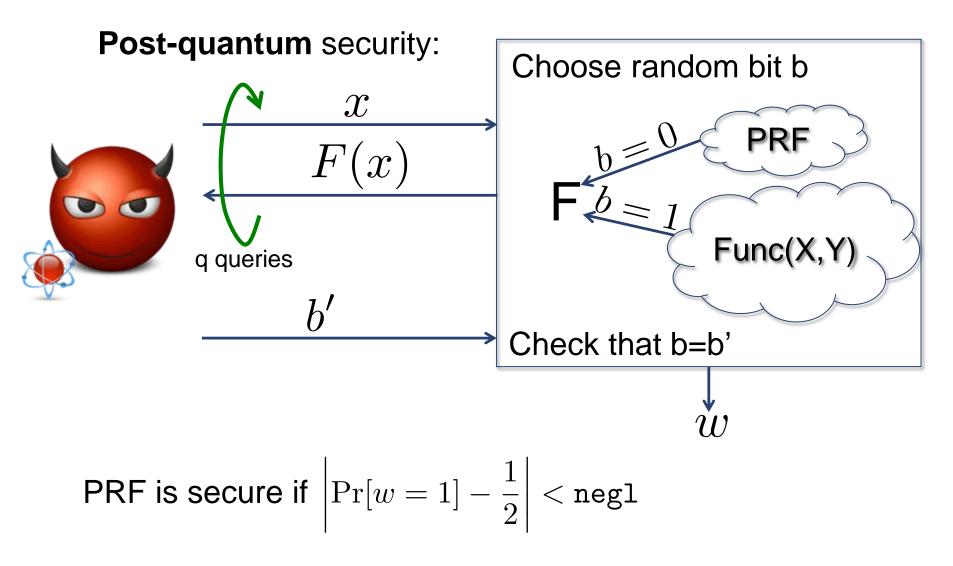
Adversary may use quantum interactions \rightarrow need new security definitions

Intro

Example: Pseudorandom Functions

Classical security: Choose random bit b \mathcal{X} PRF F(x)Func(X,Y) q queries h'Check that b=b' Ù PRF is secure if $\left| \Pr[w=1] - \frac{1}{2} \right| < \texttt{negl}$

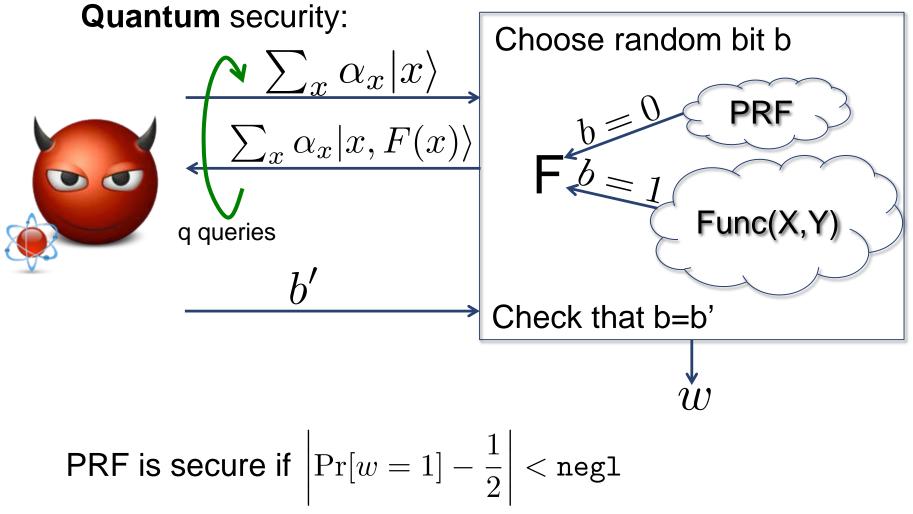
Example: Pseudorandom Functions



Intro

Example: Pseudorandom Functions

[Aar'09]



Post-Quantum vs Full Quantum Security

In post-quantum setting, security games generally don't change, only adversary's computational power

- \rightarrow Can often replace primitives with quantum-immune primitives and have classical proof carry through
- For full quantum security, security game itself is quantum
 - \rightarrow Now, classical proofs often break down
 - \rightarrow Need new tools to prove security

Non-interactive Security Games

If no interaction, security game does not change

 \rightarrow no difference between post-quantum and full quantum security

Examples:

- One-way functions
- Pseudorandom generators
- Collision-resistant hash functions

In these cases, classical proofs often do carry through

• Example:

quantum-secure OWFs \rightarrow quantum-secure PRGs

This Talk

A First Step: The Quantum Random Oracle Model [BDFLSZ'11, Zha'12a]

Full Quantum Security:

- Quantum-secure PRFs (or quantum PRFs) [Zha'12b]
- Quantum-secure MACs [BZ'12]
- Quantum-secure Signatures and Encryption [BZ'13]

Signatures

Encryption

Conclusion

Quantum Random Oracle Model

Quantum Random Oracle Model

[BDFLSZ'11]

A first step towards full quantum security

Honest parties still classical (i.e. post-quantum world)

Model hash function as a random oracle that accepts quantum queries

 Captures ability of adversary to evaluate hash function on superposition of inputs

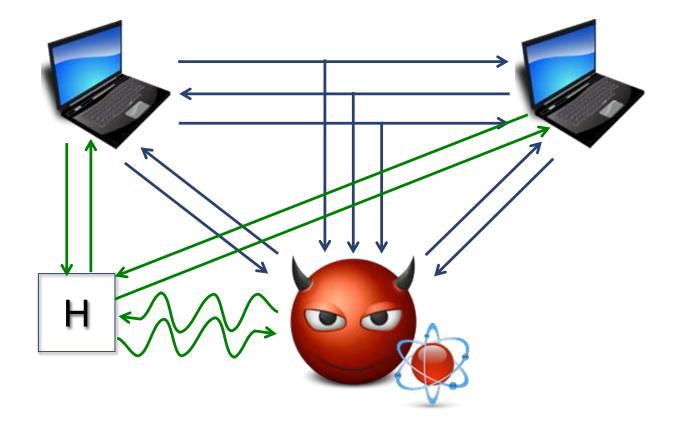
All other interaction remains classical

Signatures

Encryption

Conclusion

Quantum Random Oracle Model



Quantum Random Oracle Model

Proven secure [BDFLSZ'11, Zha'12a]

- Several signature schemes (inc. GPV)
- CPA-secure encryption
- GPV identity-based encryption

Not yet proven

- Signatures from identification protocols (Fiat-Shamir)
- CCA Encryption from weaker notions

Full Quantum Security

Quantum-secure PRFs:

PRFs: building block for most of symmetric crypto

MACs

PRPs (e.g. Luby-Rankoff), encryption schemes, MACs

Quantum-secure MACs:

PRF → MAC

Intro

• Natural question: quantum PRF \rightarrow quantum-secure MAC?

Quantum-secure Signatures and Encryption

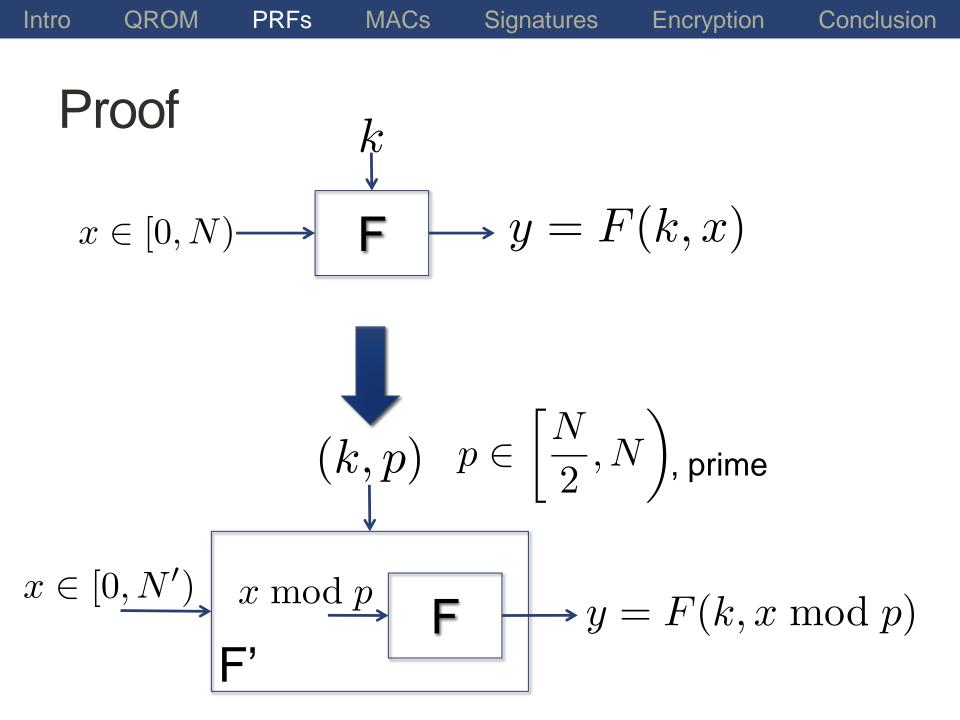
- From generic assumptions?
- Security of schemes in the literature?

Quantum PRFs [Zha'12b]

Intro QROM PRFs MACs Signatures Encryption Conclusion

Separation

Theorem: If post-quantum PRFs exist, then there are post-quantum PRFs that are not quantum PRFs



Intro QROM PRFs MACs Signatures Encryption Conclusion

Proof

Lemma 1: If F is post-quantum secure, then so is F'.

$$\overbrace{F(k,x \bmod p)}^{\mathbf{X}} \mathsf{F'} \approx_{\mathrm{QP}} \overbrace{H(x \bmod p)}^{\mathbf{X}} \mathsf{H'}$$

 $\approx_{\mathrm{QP}} \overline{\overset{\mathbf{N}x}{\overset{\mathbf{N}x}{\overset{\mathbf{N}x}}}}$ H

As long as $x \mod p \neq x' \mod p$ for all queries $x \neq x'$, this looks like a random oracle

Probability this fails: O(q²(log N)/N)

Intro QROM PRFs MACs Signatures Encryption Conclusion

Proof

Lemma 2: Either F or F' are not quantum secure.

