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Security	Proofs

Crypto	security	

“proof”
= Computational	

Assumption	P
Reduction	

from	P+

Should	be	well-studied	and	widely	believed

Concrete	assumptions:	Hardness	of	FACTORING,	DLOG,	LWE

Generic	assumptions:�OWF,	�PKE

In	other	words,	if	you	can	

break	scheme,	you	can	solve	P



Enter	Quantum

Thm [Shor’94]:	� Quantum	polynomial	time	

(QPT)	algorithms	solving	FACTORING,	DLOG

Post-Quantum	Crypto	=	developing	crypto	
secure	against	quantum	attacks



Post-Quantum	Security	Proofs

Post-quantum
security	“proof”

= Post-quantum	
Assumption	P

Post-quantum
Reduction

+

Should	be	well-studied	and	widely	believed

Concrete	assumptions:	(Quantum)	hardness	of	LWE,	…

Generic	assumptions:�(quantum	immune)	OWF,	PKE

If	you	can	break	scheme	with	a	quantum	computer,
then	you	can	solve	P with	a	quantum	computer



Main	Takeaway

Post-quantum
security	“proof”

Post-quantum	
Assumption	P

Classical
Reduction+≠

BAD	NEWS:
Most	crypto	literature	

=	classical	reduction

GOOD	NEWS:
Most	results	translate	

to	quantum	trivially

Even	those	working	with	

post-quantum	tools

BUT:
�notable

exceptions



Outline	for	Today

1st hour:	4	illustrative	examples

• Increasing	PRG	stretch	– black	box	reductions
• PRFs	– interaction	
• Coin	tossing	– rewinding	
• Goldreich-Levin	– running	adversary	many	times

2nd hour:	Begin	seeing	new	post-quantum	techniques



Example	1:	PRG	Length	Extension

x�{0,1}n

y�{0,1}m

Def:	G is	a	secure	pseudorandom	generator	

(PRG)	if,	�PPT	A,	�negligible	ε such	that

| Pr[A(y)=1] – Pr[A(G(x))=1] | < ε

(m>n)

G

ε called	“advantage”	of	A



Example	1:	PRG	Length	Extension

x�{0,1}n

y�{0,1}m

Suppose	m=n+1.	How	to	get	larger	stretch?

G

Solution:	G2 =

x

z

G

G

Thm:	If	G is	secure,	then	so	is	G2



Proof:	Suppose	G2 insecure.	Then	�PPT	A,	non-negl ε such	that

| Pr[A(y)=1] – Pr[A(G2(x))=1] | ≥ ε

Example	1:	PRG	Length	Extension

Hybrid	0

G

G

A b
p0:=Pr[b=1]

Hybrid	1

G

A b
p1:=Pr[b=1]

Hybrid	2

A b
p2:=Pr[b=1]



Proof:	Suppose	G2 insecure.	Then	�PPT	A,	non-negl ε such	that

| p2 – p0 | ≥ ε

Example	1:	PRG	Length	Extension

Hybrid	0

G

G

A b
p0:=Pr[b=1]

Hybrid	1

G

A b
p1:=Pr[b=1]

Hybrid	2

A b
p2:=Pr[b=1]

Either:

|p1-p0|≥ε/2 
Or:

|p2-p1|≥ε/2 

B(y0,y1)=
A(G(y0),y1)

B(y0,y1)=
A(y0,y1,$)

In	either	case,	B has	

advantage	ε/2 against	

security	of	G



Example	1:	PRG	Length	Extension

What	about	quantum?

Def:	G is	a	post-quantum secure	PRG	if,	

�QPT	A,	�negligible	ε such	that

| Pr[A(y)=1] – Pr[A(G(x))=1] | < ε

Thm:	If	G is	post-quantum	secure,	then	so	is	G2



Proof:	Suppose	G2 PQ	insecure.	Then	�QPT	A,	non-negl ε s.t.

| p2 – p0 | ≥ ε

Example	1:	PRG	Length	Extension

Hybrid	0

G

G

A b
p0:=Pr[b=1]

Hybrid	1

G

A b
p1:=Pr[b=1]

Hybrid	2

A b
p2:=Pr[b=1]

Either:

|p1-p0|≥ε/2 
Or:

|p2-p1|≥ε/2 

B(y0,y1)=
A(G(y0),y1)

B(y0,y1)=
A(y0,y1,$)

In	either	case,	B has	

advantage	ε/2 against	

PQ security	of	G



Example	1:	PRG	Length	Extension

Proof	for	G2 doesn’t	care	how	A works	internally,	

as	long	as	it	has	non-negligible	advantage

y by b

y by b

That	is,	proof	treats	A as	“black	box”



Example	1:	PRG	Length	Extension

Key	Takeaway:	As	long	as	reduction	
treats	A as	a	non-interactive single-run
black	box,	reduction	likely	works	in	

quantum	setting



Example	2:	PRFs

x

y

Def:	F is	a	secure	pseudorandom	function	

(PRF)	if,	�PPT	A,	�negligible	ε such	that

| Pr[AF(k, · )()=1] – Pr[AR( · )()=1] | < ε
F>k

Notes:

- k random

- R uniformly	random	function

- AO( · ) means	A makes	queries	on	x,	receives	O(x)



Example	2:	PRFs

What	is	a	post-quantum	PRF?

Def:	F is	a	PQ secure	PRF	if,	�QPT	A,	
�negligible	ε such	that

| Pr[AF(k, · )()=1] – Pr[AR( · )()=1] | < ε

Def:	F is	a	Fully	Quantum	secure	PRF	if,	
�QPT	A,	�negligible	ε such	that

| Pr[A |F(k,·)⟩ ()=1] – Pr[A |R(·)⟩ ()=1] | < ε

A|O(·)⟩ means	

quantum	queries:	

∑αx,y|x,y⟩

∑αx,y|x,y�O(x)⟩



Example	2:	PRFs

Is	there	a	difference? YES!

Proof: Embed	Simon’s	oracle/period	finding

PRF’( (k,z) , x ) = PRF( k, {x,x�z} )



Example	2:	PRFs

Ok.	Which	definition	do	we	want? It	depends

Example	2a:	PRFs	à CPA-secure	encryption

Enc(k,m) = r ß $
c = (r, F(k,r)�m)

Encrypter (honest)	chooses	r à always	classical

PQ	security	suffices



Example	2:	PRFs

Ok.	Which	definition	do	we	want? It	depends

Example	2b:	PRFs	àMAC

MAC(k,m) = F(k,m)

Security	model	lets	attacker	choose	m,	but	

signer	(honest)	actually	computes	MAC

Can	attacker	force	signer	to	MAC	superpositions?



