CS 258: Quantum Cryptography

Mark Zhandry

Previously...

Group Action

An (abelian) group action is a triple $(\mathbb{G},\mathcal{X},*)$ where:

- G is an (abelian) group
- $\cdot \mathcal{X}$ is a set
- $*: \mathbb{G} imes \mathcal{X} o \mathcal{X}$ is an efficient binary operation satisfying g*(h*x) = (gh)*x
- There is some element $x_0 \in \mathcal{X}$ that can be efficiently computed
- Usually ask that for each $x,y\in\mathcal{X}$, there exists a unique $g\in\mathbb{G}$ such that y=g*x
- Also usually ask that it is possible to efficiently identify elements of ${\mathcal X}$

Thm [Kuperberg]: Dlog in (abelian) group actions can be solved in time $2^{O(\sqrt{\log q})}$, where q is the group order

Known as "subexponential" time

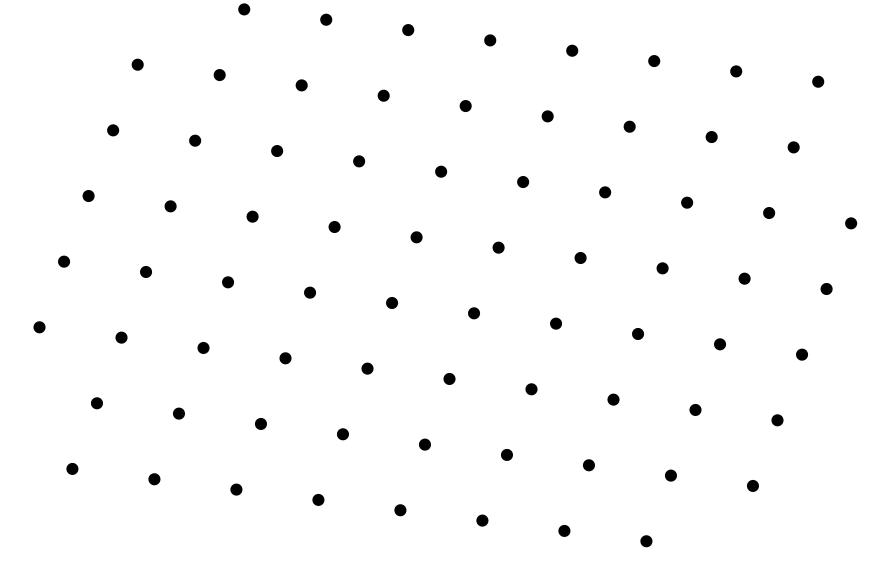
Impact on cryptography

Recall: want security against attacks running in time 2^{128}

Classical groups: can in principle set group size 2^{256} Find collision in $f(x,y)=g^xh^y$ in time \sqrt{q} by birthday paradox

Post-quantum group actions: need groups at least $2^{128^2} \approx 2^{16384}$ Results in much less efficient schemes **Today: Lattices**