F'(x+p) = F'(x) extsf{Periodic}!

Quantum queries can find p [BL'95]

Once we know p, easy to distinguish F' from random

How to Construct Quantum PRFs

Hope that classical PRFs work in quantum world:

MACs

- From quantum-secure pseudorandom generators [GGM'84]
- From quantum-secure pseudorandom synthesizers [NR'95]
- Directly from lattices [BPR'11]

Classical proofs do not carry over into the quantum setting \rightarrow Need new proof techniques

Example: GGM

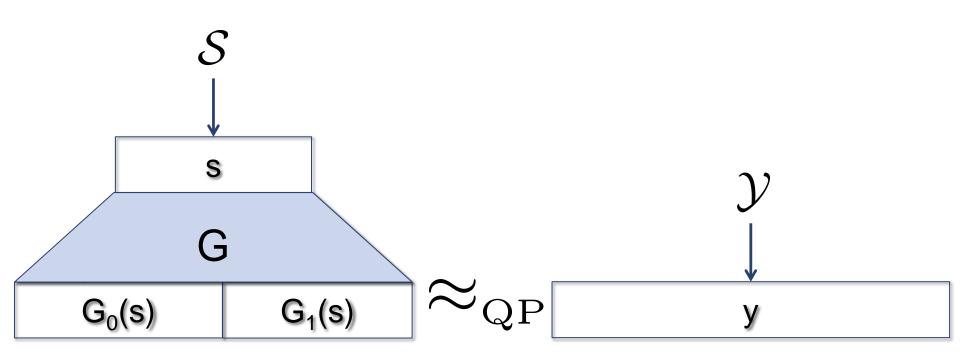
Intro

Signatures

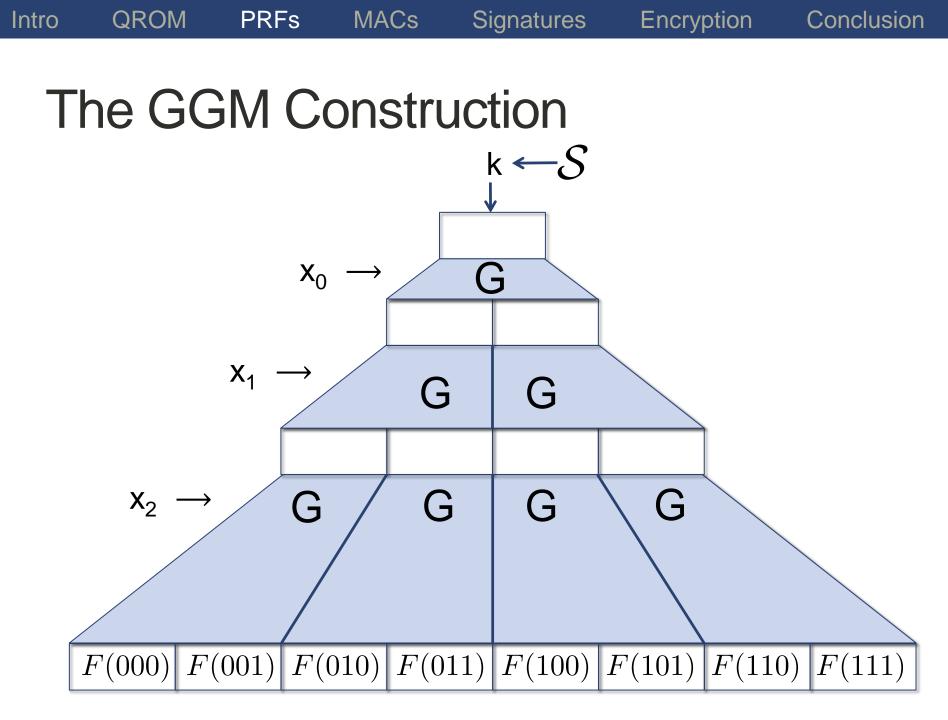
Encryption

Conclusion

Pseudorandom Generators



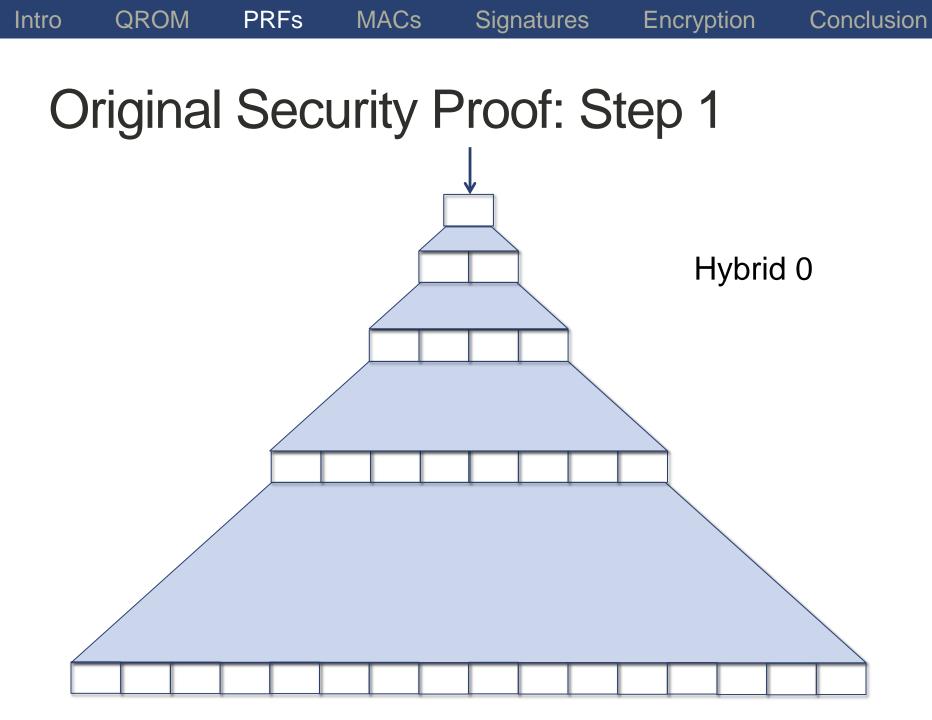
Indistinguishable for Quantum Machines



Original Security Proof

MACs

Step 1: Hybridize over levels of tree

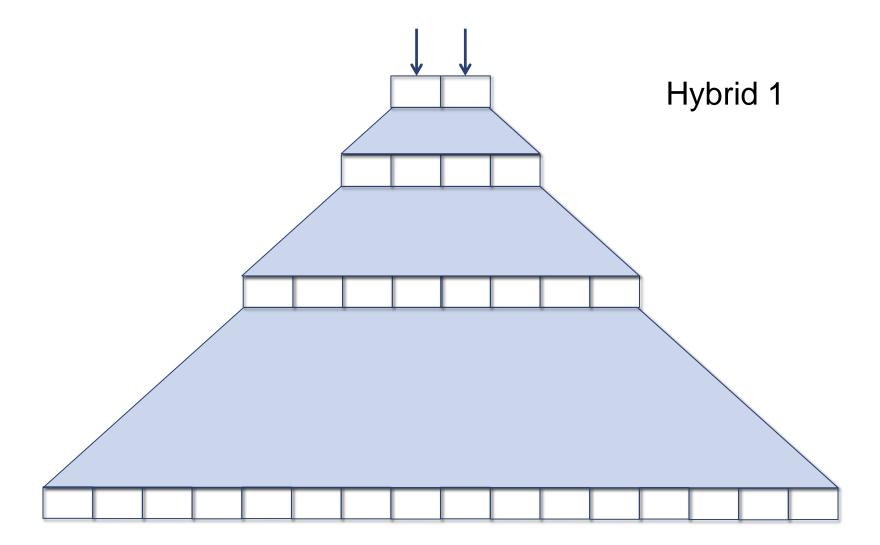


Signatures

Encryption

Conclusion

Original Security Proof: Step 1