Example	2:	PRFs

Ok.	Which	definition	do	we	want? It	depends

Example	2c:	PRFs	à Pseudorandom	quantum	states

∑x (-1)F(k,x) |x⟩

Generation	of	state	makes	superposition	query	to	F

Need	full	quantum	security

[Ji-Liu-Song’18,Brakerski-Shmueli’19]



Example	2:	PRFs

So	then,	what	does	a	classical	proof	give	us?



Example	2:	PRFs

PRGàPRF

G

k

G G

GG G G

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



Example	2:	PRFs

PRGàPRF

G

k

G G

GG G G

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

G
G G

GG G G

Hybrid	0	(	F(k, · ) ):



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

G G

GG G G

Hybrid	1:



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

GG G G

Hybrid	2:



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

Hybrid	n (	R( · ) ):



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

�i s.t. | Pr[AHybrid i+1() = 1] - Pr[AHybrid i() = 1] | ≥ ε/n 

vs

Step	1	makes	sense	if	A classical,	

post-quantum,	or	fully	quantum



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.0 = i:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.1:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.2:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.3:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.2i = i+1:

Problem:	2i loss	potentially	exponential



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Solution:	lazy/on-the-fly	sampling

q queries	à Only	hybrid	over	q “active”	positions



Example	2:	PRFs

Proof	doesn’t	care	how	A works	internally,	

as	long	as	it	has	non-negligible	advantage

x
y

x
y

x
y

x
y

è Also	post-quantum	reduction



Example	2:	PRFs

What	about	full	quantum	security?

Even	single	query	touches	everything

Lazy	sampling? Embedding	challenges?



Example	2:	PRFs

What	about	full	quantum	security?

Classical	proof	is	black	box,	but	requires	classical	queries

A
x

O(x) A
∑αx,y|x,y⟩
∑αx,y|x,y�O(x)⟩vs� �

Can	the	proof	be	fixed	for	full	quantum	security?

Topic	for	2nd hour…



Example	2:	PRFs

Key	Takeaway:	As	long	as	reduction	treats	
A as	a	single-run black	box	(potentially	w/	
classical interaction),	reduction	likely	
works	in	quantum	setting

But	if	interaction	is	

quantum,	all	bets	are	off!



Example	3:	Coin	Tossing

m

c

Also	want	hiding,	but	we	will	ignore

Com$r
Def:	Com is	(computationally)	binding	if,	�PPT	A,	
�negligible	ε such	that

Pr[                         : (m0,r0,m1,r1)ßA()] < εm0≠m1�
Com(m0,r0)=Com(m1,r1) 



Example	3:	Coin	Tossing

Simple	protocol:

bAß{0,1}
r ß $

c = com(bA,r) bBß{0,1}
bB

bA,r
Verify	c = com(bA,r)

b = bA�bB

pass fail

b = ⟂



Proof	that	Alice	can’t	bias	b:
Let	A be	supposed	adversary

Example	3:	Coin	Tossing

c
bB

bA,r
A

Pr[b=0] > ½+ε For	both	bB=0 and	bB=1,	good	
chance	bA=bB and	Com(bA,r)=c



Proof	that	Alice	can’t	bias	b:

Example	3:	Coin	Tossing

Step	1

A
c

0
bA,0,r0

Step	2

A
c

Step	3

A
c

1
bA,1,r1

Pr[                              ] ≥ poly(ε)bA,0 = 0 � bA,1 = 1 �
Com(bA,0,r0) = Com(bA,1,r1) = c



Example	3:	Coin	Tossing

What	if	A is	quantum?

Def:	Com is	post-quantum (computationally)	

binding	if,	�QPT	A,	�negligible	ε such	that

Pr[                         : (m0,r0,m1,r1)ßA()] < εm0≠m1�
Com(m0,r0)=Com(m1,r1) 

Define	coin-tossing	goal	similarly

Note:	adversary’s	interaction	unchanged	(unlike	Ex	2)



Proof	that	quantum Alice	can’t	bias	b?

Example	3:	Coin	Tossing

Step	1

A
c

0
bA,0,r0

Step	2

A
c

�
Measurement	principle:	extracting	
bA,0,r0 irreversibly	altered	A’s	state	



Example	3:	Coin	Tossing

Thm (Ambainis-Rosmanis-Unruh’14,Unruh’16):	

�PQ	binding	Com s.t. Alice	has	a	near-perfect	strategy	

I.e.,	quantumly,	ability	to	produce	either	of	two	values	isn’t	

the	same	as	ability	to	produce	both	simultaneously	

Example	+	how	to	overcome	topic	for	tomorrow



Example	3:	Coin	Tossing

Key	Takeaway:	As	long	as	reduction	treats	
A as	a	single-run black	box	(potentially	w/	
classical interaction),	reduction	likely	
works	in	quantum	setting

But	if	interaction	is	

quantum,	all	bets	are	off!
But	if	rewinding	A,	all	

bets	are	off!



Example	4:	Goldreich-Levin

Ar b

“GL	assumption”:	A is	PPT,	�x: Pr[A(r) = <r,x>] ≥ ½ + ε

Thm:
GL

r
b A�PPT

x’
Pr[x’=x] ≥ δ = poly(ε)

Stateless/rewindable



Example	4:	Goldreich-Levin

What	happens	in	quantum	setting?

Proof	of	GL	doesn’t	care	how	A works	internally,	

as	long	as	“GL	Assumption”	holds	for	all queries

A has	classical	description

(even	if	quantum	alg.)�
Good	enough	for	most	applications,	

e.g.	OWF	à PRG	[HILL’99]

But	what	if	A contains	

quantum	state?



Example	4:	Goldreich-Levin

A

│Ψ⟩
r1 b1

Measurement	principle:	extracting	
b1 irreversibly	altered	│Ψ⟩

GL	assumption	may	not	hold	for	2nd	query



Example	4:	Goldreich-Levin

Thm (Adcock-Cleve’01):	� single-query	quantum	GL	algorithm

Proof:

∑ |r⟩
r�{0,1}n

A ∑ (-1)A(r) |r⟩
r�{0,1}n

QFT/

H�n

Results	in	tighter	security	reductions!



Example	4:	Goldreich-Levin

Key	Takeaway:	As	long	as	reduction	treats	A
as	a	black	box,	potentially	w/	classical
interaction	or	w/	rewinding	to	classical value,	
reduction	likely	works	in	quantum	setting

But	if	interaction	is	

quantum,	all	bets	are	off!
If	rewinding	to	quantum
state,	all	bets	are	off!



Roadmap

Quantum	rewinding

New	Quantum	Attack	Models

Quantum	Random	Oracle	Model



New	Quantum	Security	Models

Mark	Zhandry (Princeton	&	NTT	Research)



Motivation

∑αx,y|x,y⟩
∑αx,y|x,y�F(x)⟩

Higher	level	quantum					
protocol

Quantum	random	
oracle	model
(starting	tomorrow)



Security	Proof	Challenges

A

∑αx,y|x,y⟩

∑αx,y|x,y�O(x)⟩
Expects: B Hard	

Problem

What	does	hybrid	over	queries	look	like?