Lattices



Imagine dimension in the 100s

Two equivalent descriptions of a lattice

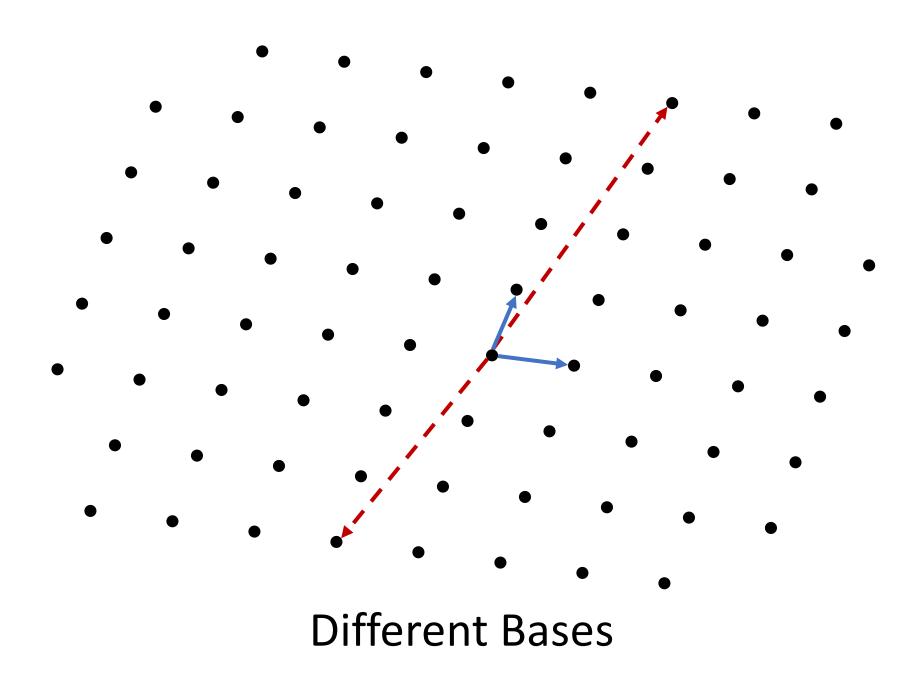
• Discrete subgroup of \mathbb{R}^n

Not a lattice:
$$\{a+b\sqrt{5}:a,b\in\mathbb{Z}\}$$

 Integer linear combinations of set of vectors that are linearly independent over reals

$$\mathcal{L}(\mathbf{B}) = \{\mathbf{B} \cdot \mathbf{v} : \mathbf{v} \in \mathbb{Z}^n\}$$
 Columns of \mathbf{B} are linearly independent

B is called a "basis" for the lattice



Different Bases

For vector spaces: two bases ${f B}_1, {f B}_2$ generate the same vector space if and only if there is an invertible ${f U}$ such that ${f B}_2={f B}_1\cdot {f U}$

For lattices: two bases ${f B}_1, {f B}_2$ generate the same lattice if and only if there is a unimodular ${f U}$ such that ${f B}_2={f B}_1\cdot {f U}$

Def: \mathbf{U} is unimodular if $\mathbf{U} \in \mathbb{Z}^{n \times n}$ and $\det(\mathbf{U}) \in \{+1, -1\}$

Lemma: $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2) \iff \exists \mathbf{U}$ unimodular s.t. $\mathbf{B}_2 = \mathbf{B}_1 \cdot \mathbf{U}$

Proof:
$$lacktriangle$$
 , $\mathcal{L}(\mathbf{B}_2)\subseteq\mathcal{L}(\mathbf{B}_1)$

$$\mathbf{x} \in \mathcal{L}(\mathbf{B}_2) \Longleftrightarrow \exists \mathbf{v} \in \mathbb{Z}^n : \mathbf{x} = \mathbf{B}_2 \cdot \mathbf{v}$$
 $\iff \mathbf{x} = \mathbf{B}_1 \cdot \mathbf{U} \cdot \mathbf{v} = \mathbf{B}_1 \cdot (\mathbf{U} \cdot \mathbf{v})$

$$\Longrightarrow \mathbf{x} \in \mathcal{L}(\mathbf{B}_1)$$
 $\in \mathbb{Z}^n$

Lemma: $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2) \iff \exists \mathbf{U}$ unimodular s.t. $\mathbf{B}_2 = \mathbf{B}_1 \cdot \mathbf{U}$

Proof: lacktriangle , $\mathcal{L}(\mathbf{B}_1)\subseteq\mathcal{L}(\mathbf{B}_2)$

Claim: \mathbf{U} unimodular $\rightarrow \mathbf{U}^{-1}$ unimodular

Proof: Cramer's rule + $\det(\mathbf{U}) \in \{+1, -1\}$

Therefore, $\mathbf{B}_1 = \mathbf{B}_2 \cdot \mathbf{U}^{-1}$ for unimodular \mathbf{U}^{-1}

Proof of containment identical to before

Lemma: $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2) \iff \exists \mathbf{U}$ unimodular s.t. $\mathbf{B}_2 = \mathbf{B}_1 \cdot \mathbf{U}$

