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Previously…



Recall Diffie-Hellman

a cyclic group of order     with generator   



Recall Shor’s Algorithm

Given               , define  

Finding periods in      reveals  



Shor vs Diffie-Hellman
Shor requires group multiplication and discrete 
exponentiation (                ) to compute

Typically, discrete exponentiation is obtained 
from multiplication by repeated squaring 

Diffie-Hellman “only” requires discrete exponentiation

What if we had a group where we could 
perform exponentiation but not multiplication?



Group Action
An (abelian) group action is a triple                      where:
•    is an (abelian) group
•    is a set
•                                  is an efficient binary operation satisfying

• There is some element                  that can be efficiently computed
• Usually ask that for each                    , there exists a unique           

such that
• Also usually ask that it is possible to efficiently identify elements 

of    



Diffie-Hellman over Group Actions



Hashing from Groups

Let           be two group elements 



Hashing from Group Actions?

Let                be two set elements 



Today: Kuperberg’s Algorithm



An (abelian) group action is a triple                      where:
•    is an (abelian) group
•    is a set
•                                  is an efficient binary operation satisfying

To make Kuperberg’s algorithm easier to follow, we will 
switch to an additive notation for group actions

Nothing changes except notation



We are given                                 , our goal is to find



Let’s Try Attacking Group Actions Anyway

• Prepare

• Apply         to obtain

• Measure      à Measurement outcome
 State collapses to



Now apply                to the first register 

Measure first register
random



Turns out a single sample doesn’t contain enough 
information to find 

With polynomially-many samples, it turns out there is an 
inefficient algorithm to recover 

Kuperberg’s algorithm: a tradeoff between samples and 
computation time



For simplicity, we will take      to be a power of 2,  

Notice that if              , 

Apply       : 

If      odd, learn least significant bit of 



Our goal then is to gradually reduce      until it’s 1 



We will show this momentarily

If               have same lsb, then  

Combining Samples



Step 1:



Step 2: Measure 

Random choice of



Attempt 1
• Generate       random samples  

• Partition samples into odd and even parities

Even Odd

• Even’s are already good

• Pair off odds and combine



Attempt 1

Evens and odds will have                  samples each 

End samples will include all evens and half of odds
samples after first iteration

Repeat      times  à final number of samples

Total running time:



Slightly better than Grover search, but still exponential



• Generate       random samples  

• Partition samples based on lowest    bits

Ends in  

• Pair off within each set and combine

Kuperberg’s algorithm

Ends in  Ends in  …

• Keep only the                    terms  



Kuperberg’s algorithm

Since              agree on lowest    bits,                  ends in     zeros    

After one step, have                 samples
• Lose half because of merging
• Lose another half for the      outcomes   



How many samples do we need?

In each iteration, we need to fill each set with at least 2 samples
In particular, for the very last iteration, need              samples 

In each iteration, we only keep           of samples 

Each iteration reduces     by      à            iterations 

Need to start with

Set                   à 



Thm [Kuperberg]: Dlog in (abelian) group 
actions can be solved in time                     , 
where     is the group order                      

Known as “subexponential” time



Impact on cryptography

Recall: want security against attacks running in time 

Classical groups: can in principle set group size 
Find collision in                                  in time         

by birthday paradox 

Post-quantum group actions: need groups at least 

Results in much less efficient schemes



Tension between structure and security

Groups have lots of structure à lots of applications, 
but also Shor’s algorithm

Group actions have less structure, but some à fewer 
applications, resistant to Shor’s, but subject to Kuperberg’s

Other concepts may have even less structure à even fewer 
applications, but also fewer attacks



The Case of SIKE (Supersingular Isogeny Key Exchange)

Motivated to block Kuperberg’s algorithm, SIKE was proposed 
using isogenies over “supersingular” elliptic curves

These curves are not abelian group actions, so plausible 
exponential security à improved efficiency

But, since there is no commutation, also not clear how to do key 
exchange. Solution was for Alice, Bob to give each other extra hints

Turns out these hints completely broke the protocol



Broader Picture: Hidden Shifts

Kuperberg actually solves a much more 
general problem called hidden shift 

Given                                 injective, such that 
                                       , find (      written additively)

Group action Dlog is a special case of hidden shift where 



An even broader picture: Non-abelian groups

Recall: Shor’s algorithm solves the period-finding / hidden 
subgroup problem in abelian groups

Natural question: what about non-abelian groups?

Turns out that non-abelian groups seem much harder



An even broader picture: Non-abelian groups

Hidden shift can be seen as hidden subgroup for the dihedral group

is a rotation + reflection



An even broader picture: Non-abelian groups

Period-finding hardness:

Class of groups Hardness
Abelian Polynomial time (Shor)
Dihedral Sub-exponential-time (Kuperberg)
General Exponential

Proven upper bounds (attacks)
Conjectured lower bounds



A central challenge

Recall: the classical black box query complexity of abelian 
hidden subgroup provably was exponential
àGives exponential lower bound for “generic” 
 classical algorithms

Not a proof of actual hardness, but a 
good heuristic to justify security



A central challenge

Want: a black box query lower-bound for group actions

Unfortunately, this is impossible as the query complexity 
is actually polynomial



A central challenge

Apply Hadamard and measure

Prob 1 = 

Prob 0 = 

Noisily learn whether 

Is closer to 0 or 

With                        samples,    information-theoretically fixed  



So we will never know for sure if group actions are 
even generically secure. But despite tons of interest, 

still no polynomial-time attack



Next time: lattices


