Quantum-Secure Message Authentication Codes

Dan Boneh and Mark Zhandry – Stanford University

Classical Chosen Message Attack (CMA)

Post-Quantum CMA

Adversary has quantum computing power:

Interactions remain classical

⇒ security models unchanged

Quantum CMA

Everyone is quantum ⇒ quantum queries

Quantum interactions \Rightarrow new security models

4/19

Extends [BDFLSZ'11, DFNS'11, Zha'12a, Zha'12b]

An Emerging Field

Many classical security games have quantum analogs:

- Quantum secret sharing, zero knowledge [DFNS'11]
- Quantum-secure PRFs [Zha'12b]
- Quantum CMA for signatures, quantum CCA [BZ'13b]
- Quantum-secure non-malleable commitments ???
- Quantum-secure IBE, ABE, FE ???
- Quantum-secure identification protocols ???

Motivation

Hardware Alternative:

"Classicalize" queries by observing them

Hardware designer – ensure nobody can bypass

Software Alternative:

Quantum-secure crypto

Leakage Analog:

Hardware designer – ensure no side-channels

Software Alternative:

Leakage-resilient crypto

Hardware designer not worried Hardware designer not worried

Quantum MAC Security: Definitions

Existential forgery:

q quantum queries \Rightarrow q+1 (distinct) tags

Building Quantum-Secure MACs

First attempt: do classical constructions work?

Example: 1-time MAC from pairwise independence

$$S(k,m) = h_k(m) \qquad \begin{array}{l} h_k(m) \quad \text{pairwise independent} \\ \text{e.g. } h_k(m) = k_1 m + k_2 \mod p \end{array}$$

One quantum query \Rightarrow two tags???

Quantum Polynomial Interpolation

$$\frac{\sum_{x} \alpha_{x} |x\rangle}{\sum_{x} \alpha_{x} |x, F(x)\rangle}$$

Theorem: d queries \Rightarrow a₀, ..., a_d w.h.p

Classically, need d+1 queries

Best known lower bound: (d+1)/2 queries

$$(a_0,\cdots,a_d)$$

Example: 1 quantum query to $h_k(m) = k_1 m + k_0 \mod p \implies k_0, k_1$

- → Pairwise independence is **insecure** for one-time MAC
- → Carter Wegman (CW) is **insecure** under quantum CMA

Secure 1-Time MACs

Theorem: Any **4-wise** independent function is a quantum secure one-time MAC

2-wise independence: insecure

3-wise independence: ???

4-wise independence: secure

Can also make CW secure with pairwise independence

Quantum-Secure MACs from PRFs

Classical construction:

```
S(k,m) = PRF(k,m)

V(k,m,\sigma) = Check: PRF(k,m) == \sigma
```

Classical CMA: secure

Quantum CMA: ???

Quantum-Secure MACs from PRFs

Secret key k

Existential forgery:

q quantum queries \Rightarrow q+1 (distinct) points of PRF

Quantum-Secure PRFs [Zha'12b]

Main tool for building MACs:

$$F(x) \equiv PRF(k, x)$$

Random key k $F(x) \equiv PRF(k,x) \frac{\sum_{x} \alpha_{x} |x\rangle}{\sum_{x} \alpha_{x} |x,F(x)\rangle}$

VS.

Random function F

from ${\mathcal X}$ to ${\mathcal Y}$

$$\sum_{x} \alpha_{x} |x\rangle \checkmark$$

$$\sum_{x} \alpha_{x} |x, F(x)\rangle$$

Quantum Oracle Interrogation

Hypothetical MAC forger:

q quantum queries \Rightarrow q+1 (distinct) points of F

Question: Is this hard?

Quantum Oracle Interrogation

Classically: hard $Adv[q+1 points]: \frac{1}{2^n}$

Quantum: not so fast

[vD'98]: $\int \text{random function F: X} \rightarrow \{0,1\}$

q quantum queries \Rightarrow 1.9q points w.h.p.

Also true for small range size:

ex: random function F: $X \rightarrow \{0,1\}^2$

q quantum queries ⇒ 1.3q points w.h.p.

Question: What about large range size?

Quantum Oracle Interrogation

Theorem: Random function F: X
$$\rightarrow$$
 {0,1}ⁿ Adv[q queries \Rightarrow q+1 points] $\leq \frac{q+1}{2^n}$

Highly non-trivial

New quantum impossibility tool: The Rank Method

Therefore:

- Small range: Adv[q+1 points] large
- Large range: Adv[q+1 points] small

The Rank Method

Rank: new quantity for quantum oracle algorithms

Measure of information learned by algorithm

$$\mathsf{Adv}[\mathbf{0} \ \mathsf{queries} \Rightarrow \mathsf{q+1} \ \mathsf{points}] \leq \frac{1}{2^{n(q+1)}}$$

$$\operatorname{Rank}[\operatorname{q}\operatorname{queries}] \leq (q+1)2^{nq}$$

$$Adv[q queries \Rightarrow q+1 points] \leq \frac{q+1}{2^n}$$

Back to MAC Security

Classical CMA:

secure PRF ⇒ secure MAC

(Adv:
$$\frac{1}{2^n}$$
)

Quantum CMA:

quantum-secure PRF \Rightarrow quantum-secure MAC (Adv: $\frac{q+1}{2^n}$)

Both cases:

MAC size super-logarithmic ⇒ MAC is secure

Summary & Open Problems

Quantum security stronger than classical security

- Pairwise independent functions: 1-time insecure
- Classical Carter-Wegman: insecure

MACs secure against quantum CMA:

- quantum-secure PRF ⇒ quantum-secure MAC
- 4-wise independent hash ⇒ 1-time MAC
- Efficient "Quantum Carter Wegman"

Open Problem:

CBC-MAC, PMAC, NMAC quantum secure?

19/19

Thanks!