Proof:

Each column of $\, {f B}_{2} \,$ contained in $\, {\cal L}({f B}_{1}) \,$

$$\rightarrow \mathbf{B}_2 = \mathbf{B}_1 \cdot \mathbf{U}$$
 for some $\mathbf{U} \in \mathbb{Z}^{n \times n}$

By identical argument, $\mathbf{B}_1 = \mathbf{B}_2 \cdot \mathbf{V}$ for some $\mathbf{V} \in \mathbb{Z}^{n imes n}$

Since columns are linearly independent, ${f V}={f U}^{-1}$

$$\det(\mathbf{U}), \det(\mathbf{U}^{-1}) = \det(\mathbf{U})^{-1} \in \mathbb{Z}$$

$$\rightarrow \det(\mathbf{U}) \in \{+1, -1\}$$

Determinant of lattice

For full-rank lattices, $\det(\mathcal{L}) = |\det(\mathbf{B})|$, for any basis \mathbf{B}

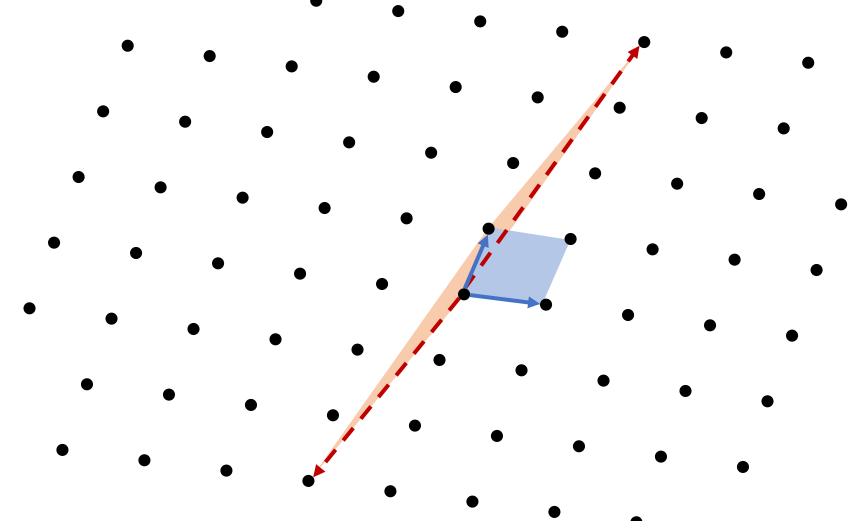
Lemma: determinant independent of basis

Proof: if $\mathbf{B}_2 = \mathbf{B}_1 \cdot \mathbf{U}$ for unimodular \mathbf{U}

$$|\det(\mathbf{B}_2)| = |\det(\mathbf{B}_1)\det(\mathbf{U})| = |\det(\mathbf{B}_1)|$$

For general lattices, $\det(\mathcal{L}) = \sqrt{\det(\mathbf{B}^T\mathbf{B})}$

Determinant of lattice



Measure of how dense the lattice is

Full-rank lattice: $\mathsf{span}(\mathbf{B}) = \mathbb{R}^n \Longleftrightarrow \mathbf{B} \in \mathbb{R}^{n \times n}$

