
CS 258: Quantum Cryptography

Mark Zhandry

Previously…

Group Action
An (abelian) group action is a triple where:
• is an (abelian) group
• is a set
• is an efficient binary operation satisfying

• There is some element that can be efficiently computed
• Usually ask that for each , there exists a unique

such that
• Also usually ask that it is possible to efficiently identify elements

of

Thm [Kuperberg]: Dlog in (abelian) group
actions can be solved in time ,
where is the group order

Known as “subexponential” time

Impact on cryptography

Recall: want security against attacks running in time

Classical groups: can in principle set group size
Find collision in in time

by birthday paradox

Post-quantum group actions: need groups at least

Results in much less efficient schemes

Today: Lattices

Lattices

Imagine dimension in the 100s

Two equivalent descriptions of a lattice

• Discrete subgroup of

• Integer linear combinations of set of vectors that are
linearly independent over reals

Not a lattice:

Columns of are
linearly independent

is called a “basis” for the lattice

Different Bases

Different Bases

For vector spaces: two bases generate the same vector space
if and only if there is an invertible such that

For lattices: two bases generate the same lattice if and
only if there is a unimodular such that

Def: is unimodular if and

Lemma: unimodular s.t.

Proof: ,

Lemma: unimodular s.t.

Proof: ,

Claim: unimodular à unimodular
Proof: Cramer’s rule +

Therefore, for unimodular

Proof of containment identical to before

Lemma: unimodular s.t.

Proof:

Each column of contained in
à for some

By identical argument, for some

Since columns are linearly independent,

à

Lemma: determinant independent of basis

Determinant of lattice

For full-rank lattices, , for any basis

Proof: if for unimodular

For general lattices,

Determinant of lattice

Measure of how dense the lattice is

Integer lattice:

Full-rank lattice:

We will generally consider only full-rank integer lattices

Note that for integer lattices, can consider spanning set
that is not full-rank, and still guarantee discreteness

Hard problems on lattices

Shortest vector problem (SVP)

Closes vector problem (CVP)

SVP

(Approx.) shortest vector problem (SVP): given lattice
(described by some basis), find (approx.) shortest vector

SIVP

(Approx.) shortest independent vector problem (SVP): given
lattice (described by some basis), find (approx.) shortest basis

S(I)VP in dimension 1 is easy

A basis for a dimension-1 lattice is just a scalar

Only possible bases are

Bases are already shortest “vector”

S(I)VP in dimension 1 is easy

A slightly less trivial example:

Let , find basis for lattice generated by

Solution:

Algorithm: subtract from larger element multiples of
smaller element until larger element is smaller. Terminate
when smaller element is 0

S(I)VP in dimension 2 is easy

2-dimensional version of GCD

In higher dimensions, especially beyond
dimension 5, LLL fails to give shortest vector

Generalization of GCD to higher-dimensions is
called LLL (Lenstra–Lenstra–Lovász)

It does give a ”reasonably short” basis
(within factor of optimal)

Hardness of SVP

Approximation ratio

≈NP-hard EasyCrypto

CVP

(Approx.) closest vector problem (CVP): given lattice
and point off lattice, find (approx.) closest lattice point

We’ve actually seen lattices before

Let be a periodic function

The set of periods is a lattice!

Given Shor’s algorithm, no hope of hiding the
description of the period as a lattice

SVP: finding a short period. Seems hard even for quantum

Historically, lattices (specifically LLL) were used
for cryptanalysis (breaking crypto)

However, in 1990’s hard problems on lattices emerged
as a potential tool for cryptography, can solve many

problems we don’t otherwise no how to solve

With looming threat of quantum computers, now
arguably main focus for post-quantum cryptosystems

An easy lattice:

SIVP: the standard basis vectors

CVP: round each coordinate

Measure of good bases

Intuition: SVP and CVP are easy in because we have a
really good basis, namely the standard basis

For a general lattice, (approximate) SVP and CVP will be easy
if we have a basis under which ”looks like”

Roughly, want basis vectors to be approximately orthogonal

Since determinant is preserved, this
correlates with basis vectors being “short”

Gram-Schmidt Orthogonalization
(no normalization)

…

Note: not in lattice

Gram-Schmidt Orthogonalization
(no normalization)

A good basis is therefore one where

CVP with a good basis
Babai’s nearest plane

Given basis and a target , do the following:

For ,

Output

Intuition: each update to is trying to get it as
close to the origin as possible while only

adding/subtracting lattice points

always stays a lattice vector, and small

Decent CVP solution

Lemma:

Proof: rotate lattice so that are standard basis vectors

 After first update ,

last coordinate is range

Future updates do not change last coordinate

Lemma:

Proof: Applying argument to each coordinate shows that
coordinate ends up in range

Norm of th coordinate of final bounded by

 à Norm bound follows from Pythagorean theorem

Notion of good bases and bad bases great for cryptography:

Good basis = secret key
Bad basis = public key

Encryption from lattices

Encrypt m:
 (1) Map m to lattice point
 (2) Output close non-lattice point

m
c

Decrypt c: use good basis + Babai

Security intuitively
relies on hardness of
CVP given bad basis

Signatures from lattices

Sign m:
 (1) Map m to non-lattice point
 (2) Output close lattice point

σ
m

Verifiy m, σ: Check closeness and that
 σ in lattice

Security intuitively
relies on hardness of
CVP given bad basis

Next time:
SIS and LWE: (approx.) SVP and CVP for a special family of lattices