Security	Proof	Challenges

Take	1:	Per	QUERY

A

∑αx,y|x,y⟩
∑αx,y|x,y�V1⟩

B
∑αx,y|x,y⟩

∑αx,y|x,y�V2⟩

Problem:	repeated	queries?

Problem:	distinguishing	attack
∑|x,0⟩
∑|x,V1⟩

∑|x,0⟩
∑|x,O(x)⟩VS



Security	Proof	Challenges

Typical	reductions	are	commit	to	entire	function	
O at	beginning,	remain	consistent	throughout	

[Zhang-Yu-Feng-Fan-Zhang’19]:	“Committed	programming	reductions"

Non-committing	reductions:	topic	for	later	class



Security	Proof	Challenges

Take	2:	Per	VALUE

A
∑αx,y|x,y⟩

∑αx,y|x,y�Vx⟩ B
Problem:	exp-many	values
• Exponential	loss	in	hybrid
• How	to	simulate	efficiently?



PRF	Recap

Def:	F is	a	Fully	Quantum	secure	PRF	if,	
�QPT	A,	�negligible	ε such	that
| Pr[A |F(k,·)⟩ ()=1] – Pr[A |R(·)⟩ ()=1] | < ε

A|O(·)⟩ means	quantum	queries:	

∑αx,y|x,y⟩ ∑αx,y|x,y�O(x)⟩



PRF	Recap

PRGàPRF

G

k

G G

GG G G

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



PRF	Recap

Proof,	step	1:	Hybrid

G
G G

GG G G

Hybrid	0	(	F(k, · ) ):



PRF	Recap

Proof,	step	1:	Hybrid

G G

GG G G

Hybrid	1:



PRF	Recap

Proof,	step	1:	Hybrid

GG G G

Hybrid	2:



PRF	Recap

Proof,	step	1:	Hybrid

Hybrid	n (	R( · ) ):



PRF	Recap

Proof,	step	1:	Hybrid

�i s.t. | Pr[AHybrid i+1() = 1] - Pr[AHybrid i() = 1] | ≥ ε/n 

vs
Step	1	makes	sense	if	A classical,	
post-quantum,	or	fully	quantum



Another	View

Def:	G is	Quantum	Oracle	Secure	if,	�QPT	
A,	�negligible	ε such	that

| Pr[A |R⟩ =1] – Pr[A |G�O⟩ =1] | < ε

R,O random	oracles

Quantum	PRF	
adv A

Classical	reduction Oracle	
Security	adv B



Another	View

How	to	complete	reduction	from	plain	(post-quantum)	PRGs?		

Classical	Proof: A

Only	q queries Can	simulate	with	q samples
Hybrid	over	q values



Another	View

How	to	complete	reduction	from	plain	(post-quantum)	PRGs?		

Quantum? A

Need	exponentially-many	samples	for	perfect	simulation



Reducing	#	of	Hybrids

Goal:	Simulate	query	responses	
using	only	poly-many	samples



Simulating	with	Few	Samples

Extreme	1:	Same	sample	in	all	positions
V   V   V   V   V   V   V   V   V   V   V   V   V   V

Extreme	2:	Independent	sample	in	each	position
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13  V14

Exponential	loss!

Distinguishable!

Middle	ground:	Several	samples	in	random	positions
V1 V5 V3 V5 V2 V1 V4 V3 V2 V1 V4 V5 V2 V3



Small	Range	Distributions

Domain Range

Size	r

Random Random,	obtained	from	samples

How	big	of	r to	be	indistinguishable	from	truly	random?



Small	Range	Distributions

Thm [Z’12b]:	No	q quantum	query	alg can	distinguish	
SRr from	random,	except	with	probability	O(q3/r).	
Holds	for	any	output	distribution.

Quantum	collision	finding									bound	tight

r=q3? r=q4? r=q20? r=1.01q?



Quantum	Proof

Uniform G(uniform)

G(uniform)Uniform

O(q3/r)

≥ε

O(q3/r)



Quantum	Proof

| Pr[A |R⟩ =1] – Pr[A |G�O⟩ =1] | ≥ ε

| Pr[B(y1,…,yr) =1] – Pr[B(G(x1),…,G(xr)) =1] | ≥ ε-O(q3/r)

| Pr[C(y) =1] – Pr[C(G(x)) =1] | ≥ ε/r-O(q3/r2)

Optimize	by	setting	r = O(q3/ε)     Final	advantage	O(ε2/q3)



Notes

Requires	knowing	ε

ε2 means	much	bigger	security	loss

Can	fix	by	guessing	ε=2-i for	random	i



Proving	SR	Theorem

Thm [Z’12a]:	If	A makes	q quantum	queries	to OßD,	then	
Pr[AD()=1] = ∑ Pr[D(xi)=yi�i�[2q]]

x1,…,x2q
y1,…,y2q

(Restatement	of	polynomial	method	[Beals-Buhrman-Cleve-Mosca-de	Wolf’01])

Thm [Z’12b]:	For	SRr ,	the	Pr[D(xi)=yi�i�[k]] are	degree	
k polynomials	in	1/r

Pr[ASRr()=1] = degree	2q polynomial	in	1/r



Proving	SR	Theorem

Pr[ASRr()=1] = P(1/r) = degree	2q polynomial

Additional	observations:
• SR∞ = Truly	random	function
• 0 ≤ P(1/r) ≤ 1 �positive	integers	r

Goal:	bound	| P(1/r) – P(0) |



Proving	SR	Theorem

1½¼ ⅓

1

degree	1



Proving	SR	Theorem

1½¼ ⅓

1

degree	2



Proving	SR	Theorem

1½¼ ⅓

1

degree	3



Proving	SR	Theorem

1½¼ ⅓

1

degree	4



Proving	SR	Theorem

1½¼ ⅓

1

Can’t	move	too	fast!



Proving	SR	Theorem

Thm [Z’12b]:	If	P(1/r) satisfies:
•Degree	≤k
•0 ≤ p(1/r) ≤ 1 �positive	integers	r
Then	|P(1/r) – P(0)| ≤ 27k3/r

(Asymptotically	tight)



Remaining	Step

SRr requires	random	functions;	how	to	simulate?

Only	2q-wise marginals matter
à2q-wise	independent	functions	“look”	random



What	else	is	out	there?

Encryption

Authentication

PRPs MPC

Secret	sharing

IBE

Remainder	of	lecture:	definitional	issues



Defining	MACs/Signatures

Classical	Security:

A

k ß {0,1}λ
m1
σ1 = MAC(k,m1)
m2
σ2 = MAC(k,m2)…
m*,σ*

“Win”	if	
• m*�{mi}i
• Ver(k,m*,σ*)=1



Defining	MACs/Signatures

Fully	Quantum	Security?

A

k ß {0,1}λ

…
m*,σ*?????