Integer lattice: $\mathbf{B} \in \mathbb{Z}^{m \times n}$

We will generally consider only full-rank integer lattices

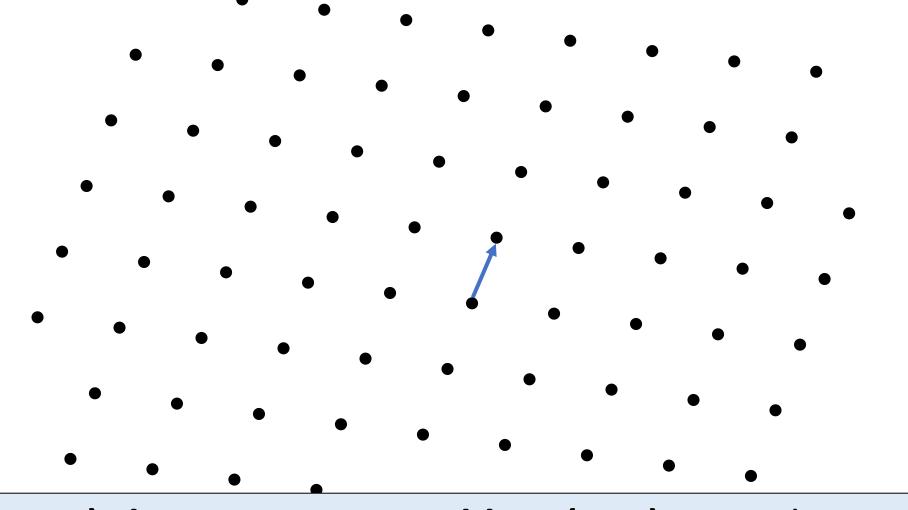
Note that for integer lattices, can consider spanning set that is not full-rank, and still guarantee discreteness

Hard problems on lattices

Shortest vector problem (SVP)

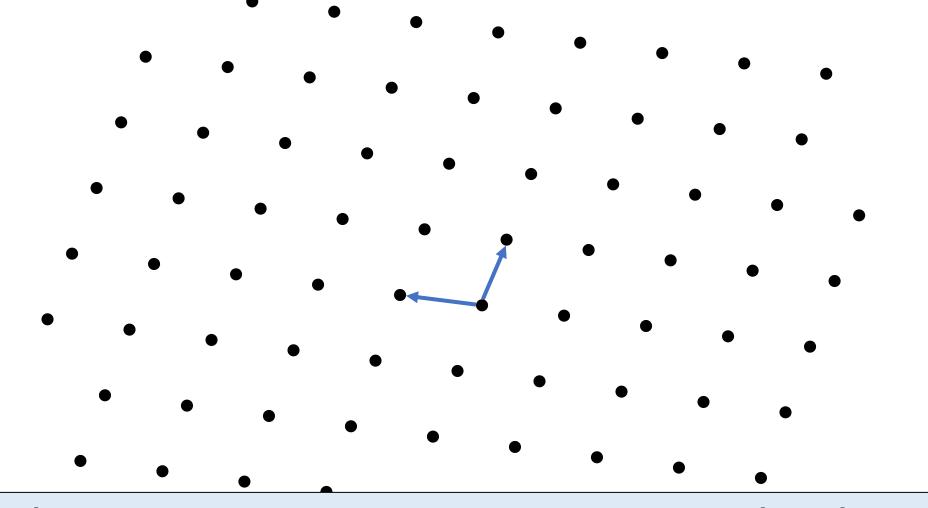
Closes vector problem (CVP)

SVP



(Approx.) shortest vector problem (SVP): given lattice (described by some basis), find (approx.) shortest vector

SIVP



(Approx.) shortest independent vector problem (SVP): given lattice (described by some basis), find (approx.) shortest basis

S(I)VP in dimension 1 is easy

A basis for a dimension-1 lattice is just a scalar $~ {f B} = b \in {\mathbb R}$

Only possible bases are $\pm b$

Bases are already shortest "vector"