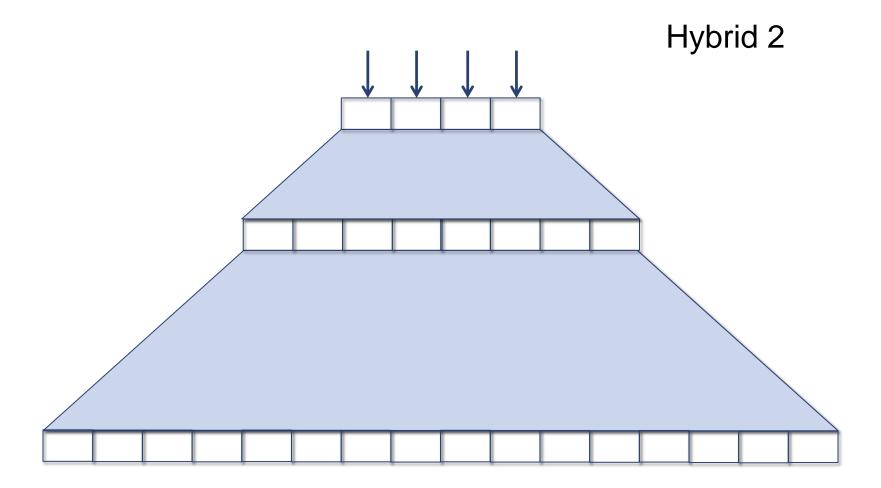


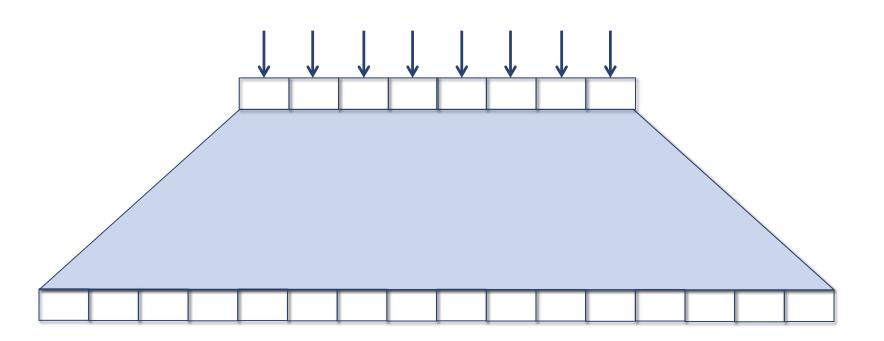
Signatures

Encryption

Conclusion

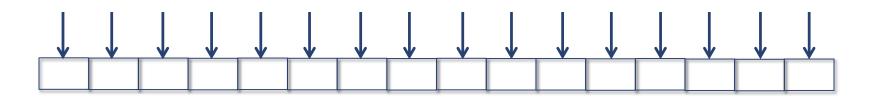
Original Security Proof: Step 1





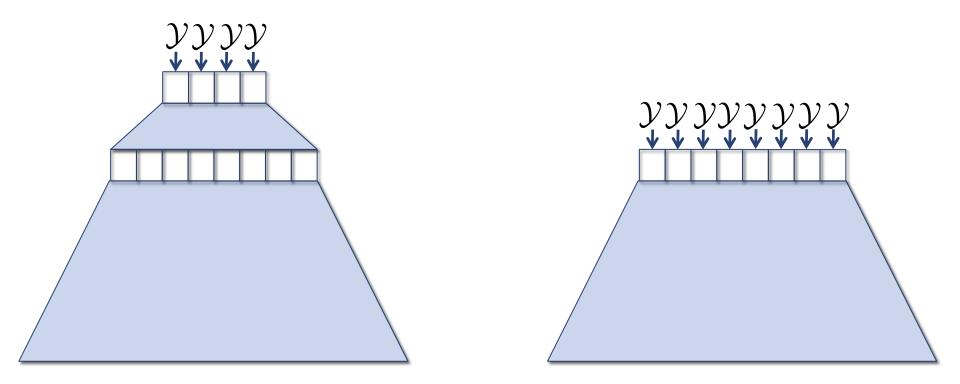
MACs

Hybrid n



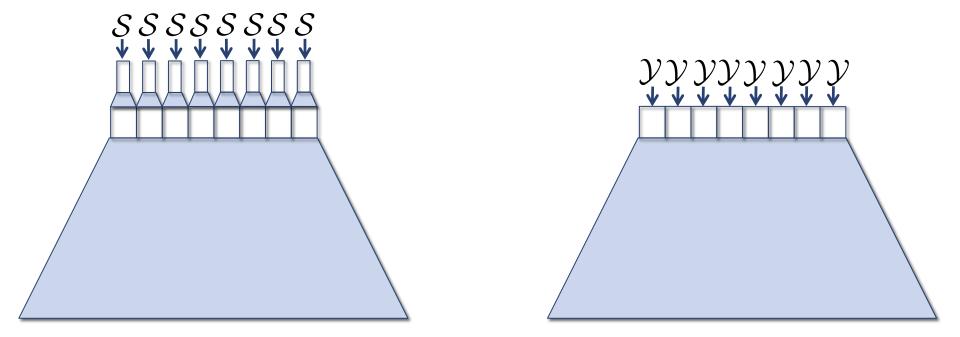
MACs

PRF distinguisher will distinguish two adjacent hybrids



MACs

PRF distinguisher will distinguish two adjacent hybrids



Signatures

Original Security Proof

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using q samples

Intro

QROM PRFs

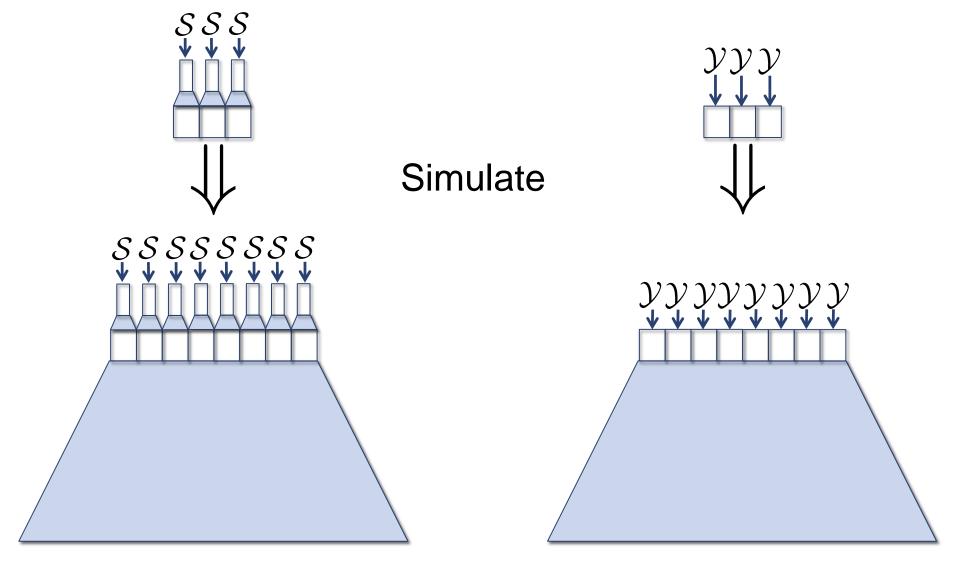
MACs

Signatures

Encryption

Conclusion

Original Security Proof: Step 2



Intro

QROM

PRFs

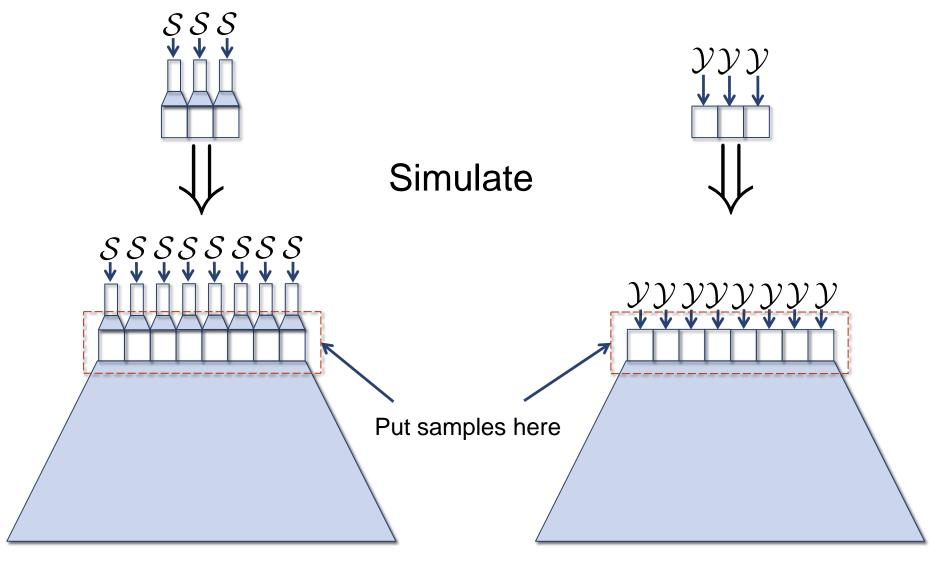
MACs

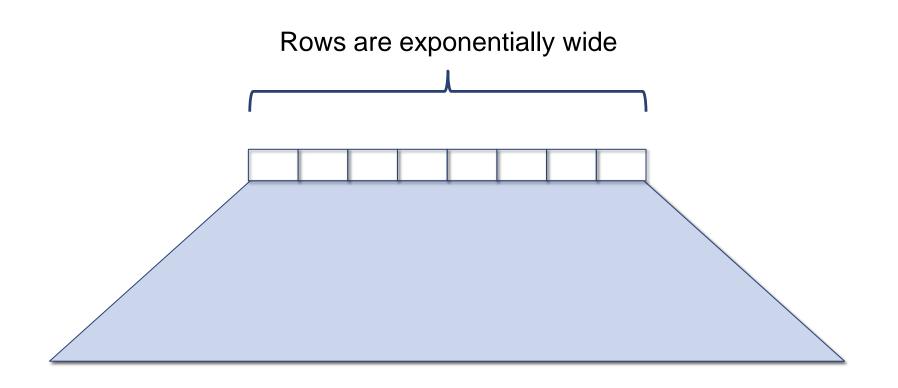
Signatures

Encryption

Conclusion

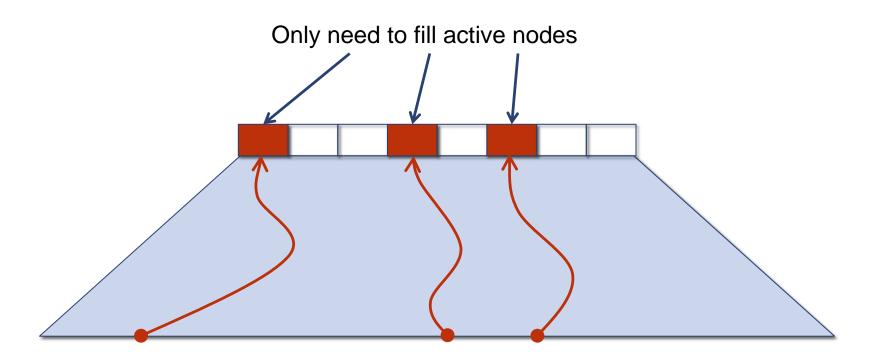
Original Security Proof: Step 2





Problem?