“Win”	if	
• m*�{mi}i?????
• Ver(k,m*,σ*)=1

∑ αm,σ│m,σ⟩
∑ αm,σ│m,σ�MAC(k,m)⟩
∑ αm,σ│m,σ⟩
∑ αm,σ│m,σ�MAC(k,m)⟩



Defining	MACs/Signatures

What	does	it	mean	to	be	“new”?

Example:

A ∑ αm│m,0⟩
∑ αm│m,MAC(k,m)⟩

Random	m, MAC(k,m)

Challenger



Defining	MACs/Signatures

Partial	Answer:	One	More	Security	[Boneh-Z’13a]

A

k ß {0,1}λ
m1
σ1 = MAC(k,m1)
m2
σ2 = MAC(k,m2)…
m0

*,σ0
*,…,mq

*,σq
*

“Win”	if	
• {mi

*} distinct
• Ver(k,mi

*,σi
*)=1�i

q



Defining	MACs/Signatures

Limitation:	Suppose:

A ∑ αm│ 0||m , 0⟩
∑ αm│ 0||m , σ0||m⟩

1||m, MAC(k, 1||m )

Challenger

Doesn’t	violate	
one-more	security!



Defining	MACs/Signatures

Other	defs exist	which	fix	this	problem	[Garg-
Yuen-Z’17,	Alagic-Majenz-Russell-Song’18],	but	
IMO	even	satisfactory	definition	not	yet	solved



Defining	Encryption
Classical	CPA	Security:

A
m0*,m1*
Enc(k,mb*)

m
Enc(k,m)

m
Enc(k,m)

b’

k ß {0,1}λ
b ß {0,1}



Defining	Encryption
Quantum	CPA	Attacks?

A
m0*,m1*
Enc(k,mb*)

∑αm,c│m,c⟩
∑αm,c│m,c�cm⟩

∑αm,c│m,c⟩
∑αm,c│m,c�cm⟩

b’

k ß {0,1}λ
b ß {0,1}

Everything	is	
fine	so	far



Defining	Encryption
Quantum	Challenge	Queries????

A

k ß {0,1}λ
b ß {0,1}

∑αm0*,m1*,c│m0*,m1*,c⟩
∑αm0*,m1*,c│m0*,m1*,c�cmb*⟩

∑αm,c│m,c⟩
∑αm,c│m,c�cm⟩

∑αm,c│m,c⟩
∑αm,c│m,c�cm⟩

b’



Defining	Encryption
Attack:

∑m0*,m1*│m0
*,m1

*,0⟩
∑m0*,m1*,│m0

*,m1
*,cmb*⟩

QFT/
H�n

z0

QFT/
H�n

z1

z1-b=0n and	whp zb≠0n

c



Defining	Encryption

Classical	encryption	schemes	are	not	secure	for	
encrypting	quantum	messages,	if	the	attacker	
gets	to	see	the	original	message	registers

[Boneh-Z’13b]:	don’t	allow	
quantum	challenge	queries

[Gagliardoni-Hülsing-Schaffner’16]:	
make	sure	quantum	challenge	
query	never	returned

More	subtle	than	it	sounds



Defining	Encryption
Quantum	CCA	Attacks?

A

k ß {0,1}λ
b ß {0,1}

∑αc,m│c,m⟩
∑αm,c│c,m�Dec(k,m)⟩

b’

m0*,m1*
c* = Enc(k,mb*)
∑αc,m│c,m⟩

∑αm,c│c,m�Dec(k,m)⟩

Must	not	decrypt	c*



Defining	Encryption

“Not	decrypting	c*”	problematic	
for	quantum	challenges

[Chevalier-Ebrahimi-Vu’20]:	
Formalize	quantum	CCA+Challenge



Defining	Traitor	Tracing

encrypted	
broadcast

Authorized	
users

Goal:	identify	source	
of	pirate	decoder



Defining	Traitor	Tracing

Classical	Def	(modulo	details):

A

kß{0,1}λ
idi
kidi

D SßTraceD(pk)
Win	if
•S empty,	or
•S∩{idi} not	empty

Pr[D(Enc(k,m)) = m] 
non-negl



Defining	Traitor	Tracing

Problem:	most	prior	work	assumes	
D is	stateless/can	be	rewound

Somewhat	inherent:	single	query	
to	D usually	not	enough	to	accuse

But	if	decoder	has	quantum	state,	
single	query	may	alter	decoder

[Z’20]:	Formalize	quantum	analog	of	“stateless”



Tomorrow:	Unavoidable	Quantum	Attacks

So	far,	issues	concern	new	
quantum	attack	models

My	remaining	lectures:	attacks/issues	
even	under	existing	attack	model

Rewinding Quantum	Random	
Oracle	Model



Quantum	Rewinding

Mark	Zhandry (Princeton	&	NTT	Research)



Classical	Rewinding

Step	1:

A

a
b
c

Step	2:

A

a
Step	3:

A

a
b’
c’

Zero	knowledge

Proofs	of	knowledge

Commitments



Proof	of	Knowledge	(PoK)

P V

Statement	x

Witness	w If	accepts,	V should	be	convinced	not	
only	of	x,	but	also	that	P “knows”	witness

Usually	combine	with	over	properties	like	zero	knowledge



Rewinding	for	PoK

Step	1:

P

a
b
c

Step	2:

P

a
Step	3:

P

a
b’
c’

(a,b,c,b’,c’), b≠b’
w

“special	soundness”



What	Does	Rewinding	*Really*	Mean

Given	state	here,

can	we	remember	
state	here?

Classical	programs	not	
necessarily	“reversible”

But	can	be	made reversible	
by	recording	program	trace	



What	Does	Rewinding	*Really*	Mean

But	isn’t	quantum	computing	alrady reversible?

Only	until	a	measurement…

Uncertainty	Principle:	once	
measurement	is	performed,	

quantum	state	irreversibly	altered	

No	Cloning:	can’t	
record	program	
trace	for	later



What	Does	Rewinding	*Really*	Mean

x

y
Given	state	here,

prior	state	un-recoverable

Interactive	quantum	programs	*cannot*	
in	general	be	made	reversible



Impossibility	of	Quantum	Rewinding

Coin	flipping/commitment	game

A

y

x
bß{0,1} Win	if

•H(x)=y
•x1 = b

Goal:	devise	quantum A and	col.	res.	H where	Pr[A wins] ≈ 1

[Ambainis-Rosmanis-Unruh’14]

Classically:	
Pr[A wins]≥ ½+ε
+	Rewinding
=	Pr[collision]≥poly(ε)



Impossibility	of	Quantum	Rewinding

Idea:

H∑x│x⟩ ∑x│x,H(x)⟩
H(x)

∑x:H(x)=y│x⟩

y

∑x’:H(0||x’)=y│0||x’⟩ ∑x’:H(1||x’)=y│1||x’⟩???
Either Or

[Ambainis-Rosmanis-Unruh’14]