S(I)VP in dimension 1 is easy

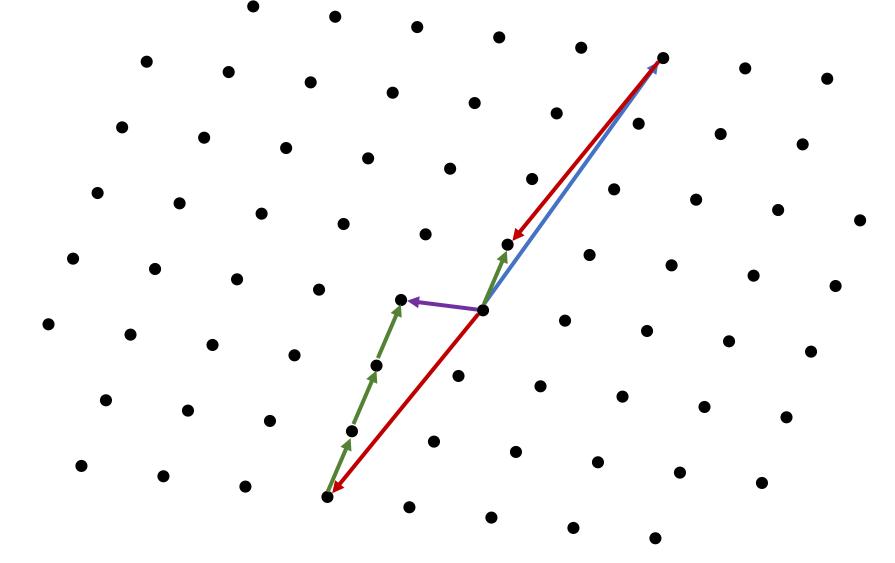
A slightly less trivial example:

Let $\,a,b\in\mathbb{Z}$, find basis for lattice generated by a,b

Solution: $\mathbf{B} = \mathsf{GCD}(a, b)$

Algorithm: subtract from larger element multiples of smaller element until larger element is smaller. Terminate when smaller element is 0

S(I)VP in dimension 2 is easy



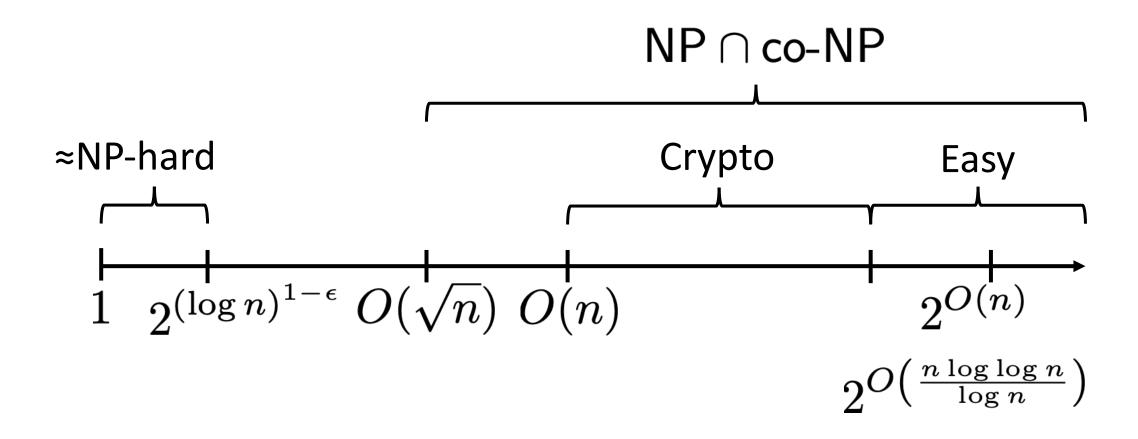
2-dimensional version of GCD

Generalization of GCD to higher-dimensions is called LLL (Lenstra-Lenstra-Lovász)

In higher dimensions, especially beyond dimension 5, LLL fails to give shortest vector

