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Classical Cryptography 
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Post-Quantum Cryptography 

All communication stays classical 
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Beyond Post-Quantum Cryptography 
Eventually, all computers will be quantum 

Adversary may use quantum interactions 
 ⟶ need new security definitions 
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Example: Pseudorandom Functions 

Func(X,Y) 
F 

PRF is secure if 

Choose random bit b 

[GGM’84] 

q queries 

PRF 

Classical security: 

Check that b=b’ 
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Example: Pseudorandom Functions 

Func(X,Y) 
F 

PRF is secure if 

Choose random bit b 

q queries 

PRF 

Post-quantum security: 

Check that b=b’ 
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Example: Pseudorandom Functions 

Func(X,Y) 
F 

PRF is secure if 

Choose random bit b 

q queries 

PRF 

Quantum security: 

Check that b=b’ 
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[Aar’09] 



Post-Quantum vs Full Quantum Security 

In post-quantum setting, security games generally don’t 
change, only adversary’s computational power 
 ⟶ Can often replace primitives with quantum- 
 immune primitives and have classical proof carry 
 through 
 
For full quantum security, security game itself is quantum 
 ⟶ Now, classical proofs often break down 
 ⟶ Need new tools to prove security 
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Non-interactive Security Games 
If no interaction, security game does not change 
 ⟶ no difference between post-quantum and full 
      quantum security 
 
Examples: 
• One-way functions 
• Pseudorandom generators 
• Collision-resistant hash functions 
 
In these cases, classical proofs often do carry through 
• Example:  

quantum-secure OWFs  quantum-secure PRGs 
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This Talk 
A First Step: The Quantum Random Oracle Model  

[BDFLSZ’11, Zha’12a] 

 
Full Quantum Security: 
• Quantum-secure PRFs (or quantum PRFs) [Zha’12b] 

• Quantum-secure MACs [BZ’12]  

• Quantum-secure Signatures and Encryption [BZ’13] 
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Quantum Random Oracle Model 
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Quantum Random Oracle Model 
A first step towards full quantum security 
 
Honest parties still classical (i.e. post-quantum world) 
 
Model hash function as a random oracle that accepts 
quantum queries 
• Captures ability of adversary to evaluate hash function on 

superposition of inputs 
 

All other interaction remains classical 

[BDFLSZ’11] 
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Quantum Random Oracle Model 

H 
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Quantum Random Oracle Model 
Proven secure [BDFLSZ’11, Zha’12a] 

• Several signature schemes (inc. GPV)  
• CPA-secure encryption 
• GPV identity-based encryption 
 
Not yet proven 
• Signatures from identification protocols (Fiat-Shamir) 
• CCA Encryption from weaker notions 
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Full Quantum Security 
Quantum-secure PRFs: 
• PRFs: building block for most of symmetric crypto 

• PRPs (e.g. Luby-Rankoff), encryption schemes, MACs 

 
Quantum-secure MACs: 
• PRF  MAC 
• Natural question: quantum PRF  quantum-secure MAC? 

 
Quantum-secure Signatures and Encryption 
• From generic assumptions? 
• Security of schemes in the literature? 
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Quantum PRFs [Zha’12b] 
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Separation 

PRF  Quantum PRF < 
Theorem: If post-quantum PRFs exist, then there are 
post-quantum PRFs that are not quantum PRFs 
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Proof 

F 

F 
F’ 

, prime 
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Proof 

Lemma 1: If F is post-quantum secure, then so is F’. 

As long as                                             
for all queries             , this looks like 
a random oracle 
 
Probability this fails: O(q2(log N)/N)           

F’ H’ 

H 
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F’(x+p) = F’(x) 
 
Quantum queries can find p [BL’95] 

 
Once we know p, easy to distinguish F’ from random 

Proof 

Lemma 2: Either F or F’ are not quantum secure. 

Periodic! 
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How to Construct Quantum PRFs 
Hope that classical PRFs work in quantum world: 

• From quantum-secure pseudorandom generators [GGM’84] 

• From quantum-secure pseudorandom synthesizers [NR’95] 

• Directly from lattices [BPR’11] 

 

Classical proofs do not carry over into the quantum setting 
          ⟶ Need new proof techniques 
 

Example: GGM 
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Pseudorandom Generators 

s 

G0(s) G1(s) y 

Indistinguishable for Quantum Machines 

G 
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The GGM Construction 

x0  ⟶ 

x1  ⟶ 

x2  ⟶ 

G 

G G 

G G G G 

k 

Intro        QROM        PRFs        MACs        Signatures        Encryption        Conclusion 