Active node: value used to answer query



Adversary only queries polynomial number of points

Original Security Proof

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using q samples

Step 3: Pseudorandomness of one PRG sample implies pseudorandomness of q samples

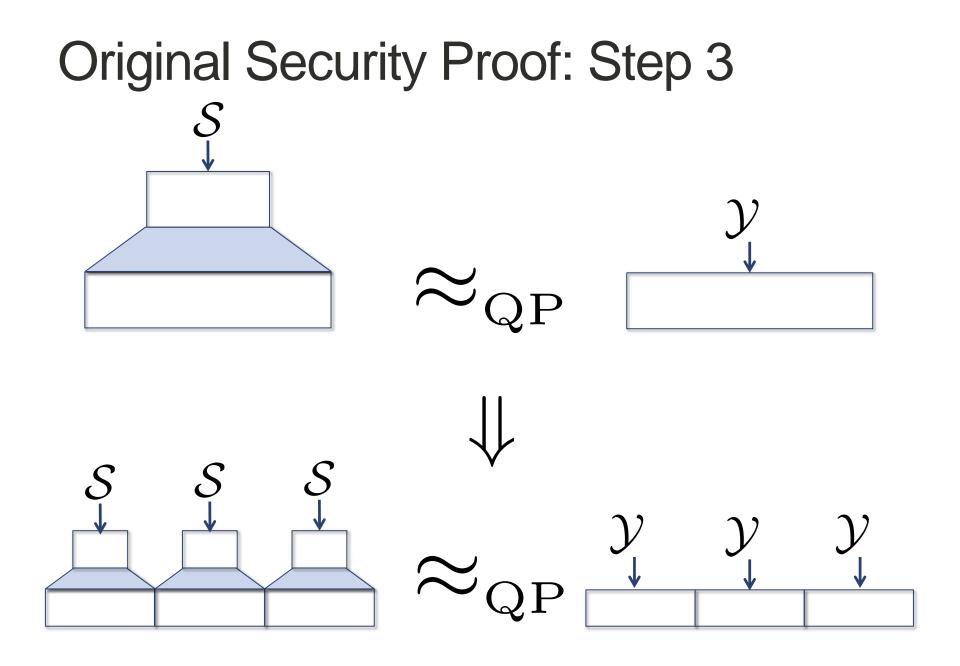
MACs

Intro QROM

Signatures

Encryption

Conclusion



Original Security Proof

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using q samples

Step 3: Pseudorandomness of one PRG sample implies pseudorandomness of q samples

MACs

Encryption

Conclusion

X

Quantum Security Proof Attempt

MACs

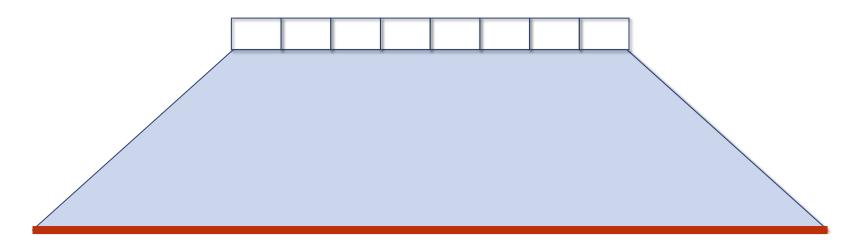
Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids using q samples

Step 3: Quantum pseudorandomness of one PRG sample implies quantum pseudorandomness of q samples

Difficulty Simulating Hybrids

MACs



Adversary can query on all exponentially-many inputs

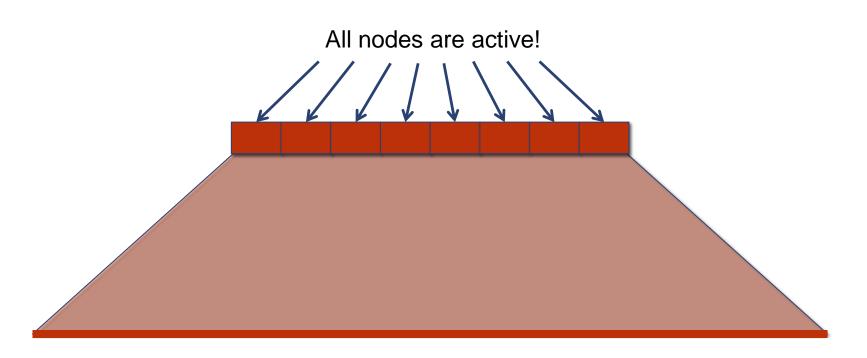
Signatures

Encryption

Conclusion

Difficulty Simulating Hybrids

MACs



Exact simulation requires exponentially-many samples

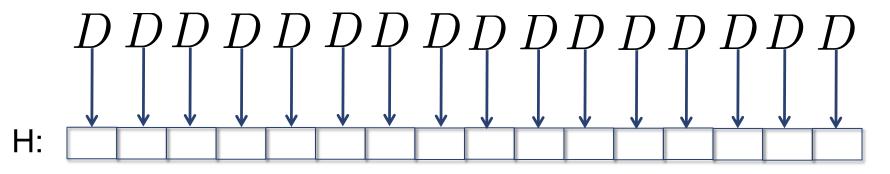
Need new simulation technique

A Distribution to Simulate

Any distribution D on values induces a distribution on functions

For all
$$x \in \mathcal{X}$$

 $y_x \leftarrow D$
 $H(x) = y_x$

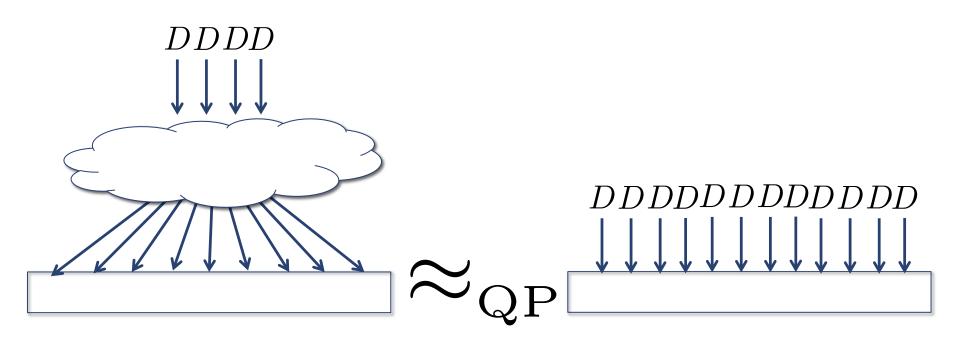


 $D^{\mathcal{X}}$

A Distribution to Simulate

MACs

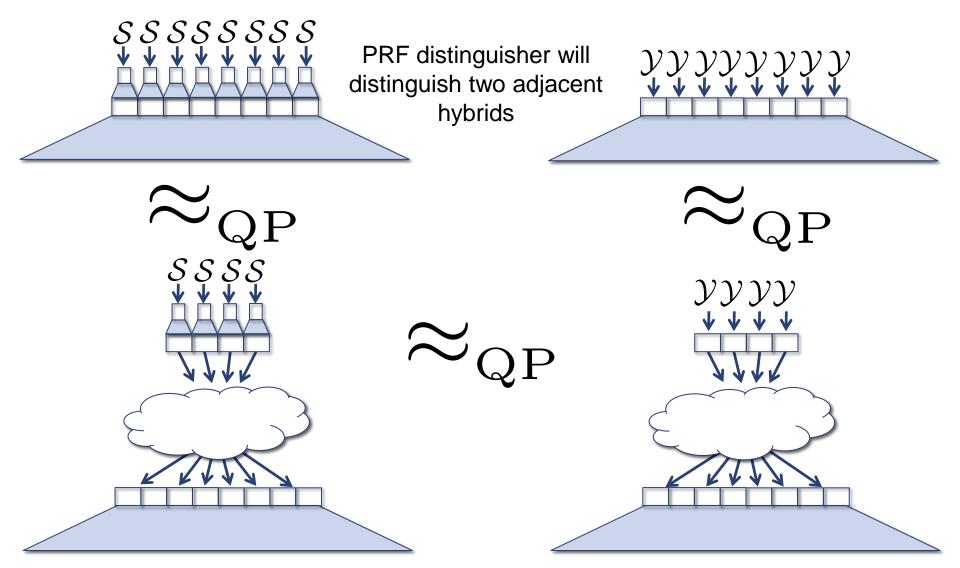
Suppose we could simulate D^X approximately using a polynomial number of samples from D:



Intro QROM PRI

MACs

Fixing the GGM Proof



Quantum Security Proof

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids approximately using polynomially-many samples

MACs

Step 3: Quantum pseudorandomness of one sample implies quantum pseudorandomness of polynomiallymany samples Intro QROM PRFs MACs

Signatures

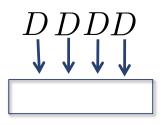
Encryption

Conclusion

Simulating D^X

We have r samples:

• poly r



Want to simulate:

