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Previously...



Group Action

An (abelian) group action is a triple (G, X, x) where:
(3 is an (abelian) group

e X is a set
ex: (G X X — X isan efficient binary operation satisfying

g* (hxx)=(gh)*x

* Thereis some element xg € X that can be efficiently computed
e Usually ask that for each ,y € &, there exists a unique g € G

suchthat Yy = g * &
* Also usually ask that it is possible to efficiently identify elements

of X



p
Thm [Kuperberg]: Dlog in (abelian) group
actions can be solved in time 90(vlogq),

where ¢ is the group order
-

~

Known as “subexponential” time



Impact on cryptography

Recall: want security against attacks running in time 2148

Classical groups: can in principle set group size 22°°

Find collisionin f(x,y) = g*hY in time V4
by birthday paradox

2
Post-quantum group actions: need groups at least 9128° , 916384

Results in much less efficient schemes



Today: Lattices



Lattices

Imagine dimension in the 100s



Two equivalent descriptions of a lattice

* Discrete subgroup of R"

Not a lattice: {a + bV/'5: a,b € Z}

* Integer linear combinations of set of vectors that are
linearly independent over reals

Columns of B are
linearly independent

L(B)={B-v:veZ"}

B is called a “basis” for the lattice



Different Bases



Different Bases

For vector spaces: two bases B1, By generate the same vector space
if and only if there is an invertible Usuchthat B, =B, - U

For lattices: two bases B, B generate the same lattice if and
only if there is a unimodular U suchthat Bo = B; - U

Def: U is unimodular if U € Z"*™and det(U) € {+1, —1} J




/Lemma: L(B;1) = L(B2) 4 9U unimodulars.t. B, = B - U\
/Proof:«, L(Bs) C L(B1) )

Xx€ELBy) <= IveZ" . x=By-vVv
<:>X=B1°U°V=B1°(U°V)

i

—> X € L(Bl) € 2"
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Lemma: £L(B;) = £(B2) 4 3U unimodulars.t. B, = B -

Proof: 4mm L(B1) C L(B3)

Claim: U unimodular = U~! unimodular
Proof: Cramer’s rule + det(U) € {+1, —1}

Therefore, B; = By - U™ for unimodular U1

Proof of containment identical to before

/\d
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Lemma: £(B;) = £L(B>) 4 JU unimodulars.t. B, = B; - U

/Proof:# )
Each column of By contained in £(B1)
> B, = B; - U forsome U € Z™*"

By identical argument, B = Bs - V forsomeV &€ Z™"*"

Since columns are linearly independent, V = U

det(U), det(U™!) = det(U)~! € Z
> det(U) € {+1, -1}




Determinant of lattice

For full-rank lattices, det(£) = | det(B)

, for any basis B

Vs

Lemma: determinant independent of basis

N

Proof: if B, = B - U for unimodular U
| det(B3)| = | det(B1) det(U)| = | det(B1)]

For general lattices, det(L) = \/det(BTB)



Determinant of lattice

Measure of how dense the lattice is



Full-rank lattice: span(B) = R" <— B € R"*"

Integer lattice: B € Z™*"™

We will generally consider only full-rank integer lattices

Note that for integer lattices, can consider spanning set
that is not full-rank, and still guarantee discreteness



Hard problems on lattices

Shortest vector problem (SVP)

Closes vector problem (CVP)



SVP

(Approx.) shortest vector problem (SVP): given lattice
(described by some basis), find (approx.) shortest vector




SIVP

(Approx.) shortest independent vector problem (SVP): given
lattice (described by some basis), find (approx.) shortest basis




S(I)VP in dimension 1 is easy

A basis for a dimension-1 lattice isjustascalar B =06 € R

Only possible bases are +b

Bases are already shortest “vector”



S(I)VP in dimension 1 is easy

A slightly less trivial example:

Let a,b € Z, find basis for lattice generated by a, b

Solution: B = GCD(a, b)

Algorithm: subtract from larger element multiples of
smaller element until larger element is smaller. Terminate
when smaller element is O



S(I)VP in dimension 2 is easy

2-dimensional version of GCD



Generalization of GCD to higher-dimensions is
called LLL (Lenstra—Lenstra—Lovasz)

In higher dimensions, especially beyond
dimension 5, LLL fails to give shortest vector

It does give a “reasonably short” basis
(within factor 99(n) of optimal)



Hardness of SVP
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CVP
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(Approx.) closest vector problem (CVP): given lattice
and point off lattice, find (approx.) closest lattice point




We've actually seen lattices before

Let f : Z" — X be a periodic function

The set of periods is a lattice!

Given Shor’s algorithm, no hope of hiding the
description of the period as a lattice

SVP: finding a short period. Seems hard even for quantum



Historically, lattices (specifically LLL) were used
for cryptanalysis (breaking crypto)

However, in 1990’s hard problems on lattices emerged
as a potential tool for cryptography, can solve many
problems we don’t otherwise no how to solve

With looming threat of quantum computers, now
arguably main focus for post-quantum cryptosystems



An easy lattice: Z"

SIVP: the standard basis vectors

CVP: round each coordinate



Measure of good bases

Intuition: SVP and CVP are easy in Z" because we have a
really good basis, namely the standard basis

For a general lattice, (approximate) SVP and CVP will be easy
if we have a basis under which £ ”looks like” Z"

Roughly, want basis vectors to be approximately orthogonal

Since determinant is preserved, this
correlates with basis vectors being “short”



Gram-Schmidt Orthogonalization
(no normalization)

b; = by
by = by
bz = bs

B=( by || )

Note: b; not in lattice




Gram-Schmidt Orthogonalization
(no normalization)

B

(b lba]o)

~

5 det(B) = det(B)
B

1

A good basis is therefore one where B~B



CVP with a good basis

Babai’s nearest plane

Given basis B and a target ¢, do the following:

¢ «—c

For i =mn,---,1,c «+ c —

Output ¢ — c’

b,



Intuition: each update to ¢’ is trying to get it as
close to the origin as possible while only

adding/subtracting lattice points

c — ¢’ always stays a lattice vector, and ¢’ small

# Decent CVP solution
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Lemma: ‘C | < Z EZ :‘b2|

> , == , <
Proof: rotate lattice so that b; /|b;| are standard basis vectors
b, -c
After first update ¢’ < ¢’ — - b,, ,
bn[?
last coordinate is range [—\bn|/2, |bn‘/2]
Future updates do not change last coordinate
N Y
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Lemma: ‘C | < 1 EZ :‘b2|

.

>
Proof: Applying argument to each coordinate shows that
coordinate 7 ends up in range

[—\Bi|/27 |Bi\/2]
Norm of ith coordinate of final ¢’ bounded by ‘Bz‘/z

- Norm bound follows from Pythagorean theorem
N

AN




Notion of good bases and bad bases great for cryptography:

Good basis = secret key
Bad basis = public key



Encryption from lattices

Encrypt m:
(1) Map m to lattice point
(2) Output close non-lattice point

Decrypt c: use good basis + Babai

Security intuitively
relies on hardness of
CVP given bad basis



Signatures from lattices

Sigh m:

(1) Map m to non-lattice point
(2) Output close lattice point

o in lattice

Verifiy m, o: Check closeness and that

Security intuitively
relies on hardness of
CVP given bad basis



Next time:
SIS and LWE: (approx.) SVP and CVP for a special family of lattices



