Multiparty Key Exchange,
Efficient Traitor Tracing,
and More from |10

Dan Boneh Mark Zhandry
Stanford University

Program Obfuscation

Intuition: Scramble a program
- Preserve functionality
- Hide implementation details

Applications:

- IP Protection

- Software Watermarking
- Crypto

Indist. Obfuscation (10) Bciro1, GRo7]

If two programs have same functionality, obfuscations are
indistinguishable

, Pl() = pz() A4 ,
Pl X _X X PZ

. | ¢
iO iO

\ 4

Pl,O ~ Pz,o

~ " 4

Big questions: How to build? How to use?

e
Indistinguishability Obfuscation (iO)

An exploding field:
- [GGH*’13] First candidate iO construction

- Built from multilinear maps
- First application: functional encryption

- [BR'13, BGK*'13, ...] Additional constructions
- [SW'13, GGHR'13, BZ’13, ABGS/'13, ...] Uses

- Public key encryption, signatures, deniable encryption, multiparty
key exchange, MPC, ...

- [BCPR'13, MR'13, BCP’13, ...] Further Investigation

Our Results

Non-interactive multiparty key exchange Cm——

- First scheme without trusted setup

Efficient broadcast encryption
- Constant size ciphertext and secret keys
- First distributed system: users generate keys themselves

Efficient traitor tracing
- Shortest secret keys, ciphertexts, known
- Resolves open problem in Differential Privacy [DNR*09]

MULTIPARTY KEY
EXCHANGE

(Non-lnteractive) Multiparty Key Exchange

w? i Publlc bulletln board
J L

J

KABCD l(ABCD KABCD

e
History

2 parties: Diffie Hellman Protocol [DH’76]
3 parties: Bilinear maps [Joux’2000]

n>3 parties: Multilinear maps [BS'03,GGH'13,CLT’13]
- Requires trusted setup phase

Our work: n parties, no trusted setup

Prior Constructions for n»3

First achieved using multilinear maps [GGH'13,CLT’13]

- These constructions all require trusted setup before
protocol is run

- Trusted authority can also learn QFOUP key -

r&*_,

params

Prior Constructions for n»3

First achieved using multilinear maps [GGH'13,CLT’13]

- These constructions all require trusted setup before
protocol is run

- Trusted authority can also learn group key

. -
{ _.‘»;' ‘_, - : “‘_‘_7 - . = > I

params

Starting point for our construction

Building blocks:
- One-way function G:S 2> X
- Pseudorandom function (PRF) F

Shared key: F(x,, X,, X5, X,) < how to compute securely?

Introduce Trusted Authority (for now)

k [P(Yy o Yo s i) 4
If G(s) # vy, output L

Otherwise, output F.(y,, .., ¥,)

;

:
10
'
Pio

First attempt

KABCD =

Problems:
- k not guaranteed to be hidden using iO
- Still have trusted authority

Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated
independently of publishing step

k P(Y, i Y S i) 4

If G(s) # y, output L - = P.
Otherwise, output F.(y,, .., ¥,) |O PlO

;

Untrusted setup: designate user 1 as “master party”
- generates P,,, sends with x,

Multiparty Key Exchange Without Trusted Setup

Security equivalent to security of previous scheme

N
Hiding k

Follow “punctured program” paradigm of SW’'13
- Use pseudorandom generator for G
G:S>X [Xl>Is
G(s), s€S indist. from x€X
- Use special “punctured PRF” for F [BW13, KPTZ'13, BGI'13, SW'13]
Punctured key kz = compute F (=) everywhere but z
kz
¥
X— F

F(k,x) if x # z
ﬁ _

1 if x =z
Security: given k%, cannot compute t=F,(z)
Construction: GGM'84

e
Security of Our Construction

K [P(yy s Vo S i) 4

If G(s) v,
output L

Otherwise,

output F (y,, -, ¥,)

l S/S\S

|O ¢1 ¢n

| | G| G
{
X

{
PiO X1 eoe

J

n

Adversary’s goal:
Learn F (X, ---/X,)

-
Step 1: Replace x;

Real World

K [P(Yy s Yoo S, 0) 8

If G(s) # v,
output L

Otherwise,
output F,(y,,

wer Yo)

Alternate World 1

| | G

LN
lO ‘Ll n

PO Y1, s Yoo S 1) 4
If G(s) v,
output L
Otherwise,

output F.(y,, -

' Yo)

Pio xl YY)

!
i0

[/\

Pio xl YY)

n

Security of G = words indistinguishable

Step 1: Replace x;

Alternate World 1

Observation: K IP(y, ¥ S i)
Since IX| »>> |S|, If G(s) 2y,
w.h.p. no s,i s.t. G(s)=x; output L
Otherwise,
/ output F (y,, -, V¥,)

!
i0

[/\

Never pass check when PiO X1 eee Xp

Yl' ooo'yn - XI’ ...,xn

Step 2: Puncture

Alternate World 2

kz [P(Yy, -

'Ynlsli){

f

R
v
Let z=(x,,

W.h.p. programs identical’ +"

If G(s) # v
output L

If (y,, - ¥,) =z,
output L

Otherwise,

output F (y,, -, ¥,)

x
10

X
[/ \
\

xl YY) xn

X,

)

Alternate World 1

PO Y1, s Yoo S 1) 4
If G(s) v,
output L
Otherwise,

output F (y,, -, ¥,)

!
i0

[/\

Pio

xl YY) n

O = Worlds indistinguishable

.
Security

Alternate World 2

Kz [P(Y1 s Yoo 8 1)1 Adversary’s goal: learn
IF G(s) ¢ v, y S goal. F(2)
output L
If (v, 0 ¥,) = 2, Success in Real World
output L = success in World 2
Otherwise,
output F (y,, -, ¥,)
} In World 2:
¥ Adversary only sees Kk?
10 X = cannot learn F,(2)
2 2 / \\

PiO X1 eee X, /

LiZ:(Xl, YY) Xn)

-
Future Work

Our work and others: iO is incredibly powerful

What else can we do with it? What can’t we do?

Obfuscation is currently very inefficient

Can we make obfuscation practical?

