Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO

Dan Boneh

Mark Zhandry

Stanford University

Program Obfuscation

Intuition: Scramble a program

- Preserve functionality
- Hide implementation details

Applications:

- IP Protection
- Software Watermarking
- Crypto

Indist. Obfuscation (iO) [BGI+'01, GR'07]

If two programs have same functionality, obfuscations are indistinguishable

Big questions: How to build? How to use?

Indistinguishability Obfuscation (iO)

An exploding field:

- [GGH+'13] First candidate iO construction
 - Built from multilinear maps
 - First application: functional encryption
- [BR'13, BGK+'13, ...] Additional constructions
- [SW'13, GGHR'13, BZ'13, ABGSZ'13, ...] Uses
 - Public key encryption, signatures, deniable encryption, multiparty key exchange, MPC, ...
- [BCPR'13, MR'13, BCP'13, ...] Further Investigation

Our Results

Non-interactive multiparty key exchange

Efficient broadcast encryption

- Constant size ciphertext and secret keys
- First distributed system: users generate keys themselves

Efficient traitor tracing

- Shortest secret keys, ciphertexts, known
- Resolves open problem in Differential Privacy [DNR+09]

MULTIPARTY KEY EXCHANGE

(Non-Interactive) Multiparty Key Exchange

Public bulletin board

History

2 parties: Diffie Hellman Protocol [DH'76]

3 parties: Bilinear maps [Joux'2000]

n>3 parties: Multilinear maps [BS'03,GGH'13,CLT'13]

Requires trusted setup phase

Our work: **n** parties, no trusted setup

Prior Constructions for n>3

First achieved using multilinear maps [GGH'13,CLT'13]

- These constructions all require trusted setup before protocol is run
- Trusted authority can also learn group key

Prior Constructions for n>3

First achieved using multilinear maps [GGH'13,CLT'13]

- These constructions all require trusted setup before protocol is run
- Trusted authority can also learn group key

Starting point for our construction

Building blocks:

- One-way function G:S → X
- Pseudorandom function (PRF) F

Shared key: $F_k(x_1, x_2, x_3, x_4) \leftarrow$ how to compute securely?

Introduce Trusted Authority (for now)


```
k
P( y_1, ..., y_n, s, i ) {
If G(s) \neq y_i, output \perp
Otherwise, output F_k(y_1, ..., y_n)
}
```


First attempt

Problems:

- k not guaranteed to be hidden using iO
- Still have trusted authority

Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated independently of publishing step

```
k

\begin{array}{c|c}
P(y_1, ..., y_n, s, i) \\
\text{If } G(s) \neq y_i, \text{ output } \bot \\
\text{Otherwise, output } F_k(y_1, ..., y_n) \\
\end{array}
```

Untrusted setup: designate user 1 as "master party"

generates P_{iO}, sends with x₁

Multiparty Key Exchange Without Trusted Setup

Security equivalent to security of previous scheme

Hiding **k**

Follow "punctured program" paradigm of SW'13

Use pseudorandom generator for G

G:
$$S \rightarrow X$$
 |X| >> |S|
G(s), $s \leftarrow S$ indist. from $x \leftarrow X$

• Use special "punctured PRF" for **F** [BW'13, KPTZ'13, BGI'13, SW'13]

Punctured key $k^z \Rightarrow$ compute $F_k(\cdot)$ everywhere but z

$$X \longrightarrow F$$

$$\downarrow F$$

$$\downarrow$$

Security: given k^z , cannot compute $t=F_k(z)$

Construction: GGM'84

Security of Our Construction

Step 1: Replace xi

Real World

```
P(y_1, ..., y_n, s, i)
     If G(s) \neq y_i,
          output \( \preceq \)
     Otherwise,
          output F_k(y_1, ..., y_n)
                   G
```

Alternate World 1

Security of **G** ⇒ words indistinguishable

Step 1: Replace xi

Observation:

Since |X| >> |S|, w.h.p. no s,i s.t. G(s)=x_i

Never pass check when

$$y_1, ..., y_n = x_1, ..., x_n$$

Alternate World 1

Step 2: Puncture

Alternate World 2

```
k^z | P(y_1, ..., y_n, s, i) 
        If G(s) \neq y_i,
             output \perp
        If (y_1, ..., y_n) = z,
             output \perp
        Otherwise,
             output F_k(y_1, ..., y_n)
W.h.p. programs identical + iO
```

Alternate World 1

⇒ Worlds indistinguishable

Security

Alternate World 2

Adversary's goal: learn $F_k(z)$

Success in Real World

⇒ success in World 2

In World 2:

Adversary only sees **k**^z

 \Rightarrow cannot learn $F_k(z)$

Future Work

Our work and others: iO is incredibly powerful

What else can we do with it? What can't we do?

Obfuscation is currently very inefficient

Can we make obfuscation practical?