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Previously…



Group Action
An (abelian) group action is a triple                      where:
•    is an (abelian) group
•    is a set
•                                  is an efficient binary operation satisfying

• There is some element                  that can be efficiently computed
• Usually ask that for each                    , there exists a unique           

such that
• Also usually ask that it is possible to efficiently identify elements 

of    



Thm [Kuperberg]: Dlog in (abelian) group 
actions can be solved in time                     , 
where     is the group order                      

Known as “subexponential” time



Impact on cryptography

Recall: want security against attacks running in time 

Classical groups: can in principle set group size 
Find collision in                                  in time         

by birthday paradox 

Post-quantum group actions: need groups at least 

Results in much less efficient schemes



Today: Lattices



Lattices

Imagine dimension in the 100s



Two equivalent descriptions of a lattice

• Discrete subgroup of 

• Integer linear combinations of set of vectors that are 
linearly independent over reals

Not a lattice:

Columns of        are 
linearly independent 

is called a “basis” for the lattice



Different Bases



Different Bases

For vector spaces: two bases                 generate the same vector space 
if and only if there is an invertible       such that  

For lattices: two bases                 generate the same lattice if and 
only if there is a unimodular such that  

Def:      is unimodular if                        and  



Lemma:                                              unimodular s.t.

Proof:         , 



Lemma:                                              unimodular s.t.

Proof:         , 

Claim:      unimodular à            unimodular
Proof: Cramer’s rule + 

Therefore,                                   for unimodular

Proof of containment identical to before



Lemma:                                              unimodular s.t.

Proof:    

Each column of           contained in
à                               for some

By identical argument,                             for some  

Since columns are linearly independent, 

à



Lemma: determinant independent of basis

Determinant of lattice

For full-rank lattices,                                          , for any basis  

Proof: if                              for unimodular  

For general lattices,



Determinant of lattice

Measure of how dense the lattice is



Integer lattice:

Full-rank lattice:

We will generally consider only full-rank integer lattices

Note that for integer lattices, can consider spanning set 
that is not full-rank, and still guarantee discreteness



Hard problems on lattices

Shortest vector problem (SVP)

Closes vector problem (CVP)



SVP

(Approx.) shortest vector problem (SVP): given lattice 
(described by some basis), find (approx.) shortest vector  



SIVP

(Approx.) shortest independent vector problem (SVP): given 
lattice (described by some basis), find (approx.) shortest basis  



S(I)VP in dimension 1 is easy

A basis for a dimension-1 lattice is just a scalar 

Only possible bases are 

Bases are already shortest “vector”



S(I)VP in dimension 1 is easy

A slightly less trivial example:

Let                   , find basis for lattice generated by

Solution: 

Algorithm: subtract from larger element multiples of 
smaller element until larger element is smaller. Terminate 
when smaller element is 0



S(I)VP in dimension 2 is easy

2-dimensional version of GCD



In higher dimensions, especially beyond 
dimension 5, LLL fails to give shortest vector 

Generalization of GCD to higher-dimensions is 
called LLL (Lenstra–Lenstra–Lovász)

It does give a ”reasonably short” basis 
(within factor              of optimal) 



Hardness of SVP

Approximation ratio

≈NP-hard EasyCrypto



CVP

(Approx.) closest vector problem (CVP): given lattice 
and point off lattice, find (approx.) closest lattice point



We’ve actually seen lattices before

Let                             be a periodic function 

The set of periods is a lattice!

Given Shor’s algorithm, no hope of hiding the 
description of the period as a lattice

SVP: finding a short period. Seems hard even for quantum



Historically, lattices (specifically LLL) were used 
for cryptanalysis (breaking crypto) 

However, in 1990’s hard problems on lattices emerged 
as a potential tool for cryptography, can solve many 

problems we don’t otherwise no how to solve

With looming threat of quantum computers, now 
arguably main focus for post-quantum cryptosystems



An easy lattice: 

SIVP: the standard basis vectors

CVP: round each coordinate



Measure of good bases

Intuition: SVP and CVP are easy in         because we have a 
really good  basis, namely the standard basis

For a general lattice, (approximate) SVP and CVP will be easy 
if we have a basis under which      ”looks like”  

Roughly, want basis vectors to be approximately orthogonal

Since determinant is preserved, this 
correlates with basis vectors being “short”



Gram-Schmidt Orthogonalization
(no normalization)

…

Note:       not in lattice  



Gram-Schmidt Orthogonalization
(no normalization)

A good basis is therefore one where 



CVP with a good basis
Babai’s nearest plane

Given basis       and a target    , do the following:   

For                            , 

Output 



Intuition: each update to       is trying to get it as 
close to the origin as  possible while only 

adding/subtracting lattice points

always stays a lattice vector, and       small 

Decent CVP solution



Lemma:

Proof: rotate lattice so that                  are standard basis vectors

 After first update                                                    , 

last coordinate is range 

Future updates do not change last coordinate



Lemma:

Proof: Applying argument to each coordinate shows that 
coordinate     ends up in range

Norm of    th coordinate of final       bounded by  
 
 à Norm bound follows from Pythagorean theorem 

 



Notion of good bases and bad bases great for cryptography:

Good basis = secret key
Bad basis = public key



Encryption from lattices

Encrypt m: 
  (1) Map m to lattice point
  (2) Output close non-lattice point

m
c

Decrypt c: use good basis + Babai

Security intuitively 
relies on hardness of 
CVP given bad basis



Signatures from lattices

Sign m: 
  (1) Map m to non-lattice point
  (2) Output close lattice point

σ
m

Verifiy m, σ: Check closeness and that 
    σ in lattice

Security intuitively 
relies on hardness of 
CVP given bad basis



Next time: 
SIS and LWE: (approx.) SVP and CVP for a special family of lattices