Impossibility	of	Quantum	Rewinding
[Ambainis-Rosmanis-Unruh’14]

Recall	Grover	Search:

∑x�D│x⟩ Vf Diff

f = predicate	we	are	trying	to	satisfy
Diffusion	operator	for	D

Vf Diff ∑x�D,f(x)=1│x⟩

O(  1/Frac(x�D:f(x)=1) ) times

^ ^

D D



Impossibility	of	Quantum	Rewinding
[Ambainis-Rosmanis-Unruh’14]

Idea:

Vf Diff Vf Diff ∑x�D,x1=b│x⟩∑x:H(x)=y│x⟩

f(x)=b�x1

^

y

^ ^
x:H(x)=y x:H(x)=y

y

Give	out	as	oracle



Impossibility	of	Quantum	Rewinding
[Ambainis-Rosmanis-Unruh’14]

Thm:	A	random	function	H (given	as	
oracle)	is	collision	resistant,	even	if	
additionally	given	Diff oracle

H is	not	a	good	
commitment,	despite	
being	collision	resistant

PoK cannot	quantumly
be	justified	based	on	
special	soundness	alone



Ingredient	1:	Rewinding	Lemma

Lemma	[Unruh’10]:	
Suppose:	 (1)	c is	a	single	bit

(2)	Defer	all	measurements	except	c
(3)	Pr[c=1 | a]=ε

Then: Pr[c=c’=1 | a]≥ε3

Compare	to	
ε2 classically

Really	need	Pr[c=c’=1 | (b≠b’), a],	
Unruh	gives	better	bound



Applying	Rewinding	Lemma

Step	1:

P

a
b
c V

d
No	measurement	after	b!

Step	2:

P

a
Step	3:

P

a
b’
c’ V

d’
Rewinding	Lemma:	Pr[d=d’=1]≥ε3



Applying	Rewinding	Lemma

Step	1:

P

a
b
c V

d

Step	2:

P

a
Step	3:

P

a
b’
c’ V

d’
Problem:	Can’t	extract	c,c’ without	changing	d,d’



Ingredient	2:	Additional	Security	Promises

Option	1:	Injective	H Unique	“opening”	x,	can	
measure	without	any	collapse



Ingredient	2:	Additional	Security	Promises

Option	1	[Unruh’10]:	Strict	Soundness:

�a,b, �unique	c s.t. V(a,b,c)=1

P

a
b
c V

dIf	d=1,	c collapses	to	
classical	value	anyway



Ingredient	2:	Additional	Security	Promises

Option	2	[Unruh’16]:	Collapsing	Hashes:

A x y ≈c
H(x) A x xx



Ingredient	2:	Additional	Security	Promises

Option	2	[Liu-Z’19,Don-Fehr-Majenz-Schaffner’19]:	
Collapsing:

≈cP

a
b
c

V

×

P

a
b
c

V

×

(Means	condition	on	verifier	accepting)



Justify	Collapsing:	Lossy Functions

Lossy functions:

Injective	Mode: Lossy Mode:

≈cF F

[Unruh’16]

Can	construct	from	LWE



Justify	Collapsing:	Lossy Functions

Lossyà Collapsing:

[Unruh’16]

Pairwise	independent	functionF

Proof:

F

F
≈c

≈s

Injective	on	Img(F) (whp)
F

≈c

F

F
≈s



Limitations

For	PoK’s,	applying							destroys	
structure,	makes	verification	impossible

Can	remove							,	but	then	c is	large;	bad	
for	some	application	(e.g.	signatures)

May	be	inefficient	(large	
intermediate	computation)



Def:

Improvement:	Associated	Lossy Funcs

Genlossy(y)

f f

Geninj(y)

H-1(y)

Genlossy(y) ≈c Geninj(y)

[Liu-Z’19]



Improvement:	Associated	Lossy Funcs

Proof:

Thm:
H has	associated	lossy func H is	collapsing

x yH

x yH

f
Genlossy(y)

z

Unique	z anyway

x yH

f
Geninj(y)

z

≈ ≈
Sec.	of	assoc.	lossy func

x x

≈
Injectivity of	f

[Liu-Z’19]



Consequences

SIS	is	Collapsing

Ax x.
“short”

��q

[Lyubashevsky’11]	Is	a	PoK for	SIS



Associated	Lossy Functions	for	SIS
Genlossy(y):

Au . e+
“short”

B =

fB(x): x x.B = y.u



Associated	Lossy Functions	for	SIS
Geninj(y):

B ß$

fB(x): x x.B Injective	for	
tall	enough	B

Indist.	from	
Genlossy by	LWE



The	Silver	Lining…



Proofs	of	Quantumness

Thm [Brakerski-Christiano-Mahadev-Vazirani-Vidick’18]:

LWE
Designated	verifier	
(privately	verifiable)
proof	of	quantumness

Doesn’t	require	quantum-easy	assumptions

But,	can’t	be	verified	by	others



Proofs	of	Quantumness

Suppose	A wins	coin-flipping	game

Proof	that	A is	quantum,	relying	
on	collision	resistance	of	H

Assuming	honest	verifier,	anyone	can	tell	that	A won



Proofs	of	Unclonable State

PQ	collision	resistance	of	H

A wins	coin-flipping	game

+
State	after	commitment	

can’t	be	copied

And,	it	can	be	verified



= |Ψ⟩

Serial	# = classical	
description

Kept	secret

No-Cloning	=	Quantum	Money
[Wiesner’70]



Limits	of	(Plain)	Quantum	Money

σ



Ver(σ,       )

σ

Public	Key	Quantum	Money
[Aaronson’09]



Ver(σ,       )

σ
PK	Quantum	Money	=	No-Cloning	+	Verification

Public	Key	Quantum	Money
[Aaronson’09]

Constructing	PK	quantum	money	is	a	major	goal	in	quantum	cryptography



Public	Key	Quantum	Money

PQ	collision	resistance	of	H

A wins	coin-flipping	game

+ PK	Quantum	Money

Or	more	generally,	H not	collapsing

[Z’19]



Takeaway:	whenever	post-quantum	proofs	fail,	
look	for	interesting	quantum	crypto	applications



Quantum	Random	
Oracle	Model,	Part	1

Mark	Zhandry (Princeton	&	NTT	Research)



(Classical)	Random	Oracle	Model	(ROM)
[Bellare-Rogaway’93]

Cryptosystem

hash	

function

Examples:	OAEP,	Fujisaki-Okamoto,	Full-Domain	Hash,	…



(Classical)	Random	Oracle	Model	(ROM)
[Bellare-Rogaway’93]

Cryptosystem

H



(Classical)	Random	Oracle	Model	(ROM)
[Bellare-Rogaway’93]