Original Security Proof 
Step 1: Hybridize over levels of tree 
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Original Security Proof: Step 1 

Hybrid 0 
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Original Security Proof: Step 1 

Hybrid 1 
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Original Security Proof: Step 1 

Hybrid 2 
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Original Security Proof: Step 1 

Hybrid 3 
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Original Security Proof: Step 1 

Hybrid n 
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Original Security Proof: Step 1 

PRF distinguisher will distinguish two adjacent hybrids 
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Original Security Proof: Step 1 

PRF distinguisher will distinguish two adjacent hybrids 
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Original Security Proof 
Step 1: Hybridize over levels of tree 

 
Step 2: Simulate hybrids using q samples 

✓ 
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Original Security Proof: Step 2 

Simulate 
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Original Security Proof: Step 2 

Simulate 

Put samples here 
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Original Security Proof: Step 2 

Rows are exponentially wide 

Problem? 
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Original Security Proof: Step 2 

Adversary only queries polynomial number of points 

Only need to fill active nodes 

Active node: value used to answer query 
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Original Security Proof 
Step 1: Hybridize over levels of tree 

 
Step 2: Simulate hybrids using q samples  

 
Step 3: Pseudorandomness of one PRG sample 
implies pseudorandomness of q samples 

✓ 

✓ 
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Original Security Proof: Step 3 
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Original Security Proof 
Step 1: Hybridize over levels of tree 

 
Step 2: Simulate hybrids using q samples  

 
Step 3: Pseudorandomness of one PRG sample 
implies pseudorandomness of q samples 

✓ 

✓ 

✓ 
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Quantum Security Proof Attempt 
Step 1: Hybridize over levels of tree 

 
Step 2: Simulate hybrids using q samples  

 
Step 3: Quantum pseudorandomness of one PRG 
sample implies quantum pseudorandomness of q 
samples 

✓ 

X 

✓ 
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Difficulty Simulating Hybrids 

Adversary can query on all exponentially-many inputs 
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Difficulty Simulating Hybrids 

All nodes are active! 

Exact simulation requires exponentially-many samples 

Need new simulation technique 
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A Distribution to Simulate 

H: 

For all 
      

Any distribution D on values induces a distribution on functions 
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A Distribution to Simulate 
Suppose we could simulate DX approximately using a 
polynomial number of samples from D: 
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Fixing the GGM Proof 
PRF distinguisher will 

distinguish two adjacent 
hybrids 
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Quantum Security Proof 
Step 1: Hybridize over levels of tree 

 
Step 2: Simulate hybrids approximately using 
polynomially-many samples 

 
Step 3: Quantum pseudorandomness of one sample 
implies quantum pseudorandomness of polynomially-
many samples 

✓ 

✓ 

? 
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Simulating DX 
We have r samples: 

• poly r 

 
 
 
 
 
Want to simulate: 
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New Tool: Small Range Distributions 

For each 
 
 
For each 
      

r samples of D 
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Technical Theorem 

H: 

Theorem: SRr
X(D) is 

indistinguishable from 
DX by any q-query 
quantum algorithm, 

except with 
probability O(q3/r) 

q queries 

q queries 

H: 

Not negligible, but good enough 
for our purposes 
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Proving the Technical Theorem 
Let 
 
Observation: 
 
Goal: bound  
 
First, we’ll need 
 
 
 
 
 
 
What does this buy us? 

Lemma: If A makes q quantum queries, then p is a 
polynomial in 1/r of degree at most 2q 
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Polynomials! 
Let λ∈[0,1] parameterize a family of oracle distributions Eλ  
 
Let A be an oracle algorithm, 
 
 
What if p(λ) is a polynomial of degree d? 
 Markov inequality: 
 
 
Therefore,  
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Proving the Technical Theorem 
Idea: let Eλ = SR1/λ

X(D) 
⟶ p(λ) has degree 2q 

  

 

? 

Problem: Eλ only a distribution for λ = 1/r (integer r) 
 ⟶ 0 ≤ p(λ) ≤ 1 only for λ = 1/r  
 ⟶ Need replacement for Markov inequality 
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Replacement for Markov Inequality 

Lemma: If 
and p is a degree-d polynomial in 1/r, then 
 
 
for all λ in [0,1]  

Intro        QROM        PRFs        MACs        Signatures        Encryption        Conclusion 



Proving the Technical Theorem 
If                                                         , then p satisfies the 
revised Markov inequality with d=2q 
  

 

✓ 
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One Final Step 
Recall definition of SR distribution: 
 
 
 
 
How do we pick the ix? 
• Let R be a drawn from (2q)-wise indep. function family 
• ix = R(x) 
 