QROM PRFs

Intro

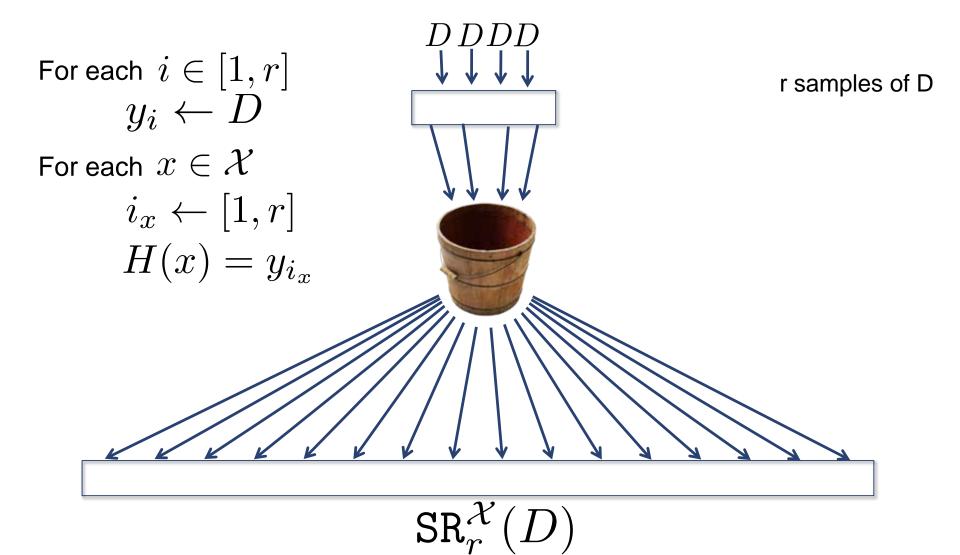
MACs Si

Signatures

Encryption

Conclusion

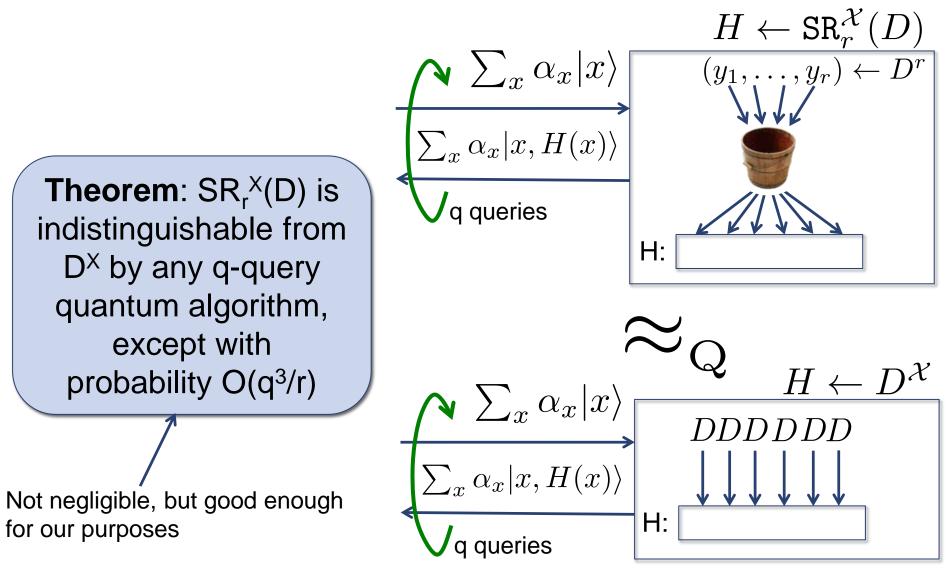
New Tool: Small Range Distributions



Signatures

Encryption

Technical Theorem



QROM Intro

Signatures

Encryption

Conclusion

Proving the Technical Theorem Let $p(1/r) = \Pr[A^{SR_r^{\mathcal{X}}(D)}() = 1]$

Observation: $SR^{\mathcal{X}}_{\infty}(D) = D^{\mathcal{X}}$

Goal: bound |p(1/r) - p(0)|

First, we'll need

Lemma: If A makes q quantum queries, then p is a polynomial in 1/r of degree at most 2q

What does this buy us?

Polynomials!

Let $\lambda \in [0,1]$ parameterize a family of oracle distributions E_{λ}

Let A be an oracle algorithm,
$$p(\lambda) = \Pr[A^{E_\lambda}() = 1]$$

 $0 \le p(\lambda) \le 1 \forall \lambda \in [0, 1]$

What if p(λ) is a polynomial of degree d? Markov inequality:

$$|p'(\lambda)| \leq d^2 orall \lambda \in [0,1]$$
 Therefore, $|p(\lambda)-p(0)| \leq d^2 \lambda$

Conclusion

Proving the Technical Theorem

Idea: let $E_{\lambda} = SR_{1/\lambda}^{\chi}(D)$ $\rightarrow p(\lambda)$ has degree 2q $\left| \Pr[A^{SR_{r}^{\chi}(D)}() = 1] - \Pr[A^{D^{\chi}}() = 1] \right|$ $= \left| \Pr[A^{E_{1/r}}() = 1] - \Pr[A^{E_{0}}() = 1] \right|$ $= \left| p(1/r) - p(0) \right| \le (2q)^{2}/r$?

Problem: E_{λ} only a distribution for $\lambda = 1/r$ (integer r) $\rightarrow 0 \le p(\lambda) \le 1$ only for $\lambda = 1/r$ \rightarrow Need replacement for Markov inequality

Replacement for Markov Inequality

Lemma: If $0 \le p(1/r) \le 1 \forall r \in \mathbb{Z}^+$ and p is a degree-d polynomial in 1/r, then $|p(\lambda) - p(0)| < (\pi^2/6)d^3\lambda$ for all λ in [0,1]

Proving the Technical Theorem If $p(1/r) = \Pr[A^{SR_r^{\mathcal{X}}(D)}() = 1]$, then p satisfies the revised Markov inequality with d=2q

$$\left| \Pr[A^{SR_r^{\mathcal{X}}(D)}() = 1] - \Pr[A^{D^{\mathcal{X}}}() = 1] \right|$$

= $\left| p(1/r) - p(0) \right| < (\pi^2/6)(2q)^3/r \checkmark$

One Final Step

Recall definition of SR distribution:

For each $i \in [1, r]$ $y_i \leftarrow D$ For each $x \in \mathcal{X}$ $i_x \leftarrow [1, r]$ $H(x) = y_{i_x}$

How do we pick the i_x ?

• Let R be a drawn from (2q)-wise indep. function family

• $i_x = R(x)$

Theorem: (2q)-wise independent functions look like random functions to any q-query quantum algorithm

Quantum GGM

Step 1: Hybridize over levels of tree

Step 2: Simulate hybrids approximately using small range distributions and polynomially-many samples

Step 3: Quantum pseudorandomness of one sample implies quantum pseudorandomness of polynomiallymany samples

Our PRF Results

Separation: PRFs ≠ quantum PRFs

New tool: small-range distributions

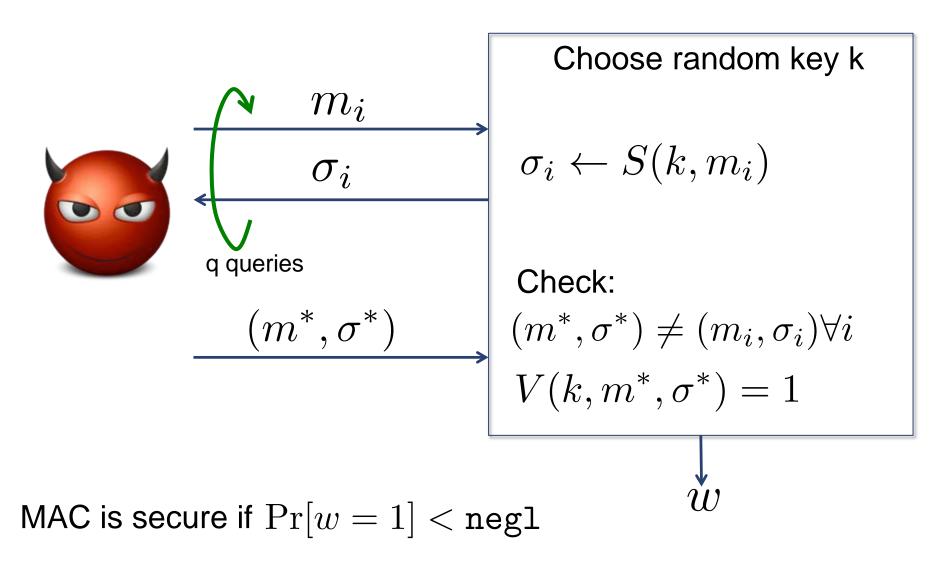
Proofs of quantum security for some classical PRF constructions:

- From quantum-secure pseudorandom generators [GGM'84]
- From quantum-secure pseudorandom synthesizers [NR'95]
- Directly from lattices [BPR'11]

Signatures

Quantum-secure MACs [BZ'12]