Idea:	If	�ROM	security	proof,	any	attack	

must	exploit	structure	of	hash	function

Hopefully	not	possible	for	well-designed	hash



The	Quantum	Random	Oracle	Model	(QROM)
[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z’11]

H

Now	standard	in	post-quantum	crypto



Example:	Full	Domain	Hash

Building	Block:	Trapdoor	Permutations

P
^

pk

x P-1

^

sk

y x

Security:	�PPT A, Pr[A(pk,y)=x] < negl



Sigs	from	TDPs

Example:	Full	Domain	Hash

P-1

^

sk

σHm



Example:	Full	Domain	Hash

Proof:	Assume	toward	contradiction

A

mi

σi

m*�{mi}i

P-1

^

H

sk

σ*

H

P
^

pk

=
H

xi

yi



Example:	Full	Domain	Hash

Proof:

A

mi

σi

m*�{mi}i

P-1

^

H

sk

σ*

H

P
^

pk

=
H

xi

yi

Step	0:	Assume	m* queries	to	RO



Example:	Full	Domain	Hash

Proof:

A

mi

σi

m*�{mi}i

P-1

^

H

sk

σ*

H

P
^

pk

=
H

xi

yi

Step	1:	H à P�H’



Example:	Full	Domain	Hash

Proof:

A

mi

σi

m*�{mi}i

P-1

^

H

sk

σ*

H

P
^

pk

=
H’

xi

yi

Step	1:	H à P�H’

P
^

pk



Example:	Full	Domain	Hash

Proof:

A

mi

σi

m*�{mi}i

H’

σ*

H

P
^

pk

=
H’

xi

yi

Step	1:	H à P�H’

P
^

pk



Example:	Full	Domain	Hash

Proof:

A

mi

σi

m*�{mi}i

H’

σ*

H’
=

H’

xi

yi

Step	1:	H à P�H’

P
^

pk



Example:	Full	Domain	Hash

Proof:

A

mi

σi

m*�{mi}i

H’

σ*

H’
=

H’

xi

yiP
^

pk

Notice:	A	computes	H’(m*), given	only	P(pk,H’(m*))



Example:	Full	Domain	Hash

Proof:

A

mi

σi

m*�{mi}i

H’

σ*

H’
=

H’

xi

yiP
^

pk

B(y): set	H’(xi)=y for	random	query	à advantage	ε/q



Example:	Full	Domain	Hash

QROM	Proof?

A

mi

σi

m*�{mi}i

H’

σ*

H’
=

H’

∑x|x,y⟩

P
^

pk

How	does	B insert	challenge?



Challenges

Take	1:	Per	QUERY

A

∑αx,y|x,y⟩
∑αx,y|x,y�V1⟩

B
∑αx,y|x,y⟩

∑αx,y|x,y�V2⟩

Problem:	repeated	queries?

Problem:	distinguishing	attack

∑|x,0⟩
∑|x,V1⟩

∑|x,0⟩
∑|x,O(x)⟩VS



Security	Proof	Challenges

Typical	QROM	reductions	commit	to	entire	function	

H at	beginning,	remain	consistent	throughout	

[Zhang-Yu-Feng-Fan-Zhang’19]:	“Committed	programming	reductions"



Security	Proof	Challenges

Take	2:	Per	VALUE

A
∑αx,y|x,y⟩

∑αx,y|x,y�Vx⟩ B
Problem:	exp-many	values

à Pr[correctly	guess	m*] =negl



Small	Range	Distributions

Domain Range

Size	r

Random Random



Small	Range	Distributions

Thm [Z’12b]:	No	q quantum	query	alg can	distinguish	

SRr from	random,	except	with	probability	O(q3/r).	

Quantum	collision	finding									bound	tight



Finishing	The	Proof

Pr[A wins | H’ random] ≥ ε

Pr[A wins | H’ = SRr] ≥ ε – O(q3/r)

B(y) inserts	y into	random	output

Pr[B inverts y] ≥ ε/r–O(q3/r2) = O(ε2/q3)

r=O(q3/ε)



Example:	Full	Domain	Hash,	Take	2

Building	Block:	Pre-image	Sampleable Funcs

sk

y

pk

x y

Security:	(1)	Collision	resistant

(2)	random	y à ≈random	x

P-1 P

[Gentry-Peikert-Vaikuntanathan’08]:	construction	from	LWE



Sigs	from	PSFs

Example:	Full	Domain	Hash,	Take	2

sk

σHm P-1



Example:	Full	Domain	Hash,	Take	2

Proof:	Assume	toward	contradiction

A

mi

σi

m*�{mi}i

H

sk

σ*

H

pk

=
H

xi

yi

P-1

P



Example:	Full	Domain	Hash,	Take	2

Proof:

A

mi

σi

m*�{mi}i

H’

σ*

H

pk

=

Step	1:	P-1�H à H’

P

H’

xi

yi

pk

P P



Example:	Full	Domain	Hash,	Take	2

Proof:

A

mi

σi

m*�{mi}i

H’

σ*

H
=

Notice:	H(m*), σ* form	collision	à advantage	ε

P

H’

xi

yi

pk

P P



Example:	Full	Domain	Hash,	Take	2

QROM	Proof?

A

mi

σi

m*�{mi}i

H

sk

σ*

H

pk

=
H

xi

yi

P-1

P



Example:	Full	Domain	Hash,	Take	2

Main*	QROM	issue:	simulating	H’ efficiently

As	before,	can	do	using	2q-wise	independence

*some	issues	having	to	do	with	P-1(y) being	only	approximately	uniform	



Rule	of	Thumb

Rule	of	Thumb:	If	loss	of	classical	reduction	
is	independent	of	q,	good	chance	we	can	

upgrade	to	quantum	security

If	loss	in	reduction	depends	on	q,	new	
reduction	likely	needed,	maybe	impossible

No	per	query	

hybrid



Can	All	ROM	Proofs	be	Upgraded?