For each 

Theorem: (2q)-wise independent functions look like 
random functions to any q-query quantum algorithm 

For each 
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Quantum GGM 
Step 1: Hybridize over levels of tree 

 
Step 2: Simulate hybrids approximately using small 
range distributions and polynomially-many samples 

 
Step 3: Quantum pseudorandomness of one sample 
implies quantum pseudorandomness of polynomially-
many samples 

✓ 

✓ 

✓ 
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Our PRF Results 
Separation: PRFs ≠ quantum PRFs 
 
New tool: small-range distributions 
 
Proofs of quantum security for some classical PRF 
constructions: 

• From quantum-secure pseudorandom generators [GGM’84] 

• From quantum-secure pseudorandom synthesizers [NR’95] 

• Directly from lattices [BPR’11] 
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Quantum-secure MACs [BZ’12] 
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Classical Security 

Choose random key k 

q queries Check: 

MAC is secure if  
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Post-Quantum Security 

Choose random key k 

q queries Check: 

MAC is secure if  
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Quantum Security? 

Choose random key k 

q queries Check: 

MAC is secure if  

Too restrictive 

Pick random ri 
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Quantum Security 

Choose random key k 

q queries Check: 

MAC is secure if  

Pick random ri 
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Separation 

Carries over immediately from PRF separation 
 
Also have natural examples where underlying PRF is 
quantum-secure (Carter-Wegman MAC) 

MAC  Quantum-secure MAC ≠ 
Theorem: If post-quantum PRFs exist, then there are 
post-quantum MACs that are not quantum-secure MACs 
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A Simple Classical MAC 
Let F be a classically secure PRF 
F is also a classically-secure MAC: 
 S(k,m) = F(k,m) 
 V(k,m,σ) = F(k,m)==σ? 
 
Security: Replace F with random oracle 
 ⟶ Adversary can’t tell difference 
 ⟶ Forgeries correspond to input/output pairs of 
oracle 
 ⟶ Impossible to generate new pairs 
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A Simple Quantum-secure MAC? 
Let F be a quantum-secure PRF 
Is F also a quantum-secure MAC? 
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Security of PRF as a MAC 

Choose random key k 

q queries Check: 

Adversary wins with prob ε 
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Security of PRF as a MAC 

Choose random oracle H 

q queries Check: 

Adversary wins with prob ε-negl 
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Quantum Oracle Interrogation 
Allowed q quantum queries to random oracle H 
 
Goal: produce q+1 input/output pairs 
 
Classical queries: can’t do better than 1/|Y| 
 ⟶ Hard if H outputs super-logarithmically many bits 
 
Quantum queries? 
 ⟶ get to “see” entire oracle with a single query 
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Single-Bit Outputs 
Bad news: If |Y|=2 (i.e. single bit output), the oracle 
interrogation problem is easy. 
 
 
 
 
 
 

Theorem([vD’98]): There is an algorithm that 
makes q quantum queries to any oracle 
H:X{0,1} and produces 1.99q input/output 
pairs, with probability 1-negl(q) 

Are we in trouble? 
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Arbitrary Output Size 
We exactly characterize the difficulty of the oracle 
interrogation problem: 
 
 
 
 
 
 
 

Two cases:  
• log |Y| ≤ (log q)/2: probability is negligibly close to 1  Easy 
• log |Y| = ω(log q): probability is negligible  Hard 

 

Theorem: Any quantum algorithm making q 
quantum queries to an oracle H:XY solves 
the oracle interrogation problem with 
probability at most 1-(1-|Y|-1)q+1.   
 
Moreover, there is a quantum algorithm 
exactly matching this bound. 

✓ 
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Security of PRF as a MAC 

Choose random oracle H 

q queries Check: 

Adversary wins with prob ε-negl 

Must be negligible 
     ⟶ ε is negligible 
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The Rank Method 
Fix q, let           be final state (before measurement) of 
quantum algorithm after q queries to H 
 
                              spans some subspace of the overall 
Hilbert space 
 
Let  
 

Lemma:  For any goal, the probability of success is at 
most Rank times the probability of success of the best 
0-query algorithm 
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Applying the Rank Method 
Goal: output k=(q+1) input/output pairs 
 
Best 0-query algorithm: pick k arbitrary distinct inputs, 
guess outputs 
 Success prob: (|Y|-1)k = |Y|-(q+1) 
 
Only need to bound the rank of any q-query algorithm 
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The Rank Method 

Lemma:  The rank of any algorithm that makes q 
queries to an oracle H: XY is at most 
 
 
 
 