Classical Security

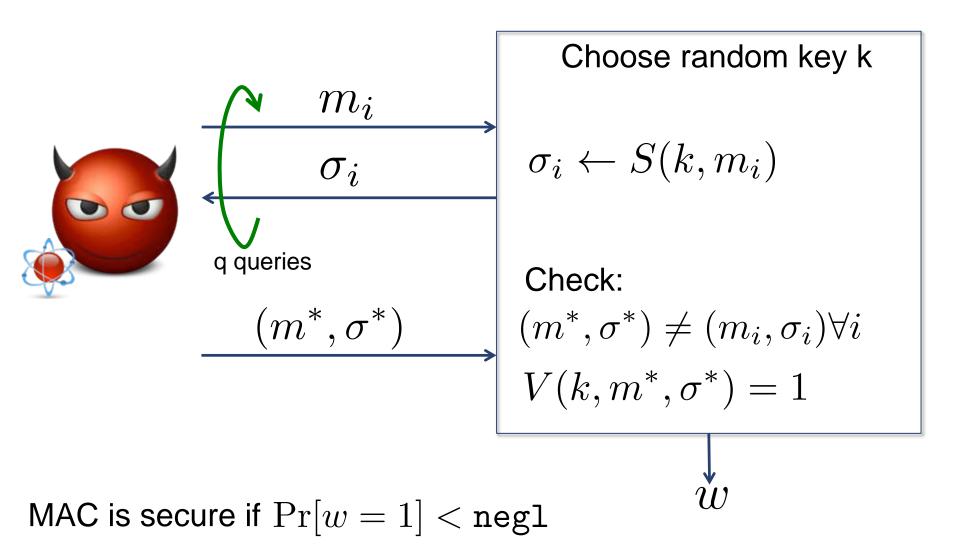


Signatures

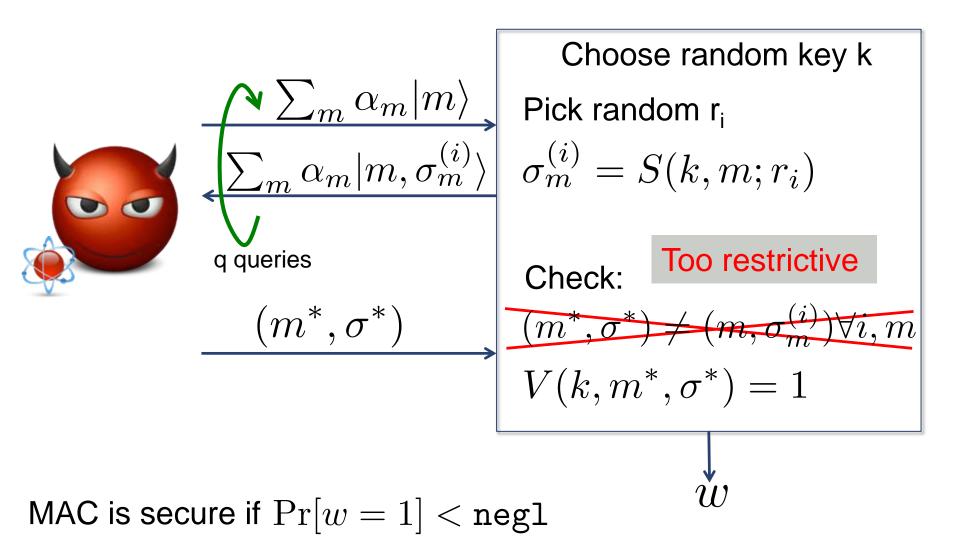
Encryption

Post-Quantum Security

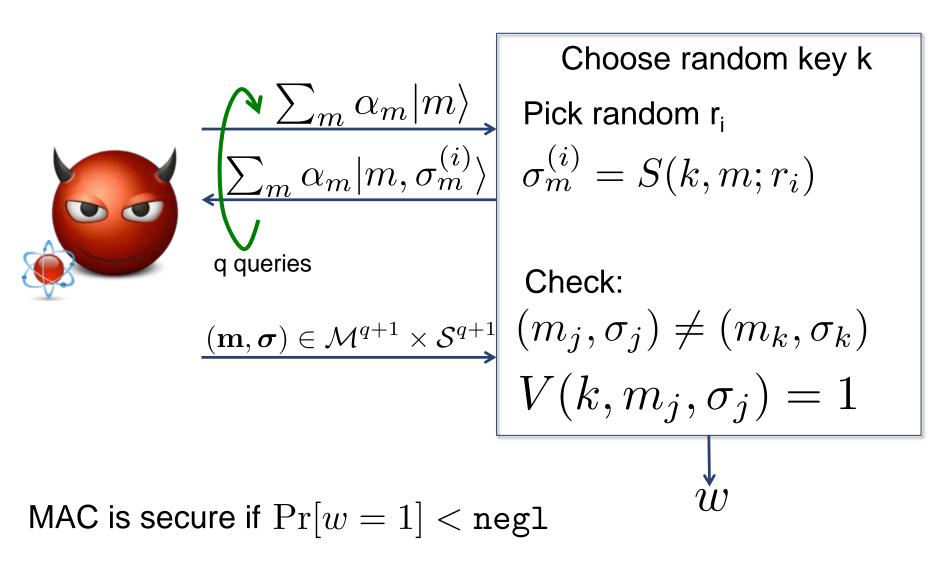
MACs



Quantum Security?



Quantum Security



Intro QROM PRFs MACs Signatures Encryption Conclusion

Separation

Theorem: If post-quantum PRFs exist, then there are post-quantum MACs that are not quantum-secure MACs

Carries over immediately from PRF separation

Also have natural examples where underlying PRF is quantum-secure (Carter-Wegman MAC)

A Simple Classical MAC

MACs

Let F be a classically secure PRF F is also a classically-secure MAC: S(k,m) = F(k,m) $V(k,m,\sigma) = F(k,m)==\sigma?$

Security: Replace F with random oracle

 \rightarrow Adversary can't tell difference

 \longrightarrow Forgeries correspond to input/output pairs of oracle

 \rightarrow Impossible to generate new pairs

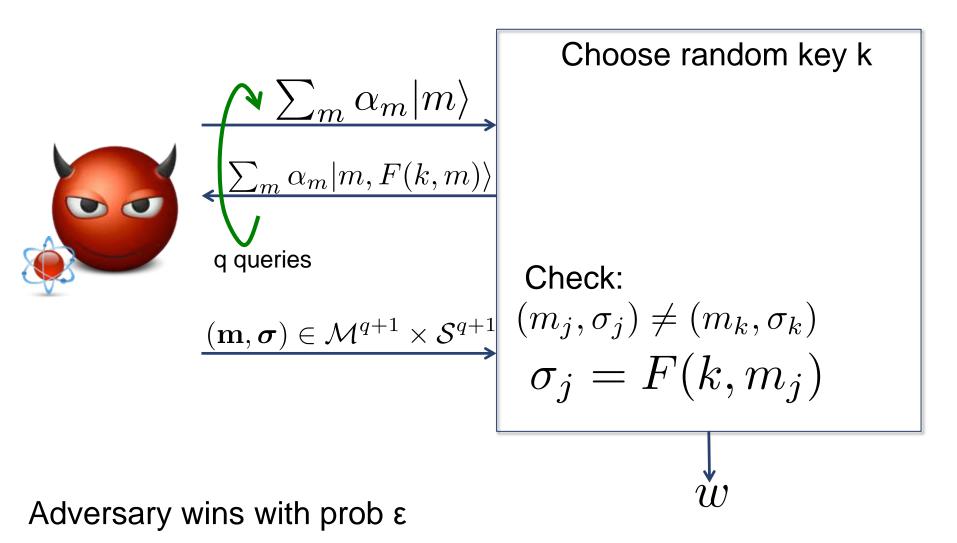
A Simple Quantum-secure MAC?

MACs

- Let F be a quantum-secure PRF
- Is F also a quantum-secure MAC?

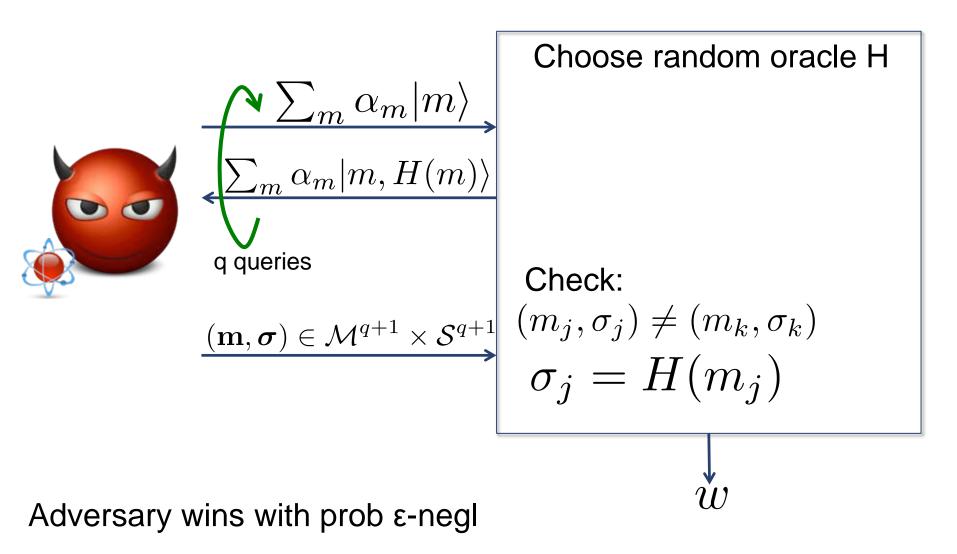
Signatures

Security of PRF as a MAC



Signatures

Security of PRF as a MAC



Quantum Oracle Interrogation

Allowed q quantum queries to random oracle H

Goal: produce q+1 input/output pairs

Classical queries: can't do better than 1/|Y|

 \rightarrow Hard if H outputs super-logarithmically many bits

Quantum queries?

 \rightarrow get to "see" entire oracle with a single query

Single-Bit Outputs

Bad news: If |Y|=2 (i.e. single bit output), the oracle interrogation problem is easy.

Theorem([vD'98]): There is an algorithm that makes q quantum queries to any oracle H:X \rightarrow {0,1} and produces 1.99q input/output pairs, with probability 1-negl(q)

Are we in trouble?

Arbitrary Output Size

We exactly characterize the difficulty of the oracle interrogation problem:

Theorem: Any quantum algorithm making q quantum queries to an oracle $H:X \rightarrow Y$ solves the oracle interrogation problem with probability at most $1-(1-|Y|^{-1})^{q+1}$.

Moreover, there is a quantum algorithm exactly matching this bound.