Thm [Yamakawa-Z’20]:	No,	assuming	

LWE	or	relative	to	an	oracle



Recall:	Impossibility	of	Quantum	Rewinding

Coin	flipping/commitment	game

A

y

x
bß{0,1} Win	if

•Hash(x)=y
•x1 = b

Devised	quantum A and	col.	res.	Hash where	Pr[A wins] ≈ 1

[Ambainis-Rosmanis-Unruh’14]



New	Game

Coin	flipping/commitment	game

A

y

x
bß{0,1} Win	if

•Hash(x)=y
•H(x) = b

Essentially	same	A,Hash work	here

(1-bit	RO)



Quantum	Alg

Idea:

Vf Diff Vf Diff ∑x�D,H(x)=b│x⟩∑x:Hash(x)=y│x⟩

f(x)=H(x)

^

y

^ ^

x:Hash(x)=y x:Hash(x)=y

y

Give	out	as	oracle



No	Classical-Query	Alg

Suppose	�classical	query	quantum	A s.t. Pr[A wins]≥½+ε
• Consider	H queries	on	x s.t. Hash(x)=y
• First	such	query	x0 has	prob ½ of H(x0)=b
• If	A only	ever	outputs	x0,	Pr[A wins]≤½
• Therefore,	A	must	sometimes	output	x1≠x0

• But	then	x0,x1 form	collision	for	Hash



QROM	Impossibility

[Yamakawa-Z’20]:	More	generally,	

upgrade	proofs	of	quantumness to	

proofs	of	quantum	access	to	RO



Up	Next

Tomorrow,	will	look	at	further	examples

In	particular,	we	will	see	barriers/impossibilities	for	committed	

programming	reductions,	and	how	to	overcome	them



Quantum	Random	
Oracle	Model,	Part	2

Mark	Zhandry (Princeton	&	NTT	Research)



Recap:	Classical	ROM
[Bellare-Rogaway’93]

Cryptosystem

hash	

function

Examples:	OAEP,	Fujisaki-Okamoto,	Full-Domain	Hash,	…



Recap:	Classical	ROM
[Bellare-Rogaway’93]

Cryptosystem

H



The	Quantum	Random	Oracle	Model	(QROM)
[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z’11]

H

Now	standard	in	post-quantum	crypto



Security	Proof	Challenges

Typical	QROM	reductions	commit	to	entire	function	

H at	beginning,	remain	consistent	throughout	

[Zhang-Yu-Feng-Fan-Zhang’19]:	“Committed	programming	reductions"



Limits	of	Committed	Programming	Reductions

What	classical	ROM	proofs	admit	CPReds,	and	which	don’t?

What	to	do	if	no	CPRed?



Example:	The	Fiat-Shamir	Transform

P V
com
ch
res

(public	coin,	HV)

3-Round	Proof	(of	Knowledge)

π =

NI	Proof	(of	Knowledge)

Also:	Identification	protocols	à signatures

com
ch=H(com)
res

[Fiat-Shamir’87]



Classical	Fiat-Shamir	Proof	

H

com
ch=H(com)
res

Assume:

A



Classical	Fiat-Shamir	Proof

V

comi*
ch*

res

comi

Select	random	query	i*

If	i=i*:chi*=ch*
Else: chißrandomchi

com
ch
res Check:

com=comi*�ch=ch*

A



Problems	with	Fiat-Shamir	in	QROM

Query	extraction:
A’s	state	disturbed	
by	extracting	comi*

Adaptive	Programming:
Can	only	set	H(comi*) after

queries	already	made

Quantum	analog	of	
selecting	random	query?

Use	small	range	

distributions!?



Problems	with	Fiat-Shamir	in	QROM

Thm [Dagdelen-Fischlin-Gagliardoni’13]:	

There	is	no	CPRed for	Fiat-Shamir

Intuition:	two	cases:

(1)	H committed	before	sending	com to	V
à V’s	ch independent	of	A’s	ch

(2)	H committed	after	sending	com to	V
à A’s	com independent	of	reduction’s	com



Solutions?

[Dagdelen-Fischlin-Gagliardoni’13,Unruh’17, Kiltz-

Lyubashevsky-Schaffner’18]:	Assume	extra	properties	(e.g.	

statistical	soundness)	of	proof	system

Problem:	Less	efficient,	maybe	only	proof	(not	PoK)

[Unruh’15]:	Use	different	conversion

Idea:	A commits	to	all	possible	responses	à can	open	

using	knowledge	of	RO

Problem:	Less	efficient



A	Different	Conversion

π = com
{ H(res(ch)) }ch

[Unruh’15]

Rough	idea:

Proof	sketch:	

• Simulate	RO	s.t. reduction	can	efficiently	invert

• Invert	π on	verifier’s	ch
• Lots	of	details	to	make	sure	A doesn’t	cheat



Simulating	Invertible	Random	Oracles

How	to	simulate	H so	that	reduction	can	invert?

Recall:	already	simulating	as	2q-wise	independent	function

àCan	use	degree	2q polynomial	over	finite	field

à Invertible	by	solving	polynomial	equations



Example:	Fujisaki-Okamoto

Building	Block:	One-way PKE

Security:	Enc0(pk,m) one-way

m Enc0

pk
^

c Dec0

sk
^

m
Building	Block:	One-time SKE

Security:	Enc1(k,m0) ≈ Enc1(k,m1),
H∞(Enc(k,m)) large

m Enc1

k
^

c Dec1

k
^

m



Example:	Fujisaki-Okamoto

δß$ Enc0

pk
^

$

m Enc1
^

G
H

c

d Dec0

sk

^

Dec1
^

G

m

Check	Enc0(pk,δ; H(δ,c)) == d



Example:	Fujisaki-Okamoto

δß$ Enc0

pk
^

$

m Enc1
^

G
H

c

d

CCA	security	intuition:

Only	way	to	obtain	valid	(c,d) is	
to	have	queried	H on	some	(δ,c)

àLook	at	prior	queries	to	H to	

answer	CCA	queries

QROM	problem:	CPReds can’t	look	at	prior	RO	queries!



Example:	Fujisaki-Okamoto

CPRed Impossibility?	Open	for	FO,	but	I	expect	one	exists

Impos.	of	CPReds for	OAEP	[Zhang-Yu-Feng-Fan-Zhang’19]

Given	(c,d),	no	way	to	even	tell	which	RO	inputs	or	
outputs	used

à RO	seems	useless



A	Tweaked	Conversion
[Targhi-Unruh’15]

δß$ Enc0

pk

^

$

m Enc1
^

G
H

c

d

J e
Idea:	answer	CCA	queries	

by	computing	δ=J-1(e)



Example:	Domain	Extension	for	RO

Most	hash	functions	built	from	lower-level	objects

hhhhIV

m1 m2 m3 m4
E.g.	Merkle-Damgård

(SHA1,SHA2)

Problem:	sometimes	structure	can	be	

exploited	for	attack,	even	if	h is	assumed	ideal



Example:	Domain	Extension	for	RO

Can	we	nevertheless	justify	the	“RO	

Assumption”,	despite	structure?	

Yes(ish):	indifferentiability

[Maurer-Renner-Holenstein’04]



Indifferentiability

H
MD

Real	World

Sim

Ideal	World

h

A A



Indifferentiability

Thm [Ristenpart-Shacham-Shrimpton’11]:	

Indifferentiability� as	good	as	RO	for	“single	stage	games”	

Thm [Coron-Dodis-Malinaud-Puniya’05]

MD	is	classically	indifferentiable under	appropriate	padding

Proof	idea:	Simulator	can	figure	out	when	A is	trying	to	

evaluate	MD	by	looking	at	past	oracle	queries



Quantum	Indifferentiability

HhMD

Real	World

Sim

Ideal	World

A A



Quantum	Indifferentiability

Fact:	No	CPRed (stateless	simulator)	for	indifferentiable

domain	extension,	regardless	of	construction
Proof	idea:	

• Size(truth	table	of	SimH) << Size(truth	table	of	H)
• And	yet,	SimH allows	for	computing	H

à Compression	for	random	strings



What’s	next?