Exact 
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Applying the Rank Method 
Prob success of any q-query algorithm 
 ≤ Rank * best success prob of 0-query algs  

Too big! 
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Applying the Rank Method 
Observation: for any (q+1) inputs, knowing H at other points 
does not help determine H at these points 
 ⟶ Might as well only query on superpositions of  
      (q+1) points 

✓ 
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Our MAC Results 
Exact characterization of success probability for quantum 
oracle interrogation 
• Developed new general tool: Rank method 
 
Quantum-secure MACs: 
• Quantum-secure PRFs are quantum-secure MACs 
• A variant of Carter-Wegman is quantum-secure 
 
One-time quantum-secure MACs: 
• Pairwise independence is not enough 
• 4-wise independence is 
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Quantum-Secure Signatures [BZ’13] 
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Quantum Security 

q queries Check: 

S is secure if  

Pick random ri 
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Separation 

Sig  Quantum-secure Sig ≠ 
Theorem: If post-quantum signatures exist, then there are 
post-quantum signatures that are not quantum-secure 
signatures 
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Building Quantum-secure Signatures 
Hope that existing constructions can be proven secure: 

• Lattice schemes [ABB’10,CHKP’10] 
• Generic constructions (Lamport, Merkle) 
• RO schemes [GPV’08] 

 
Compilers to boost security? 
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One-time QROM Conversion 
Let (G,S,V) be a classically secure signature scheme 
 
Construct new QROM scheme (G,S’,V’) where: 

Theorem:  If (G,S,V) is one-time post-quantum 
secure, then (G,S’,V’) is one-time quantum secure in 
the quantum random oracle model. 
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Proof Sketch 
Start with a one-time adversary for S’: 
 
 
 
 
Step 1: Replace H with a SR distribution on t samples. 
 ⟶ S only evaluated on t points 
 
 Problem: Adversary only generates 2 signatures! 
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Proof Sketch 
Step 2: Sample H(m) 

S only evaluated on 1 input! 
⟶ One signature must be forgery 

measurement 
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Measurement Lemma 

Lemma: Pr[xA’] ≥ Pr[xA]/k 

measurement 

measurement 
partial 

measurement 

A: 

A’: 

Results in one of k outcomes 
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Proof Sketch 
Step 2: Sample H(m) 

only reduces adversary’s 
success probability by 
factor of t 

S only evaluated on 1 input! 
⟶ One signature must be forgery 

Intro        QROM        PRFs        MACs        Signatures        Encryption        Conclusion 

measurement 



Generalizing to Many-time Security 
 
Let      be a pairwise independent function family. 

Theorem:  If (G,S,V) is classically secure, then 
(G,S’,V’) is quantum secure in the quantum random 
oracle model. 
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Our Signature Constructions 
Two compilers: 

• Post-quantum security  Quantum security in the QROM 
• GPV probabilistic full domain hash 

 
• Post-quantum security + chameleon hash  Quantum security 

• CHKP’10 signatures 
• Modification to ABB’10 signatures 

 
GPV in the QROM 
 
From generic assumptions: 

• Lamport signatures + Merkle signatures 
• From any hash function 

Generalization of 
Rank theorem 
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Quantum-Secure Encryption [BZ’13] 
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Quantum Security 

, random b 

Check b = b’ 

Quantum secure if 

Intro        QROM        PRFs        MACs        Signatures        Encryption        Conclusion 



Encryption Results 
Classical challenge is required 

• Quantum challenge queries lead to unsatisfiable definitions 

 
Separation:  

• If classically secure encryption schemes exist, then there are 
classically secure encryption schemes that are not quantum-secure 

 
Constructions: 
• Symmetric CCA from quantum-secure PRFs 
• Public Key CCA from LWE 

• Quantum selectively-secure IBE + generic conversion 
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Summary of Separation Results 

PRF 

MAC 

Sign 

Enc 

Classical Security: 

≠ 

Quantum Security: 

PRF 

MAC 

Sign 

Enc 
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Summary of Positive Results 

PRFs 

MACs 

Signatures 

Sym Enc 

Pub Enc 

Independence 
Lemma 

SR-
Distribution 
Theorem 

Rank Method 

Measurement 
Lemma 

First quantum proofs for: 
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Future Work 
Many natural open questions: 

• Quantum PRFs ⇒ Quantum PRPs (Luby-Rackoff)? 
• 3-wise independence enough for 1-time MAC? 
• Quantum-secure authenticated encryption ⇒ quantum-secure CCA? 
• Signatures from one-way functions? 

 
More complicated primitives? 

• Adaptively secure (H)IBE? 
• Functional encryption? 

Thank you! 
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