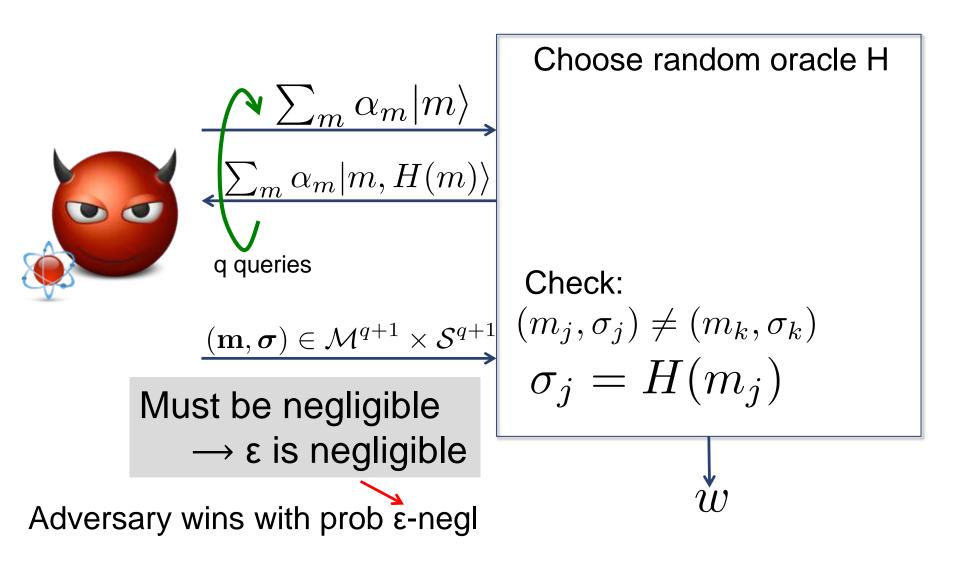
Two cases:

- $\log |Y| \le (\log q)/2$: probability is negligibly close to 1 \rightarrow Easy
- $\log |Y| = \omega(\log q)$: probability is negligible \rightarrow Hard \checkmark

Signatures

Encryption

Security of PRF as a MAC



The Rank Method

Fix q, let $|\psi_H\rangle$ be final state (before measurement) of quantum algorithm after q queries to H

 $\{|\psi_H\rangle: H\in \mathcal{H}\}$ spans some subspace of the overall Hilbert space

Let Rank = Dim Span{ $|\psi_H\rangle : H \in \mathcal{H}$ }

Lemma: For any goal, the probability of success is at most Rank times the probability of success of the best 0-query algorithm

Applying the Rank Method

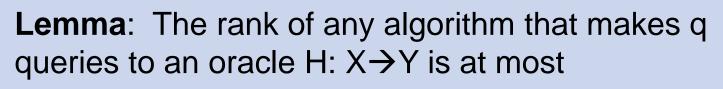
Goal: output k=(q+1) input/output pairs

Best 0-query algorithm: pick k arbitrary distinct inputs, guess outputs

Success prob: $(|Y|^{-1})^k = |Y|^{-(q+1)}$

Only need to bound the rank of any q-query algorithm

The Rank Method

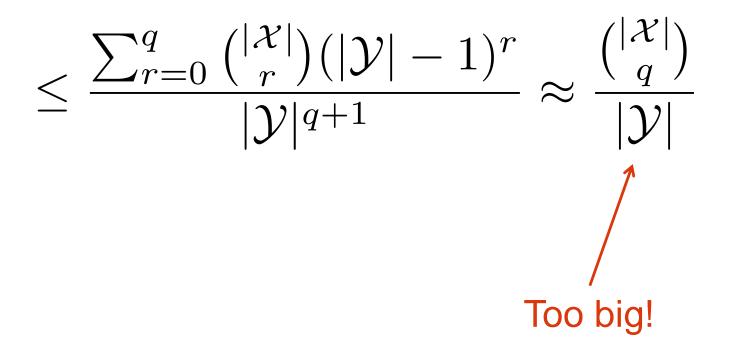


$$\sum_{r=0}^{q} \binom{|\mathcal{X}|}{r} (|\mathcal{Y}| - 1)^{r}$$

Applying the Rank Method

Prob success of any q-query algorithm

≤ Rank * best success prob of 0-query algs



Applying the Rank Method

MACs

Observation: for any (q+1) inputs, knowing H at other points does not help determine H at these points

→ Might as well only query on superpositions of (q+1) points

$$\frac{\sum_{r=0}^{q} \binom{|\mathcal{X}|}{r} (|\mathcal{Y}| - 1)^{r}}{|\mathcal{Y}|^{q+1}}$$

$$\frac{\sum_{r=0}^{q} \binom{q+1}{r} (|\mathcal{Y}| - 1)^{r}}{|\mathcal{Y}|^{q+1}} = 1 - \left(1 - \frac{1}{|\mathcal{Y}|}\right)^{q+1} \checkmark$$

Our MAC Results

Exact characterization of success probability for quantum oracle interrogation

Developed new general tool: Rank method

Quantum-secure MACs:

- Quantum-secure PRFs are quantum-secure MACs
- A variant of Carter-Wegman is quantum-secure

One-time quantum-secure MACs:

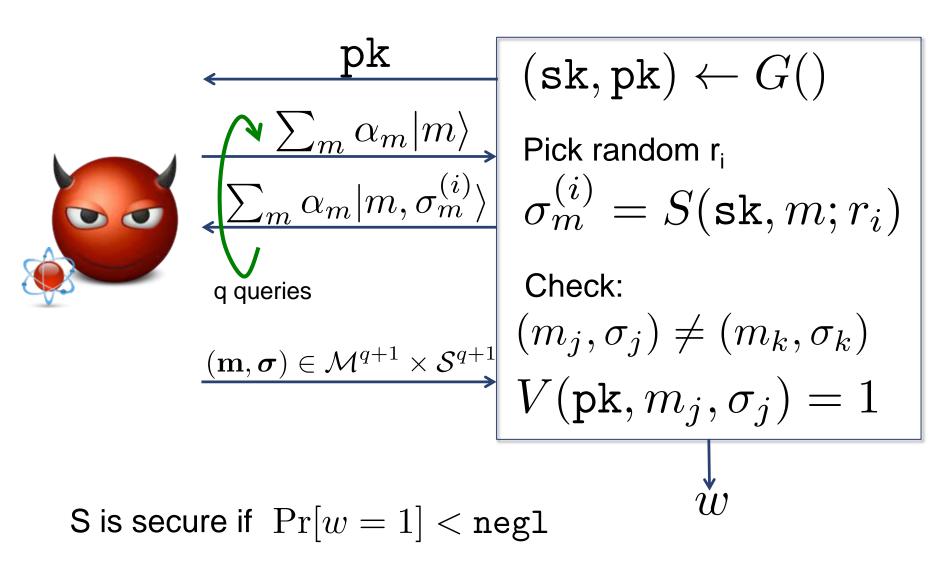
- Pairwise independence is not enough
- 4-wise independence is

Encryption

Conclusion

Quantum-Secure Signatures [BZ'13]

Quantum Security



Intro QROM PRFs MACs Signatures Encryption Conclusion

Separation

Theorem: If post-quantum signatures exist, then there are post-quantum signatures that are not quantum-secure signatures

Building Quantum-secure Signatures

Hope that existing constructions can be proven secure:

MACs

- Lattice schemes [ABB'10,CHKP'10]
- Generic constructions (Lamport, Merkle)
- RO schemes [GPV'08]

Compilers to boost security?

One-time QROM Conversion

MACs

Let (G,S,V) be a classically secure signature scheme

Construct new QROM scheme (G,S',V') where:

$$S'(\texttt{sk},m) = S(\texttt{sk},H(m))$$

$$V'(\texttt{pk},m,\sigma) = V(\texttt{pk},H(m),\sigma)$$

Theorem: If (G,S,V) is one-time post-quantum secure, then (G,S',V') is one-time quantum secure in the quantum random oracle model.

Proof Sketch

Start with a one-time adversary for S':

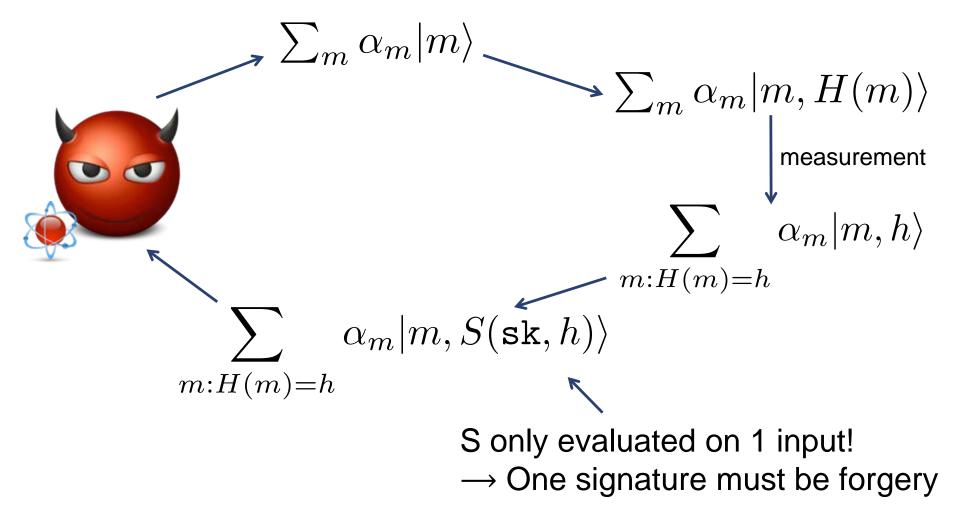
 $\underbrace{\sum_{m} \alpha_{m} | m \rangle}_{\sum_{m} \underline{\alpha_{m}} | m, S(\mathbf{sk}, H(m); r) \rangle}$

Step 1: Replace H with a SR distribution on t samples. \rightarrow S only evaluated on t points

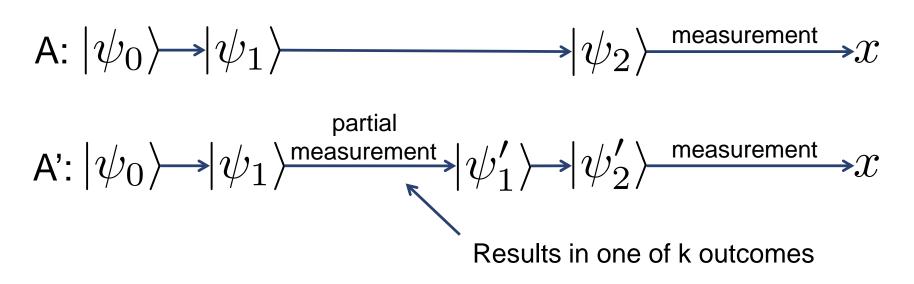
Problem: Adversary only generates 2 signatures!