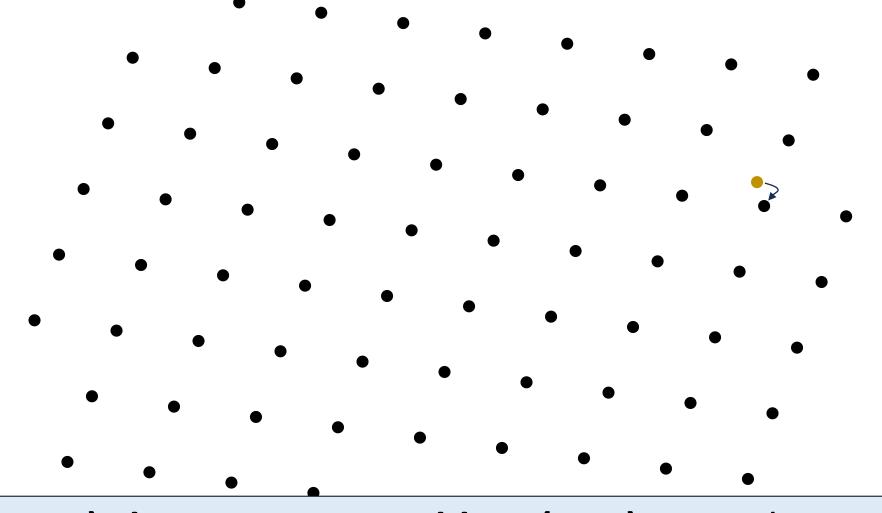
It does give a "reasonably short" basis (within factor $2^{O(n)}$ of optimal)

Hardness of SVP



Approximation ratio

CVP



(Approx.) closest vector problem (CVP): given lattice and point off lattice, find (approx.) closest lattice point

We've actually seen lattices before

Let $f:\mathbb{Z}^n o \mathcal{X}$ be a periodic function

The set of periods is a lattice!

Given Shor's algorithm, no hope of hiding the description of the period as a lattice

SVP: finding a short period. Seems hard even for quantum

Historically, lattices (specifically LLL) were used for cryptanalysis (breaking crypto)

However, in 1990's hard problems on lattices emerged as a potential tool for cryptography, can solve many problems we don't otherwise no how to solve

With looming threat of quantum computers, now arguably main focus for post-quantum cryptosystems

An easy lattice: \mathbb{Z}^n

SIVP: the standard basis vectors

CVP: round each coordinate

Measure of good bases

Intuition: SVP and CVP are easy in \mathbb{Z}^n because we have a really good basis, namely the standard basis

For a general lattice, (approximate) SVP and CVP will be easy if we have a basis under which $\mathcal L$ "looks like" $\mathbb Z^n$

Roughly, want basis vectors to be approximately orthogonal

Since determinant is preserved, this correlates with basis vectors being "short"

Gram-Schmidt Orthogonalization (no normalization)

$$\mathbf{B} = (\mathbf{b}_1 \mid \mathbf{b}_2 \mid \cdots)$$

$$\mathbf{b}_1 = \mathbf{b_1}$$

$$ilde{\mathbf{b}}_2 = \mathbf{b}_2 - rac{ ilde{\mathbf{b}}_1 \cdot \mathbf{b}_2}{| ilde{\mathbf{b}}_1|^2} ilde{\mathbf{b}}_1$$

Note: \mathbf{b}_i not in lattice

$$\tilde{\mathbf{b}}_3 = \mathbf{b}_3 - \frac{\tilde{\mathbf{b}}_1 \cdot \mathbf{b}_3}{|\tilde{\mathbf{b}}_1|^2} \tilde{\mathbf{b}}_1 - \frac{\tilde{\mathbf{b}}_2 \cdot \mathbf{b}_3}{|\tilde{\mathbf{b}}_2|^2} \tilde{\mathbf{b}}_2$$

• • •

Gram-Schmidt Orthogonalization

(no normalization)

$$\mathbf{B} = (\ \mathbf{b}_1 \ | \ \mathbf{b}_2 \ | \cdots)$$
 $\det(\mathbf{B}) = \det(\tilde{\mathbf{B}})$
 $\tilde{\mathbf{B}} = (\ \tilde{\mathbf{b}}_1 \ | \ \tilde{\mathbf{b}}_2 \ | \cdots)$

A good basis is therefore one where $\, {f B} pprox {f B} \,$

CVP with a good basis

Babai's nearest plane

Given basis ${f B}$ and a target ${f c}$, do the following:

$$\mathbf{c'} \leftarrow \mathbf{c}$$
 For $i=n,\cdots,1$, $\mathbf{c'} \leftarrow \mathbf{c'} - \left\lceil rac{ ilde{\mathbf{b}}_i \cdot \mathbf{c'}}{| ilde{\mathbf{b}}_i|^2}
ight
floor$