Certain	protocols,	and	even	certain	tasks,	are	

unprovable	under	CPReds

Final	hour:	non-committed	programming	reductions



Quantum	Random	
Oracle	Model,	Part	3

Mark	Zhandry (Princeton	&	NTT	Research)



Recall:	Typical	Classical	ROM	Proof:	
On-the-fly	Simulation

H
Input Output

x1 y1
x2 y2
x3 y3
x4 y4

Query(x, D):
If	(x,y)�D:

Return(y,D)
Else:

y ß$ Y
D’ = D+(x,y) 
Return(y,D’)



Recall:	Typical	Classical	ROM	Proof:	
On-the-fly	Simulation
Allows	us	to:
• Know	the	inputs	adversary	cares	about �

• Know	the	corresponding	outputs �

• (Adaptively)	program	the	outputs �



CPReds?

Allows	us	to:
• Know	the	inputs	adversary	cares	about �

• Know	the	corresponding	outputs �

• (Adaptively)	program	the	outputs �/	�



Beyond	Committed	Programming

How	do	we	change	oracle	without	detection?

Problem:	repeated	queries?

Problem:	distinguishing	attack
∑|x,0⟩
∑|x,V1⟩

∑|x,0⟩
∑|x,O(x)⟩VS



Random	points

A
H

H’ H’(x)=H(x)�x≠a
aß$

Negligible	query	mass	on	a,	so	change	undetectable
Used,	e.g.	for	NIZKs	[Unruh’16]



Newer	Techniques

Very	recently	(last	2	years),	new	techniques	have	
emerged	that	allow	for	better	programming

Will	highlight	some	techniques



Fiat	Shamir



Recall:	Classical	Fiat-Shamir	Proof

V

comi*
ch*

res

comi

Select	random	query	i*

If	i=i*: chi*=ch*
Else: chißrandomchi

com
ch
res Check:

com=comi*�ch=ch*

A



Failed	Quantum	Fiat-Shamir	Proof

∑│com⟩
Select	random	query	i*
Let	H be	random	func

If	query	i*:
Measureà com*
Respond	w/	ch*
Re-Program	H(com*)=ch*

If	query	≠i*: ch=H(com)
com
ch
res

A
∑│ch⟩

Unfortunately,	doesn’t	work

V

com*
ch*

res



Fixed	Quantum	Fiat-Shamir	Proof

V

com*
ch*

res

∑│com⟩
Select	random	query	i*
Let	H be	random	func

If	query	i*:
Measureà com*
Resp.	w/	chß{ch*,H(com*)}
Re-Program	H(com*)=ch*

If	query	≠i*: ch=H(com)
com
ch
res

A
∑│ch⟩

[Don-Fehr-Majenz-Schaffner’19]:	Amazingly	works



Other	Applications

[Don-Fehr-Majenz’20]:	Multi-round	Fiat-Shamir

“Lifting	Theorem”	[Yamakawa-Z’20]:	
If	search-type game,	and	challenger	
makes	constant number	of	queries	to	RO,
classical	ROM	proof	à QROM	proof
(w/	polynomial	security	loss)



Compressed	Oracles



Step	1:	Quantum-ify (aka	Purify)

H
H

Quantum-ifying (aka	purifying)	random	oracle:
A +						now	single	quantum	system

Reminiscent	of	old	impossibilities	for	unconditional	
quantum	protocols	[Lo’97,Lo-Chau’97,Mayers’97,Nayak’99]



Step	1:	Superposition	of	Oracles

H
Initial	oracle	state:		H

Query(x, y, H): y = y�H(x)

Adversary’s	query
Oracle’s	state



Step	2:	Look	at	Fourier	Domain

HĤ



Step	2:	Look	at	Fourier	Domain

Initial	oracle	state:	Z(x) = 0

Query(x, y, Ĥ): Ĥ = Ĥ�Px,y

Px,y(x’) = 
y if	x=x’
0 else

Ĥ

Proof: A Fourier	
Transform A-T



D

Step	3:	Compress

Ĥ

Observation:
After	q queries,	Ĥ is	non-zero	on	at	most	q points	

^



Step	3:	Compress

Initial	oracle	state:	{}

Query(x, y, D): 
(1)	If	�(x,y’)�D: D = D+(x,0)

(2)	Replace	(x,y’)�D
with	(x,y’�y)

(3)	If	(x,0)�D: remove	it

^
^ ^ ^

^

^

D̂



Step	4:	Revert	back	to	Primal	Domain

D̂D



Input Output

x1 y1
x2 y2
x3 y3
x4 y4

Step	4:	Revert	back	to	Primal	Domain

Points	adversary	cares	about ≈Corresponding	outputs

D Roughly	analogous	
to	classical	on-the-
fly	simulation



Compressed	Oracles

Allows	us	to:
• Know	the	inputs	adversary	cares	about? �

• Know	the	corresponding	outputs? �

• (Adaptively)	program	the	outputs? � (with	some	work)



So,	what	happened?

Observer	Effect:
Learning	anything	about	quantum	system	disturbs	it

gets	disturbedH

HA learns	about												through	queries

Compressed	oracles	decode	
such	disturbance

Reduction	must	answer	
obliviously,	too?

answers	obliviously,	
so	no	disturbance

H

Motivation	for	CPReds: Beyond	CPReds:



Caveats

But,	still	good	enough	for	many	
applications…

Outputs	in	database	≠0 in	Fourier	domain
y values	aren’t	exactly	query	outputs

Examining	x,y values	perturbs	state
Still	must	be	careful	about	how	we	use	them



Some	Applications
[Alagic-Majenz-Russell-Song’18]:	

Quantum-secure	signature	separation

[Liu-Z’19a]:	Tight	bounds	for	
multi-collision	problem [Liu-Z’19b]:	Fiat-Shamir

(	[Don-Fehr-Majenz-Schaffner’19]:	direct	proof	)
[Hosoyamada-Iwata’19]:	
4-round	Luby-Rackoff

[Bindel-Hamburg-Hülsing-Persichetti’19]:	Tighter	CCA	
security	proofs

[Chiesa-Manohar-Spooner’19]:	zk-SNARKs
[Unruh’21]:	Collision	resistance	of	Sponge

[Z’19]:	Indifferentiability of	MD



Summary

• Now	have	numerous	techniques	for	proving	QROM	security

•Many	schemes	of	interest	now	have	QROM	proof

•Major	lingering	issues:	
• Tightness	of	reductions
• Indifferentiability (Sponge,	ideal	ciphers	from	RO)
• Constant-query	lifting	theorem	for	indistinguishability?
• Still	various	missing	pieces