Proof Sketch

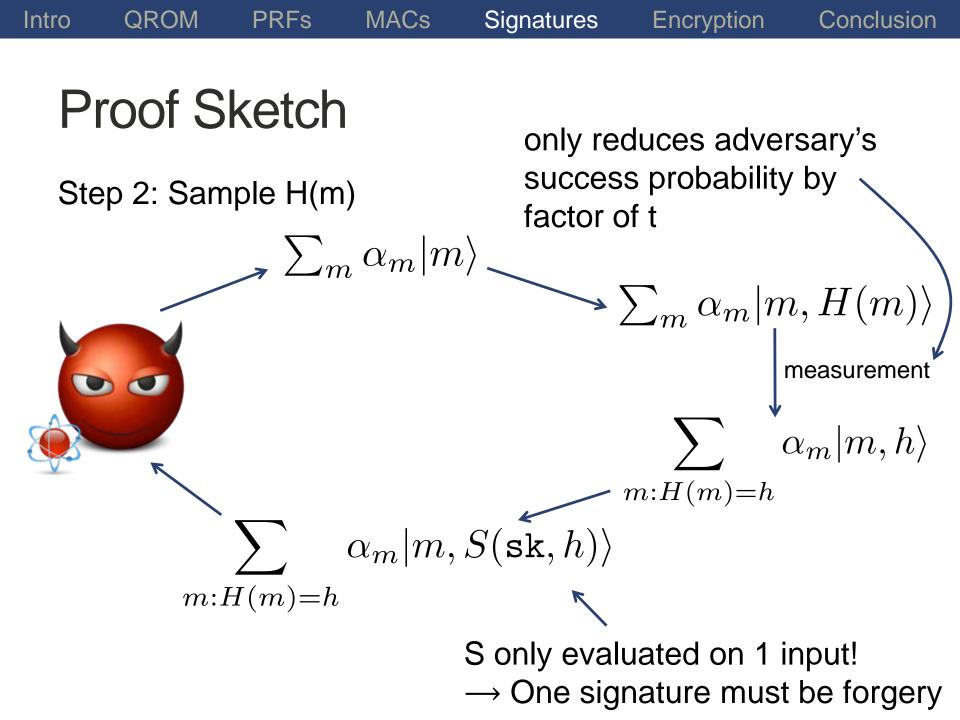
Step 2: Sample H(m)



Measurement Lemma



Lemma: $Pr[x \leftarrow A'] \ge Pr[x \leftarrow A]/k$



Generalizing to Many-time Security

Let \mathcal{R} be a pairwise independent function family.

$$\begin{split} S'(\mathsf{sk},m) &= r \stackrel{R}{\leftarrow} \{0,1\}^{\lambda}, R \stackrel{R}{\leftarrow} \mathcal{R} \\ & (r,S\left(\mathsf{sk},H(m,r);R(m)\right)) \end{split}$$

Theorem: If (G,S,V) is classically secure, then (G,S',V') is quantum secure in the quantum random oracle model.

Our Signature Constructions

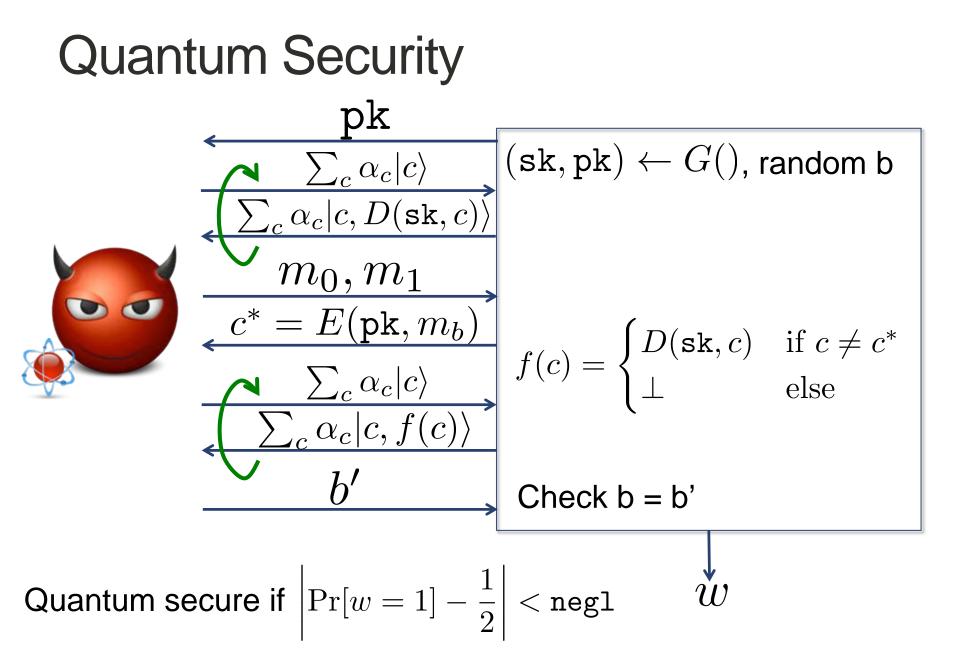
Two compilers:

- Post-quantum security \rightarrow Quantum security in the QROM
 - GPV probabilistic full domain hash
- Post-quantum security + chameleon hash \rightarrow Quantum security
 - CHKP'10 signatures
 - Modification to ABB'10 signatures

From generic assumptions:

- Lamport signatures + Merkle signatures
- From any hash function

Quantum-Secure Encryption [BZ'13]



Encryption Results

Classical challenge is required

• Quantum challenge queries lead to unsatisfiable definitions

Separation:

• If classically secure encryption schemes exist, then there are classically secure encryption schemes that are not quantum-secure

Constructions:

- Symmetric CCA from quantum-secure PRFs
- Public Key CCA from LWE
 - Quantum selectively-secure IBE + generic conversion

Intro QROM

PRFs

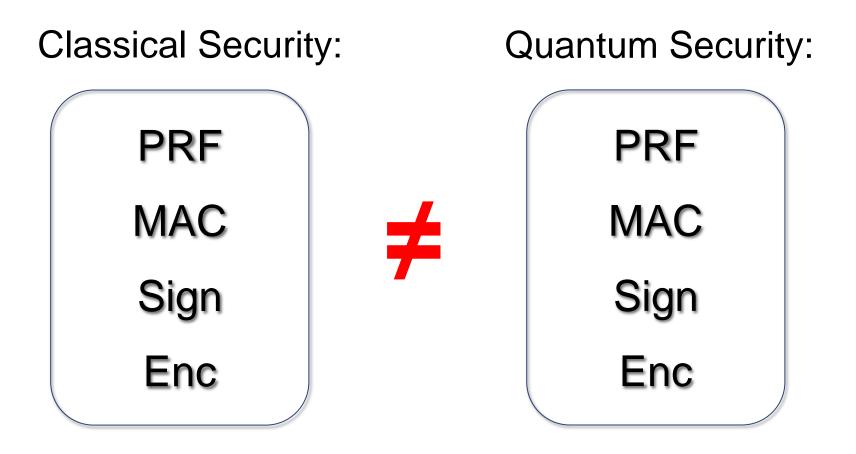
Signatures

Encryption

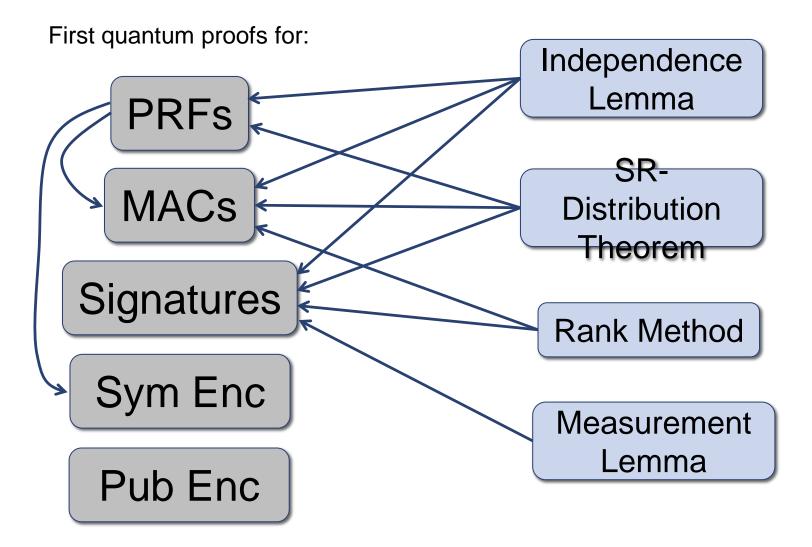
Conclusion

Summary of Separation Results

MACs



Summary of Positive Results



Future Work

Many natural open questions:

- Quantum PRFs \Rightarrow Quantum PRPs (Luby-Rackoff)?
- 3-wise independence enough for 1-time MAC?
- Quantum-secure authenticated encryption \Rightarrow quantum-secure CCA?
- Signatures from one-way functions?

More complicated primitives?

- Adaptively secure (H)IBE?
- Functional encryption?

Thank you!