Output $\mathbf{c} - \mathbf{c}'$

Intuition: each update to \mathbf{c}' is trying to get it as close to the origin as possible while only adding/subtracting lattice points

 ${f c}-{f c}'$ always stays a lattice vector, and ${f c}'$ small

Lemma:
$$|\mathbf{c}'|^2 \leq \frac{1}{4} \sum_i |\tilde{\mathbf{b}}_i|^2$$

Proof: rotate lattice so that $|\mathbf{b}_i|/|\mathbf{b}_i|$ are standard basis vectors

After first update
$$\mathbf{c}' \leftarrow \mathbf{c}' - \left\lceil \frac{\tilde{\mathbf{b}}_n \cdot \mathbf{c}'}{|\tilde{\mathbf{b}}_n|^2} \right\rfloor \mathbf{b}_n$$
 ,

last coordinate is range
$$\left[-|\tilde{\mathbf{b}}_n|/2,|\tilde{\mathbf{b}}_n|/2\right]$$

Future updates do not change last coordinate

Lemma:
$$|\mathbf{c}'|^2 \leq \frac{1}{4} \sum_i |\tilde{\mathbf{b}}_i|^2$$

Proof: Applying argument to each coordinate shows that coordinate i ends up in range

$$\left[-|\tilde{\mathbf{b}}_i|/2,|\tilde{\mathbf{b}}_i|/2\right]$$

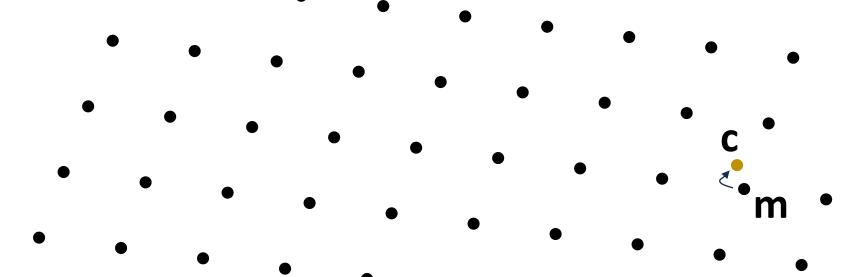
Norm of i th coordinate of final ${f c}'$ bounded by $|{f b}_i|/2$

→ Norm bound follows from Pythagorean theorem

Notion of good bases and bad bases great for cryptography:

Good basis = secret key Bad basis = public key

Encryption from lattices



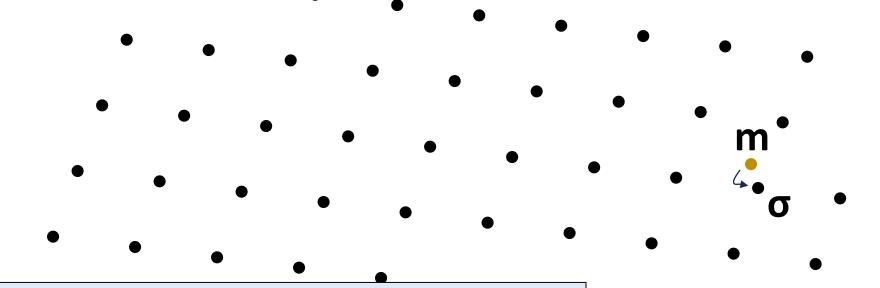
Encrypt m:

- (1) Map m to lattice point
- (2) Output close non-lattice point

Decrypt c: use good basis + Babai

Security intuitively relies on hardness of CVP given bad basis

Signatures from lattices



Sign m:

- (1) Map m to non-lattice point
- (2) Output close lattice point

Verifiy \mathbf{m} , $\boldsymbol{\sigma}$: Check closeness and that $\boldsymbol{\sigma}$ in lattice

Security intuitively relies on hardness of CVP given bad basis

Next time:

SIS and LWE: (approx.) SVP and CVP for a special family of lattices