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Previously...



Recall Diffie-Hellman
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Recall Shor’s Algorithm

Given h = g% define f : Zg — G f(z,y) = g*hY

f((z,y) + (ra,—r) ) = g" YT = g"TT g
=g""" = g"h = f(z,y)

Finding periods in f reveals a



Shor vs Diffie-Hellman

Shor requires group multiplication and discrete
exponentiation (£ — g”) to compute f(z,y) = g*hY

Typically, discrete exponentiation is obtained
from multiplication by repeated squaring

9° =gx(g°)?=9x((¢°)*)*=9gx((9 xg°)?)?

Diffie-Hellman “only” requires discrete exponentiation

What if we had a group where we could
perform exponentiation but not multiplication?



Group Action

An (abelian) group action is a triple (G, X, x) where:
(3 is an (abelian) group

e X is a set
ex: (G X X — X isan efficient binary operation satisfying

g* (hxx)=(gh)*x

* Thereis some element xg € X that can be efficiently computed
e Usually ask that for each ,y € &, there exists a unique g € G

suchthat Yy = g * &
* Also usually ask that it is possible to efficiently identify elements

of X



Diffie-Hellman over Group Actions




Hashing from Groups
Let g, h be two group elements
H:7:—-G
H(z,y) = g"h"



Hashing from Group Actions?

Let g, L1 be two set elements
H:Gx{0,1} - X
H(g,b) = g * s



Today: Kuperberg’s Algorithm



To make Kuperberg’s algorithm easier to follow, we will
switch to an additive notation for group actions

An (abelian) group action is a triple ((G, X, >|<) where:

(7 is an (abelian) group

* X is a set

ex : G x X = X isan efficient binary operation satisfying

gx(hxx)=(g+h)*x

Nothing changes except notation



We are given g, X1 = a * I, our goal is to find a



Let’s Try Attacking Group Actions Anyway
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Now apply QF T, to the first register
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Turns out a single sample doesn’t contain enough
information to find a

With polynomially-many samples, it turns out there is an
inefficient algorithm to recover ¢

Kuperberg’s algorithm: a tradeoff between samples and
computation time



For simplicity, we will take g to be a power of 2, g = Pk

1 1
Notice thatif k =1, |ip) = E\O) | 2( 1)2"1)

4

If h odd, learn least significant bit of a



Our goal then is to gradually reduce k£ until it’s 1



Combining Samples
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Step 2: Measure C

Random choice of |¢;§O:h1>




Attempt 1

* Generate 7" random samples h;, Wﬁ)

* Partition samples into odd and even parities

* Even’s are

[V,

e Pair off od

(hi

already good
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Attempt 1

Evens and odds will have = T'/2 samples each

End samples will include all evens and half of odds
mp ~ 3T /4 samples after first iteration

Repeat k times -> final number of samples ~ (3/4)*T

Total running time: =~ T ~ (4/3)"



Slightly better than Grover search, but still exponential



Kuperberg’s algorithm

* Generate 7" random samples h;, Wﬁ)

* Partition samples based on lowest 7 bits

e Pair off within each set and combine

(halg, ), (Ry, R )) = by & hy, [OF 4, )

* Keep only the h; — h; terms



Kuperberg’s algorithm

Since h;, h; agree on lowestr bits, h; — h; endsin T zeros

|?7D}kl,:i—hj> W(h —h. )/2r>

After one step, have =~ T'/4 samples
* Lose half because of merging
* Lose another half for the + outcomes




How many samples do we need?

In each iteration, we need to fill each set with at least 2 samples

In particular, for the very last iteration, need ~ 2" samples

In each iteration, we only keep 1/4 of samples

Each iteration reduces k by r = k/r iterations

Need to start with 7" =~ 2" X 4"“/"“ — 2’“+2k/7“

Setr =vVk > T~ 23Vk _ 9O(VIogq)



p
Thm [Kuperberg]: Dlog in (abelian) group
actions can be solved in time 90(vlogq),

where ¢ is the group order
-

~

Known as “subexponential” time



Impact on cryptography

Recall: want security against attacks running in time 2148

Classical groups: can in principle set group size 22°°

Find collisionin f(x,y) = g*hY in time V4
by birthday paradox

2
Post-quantum group actions: need groups at least 9128° , 916384

Results in much less efficient schemes



Tension between structure and security

Groups have lots of structure = lots of applications,
but also Shor’s algorithm

Group actions have less structure, but some - fewer
applications, resistant to Shor’s, but subject to Kuperberg’s

Other concepts may have even less structure = even fewer
applications, but also fewer attacks



The Case of SIKE (Supersingular Isogeny Key Exchange)

Motivated to block Kuperberg’s algorithm, SIKE was proposed
using isogenies over “supersingular” elliptic curves

These curves are not abelian group actions, so plausible
exponential security = improved efficiency

But, since there is no commutation, also not clear how to do key
exchange. Solution was for Alice, Bob to give each other extra hints

Turns out these hints completely broke the protocol



Broader Picture: Hidden Shifts

Kuperberg actually solves a much more
general problem called hidden shift

Given fo, f1 : G — X injective, such that
f1(g) = fola+g).finda ( G written additively)

Group action Dlog is a special case of hidden shift where

fo(g) = g * xo fi(g) =g*xz1 = (g+a) *x



An even broader picture: Non-abelian groups

Recall: Shor’s algorithm solves the period-finding / hidden
subgroup problem in abelian groups

Natural question: what about non-abelian groups?

Turns out that non-abelian groups seem much harder



An even broader picture: Non-abelian groups

Hidden shift can be seen as hidden subgroup for the dihedral group
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g xXo g * X1 is a rotation + reflection



An even broader picture: Non-abelian groups

Period-finding hardness:

Class of groups __Hardness ____________

Abelian Polynomial time (Shor)
Dihedral ub-exponential-time (Kuperberg)
General Exponential

Proven upper bounds (attacks)
Conjectured lower bounds



A central challenge

Recall: the classical black box query complexity of abelian
hidden subgroup provably was exponential

- Gives exponential lower bound for “generic”
classical algorithms

Not a proof of actual hardness, but a
good heuristic to justify security



A central challenge

Want: a black box query lower-bound for group actions

Unfortunately, this is impossible as the query complexity
is actually polynomial



A central challenge

1 |
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Apply Hadamard and measure

—

Prob 1 = COS(ahw/q)z Noisily learn whether

— ah mod q
Prob O = Sil’l(ahﬂ-/Q)Z ] Is closer to O or Q/Q

With polylog(q) samples, ainformation-theoretically fixed



So we will never know for sure if group actions are
even generically secure. But despite tons of interest,
still no polynomial-time attack



Next time: lattices



