
CS 258: Quantum Cryptography

Mark Zhandry

Previously…

Recall Diffie-Hellman

a cyclic group of order with generator

Recall Shor’s Algorithm

Given , define

Finding periods in reveals

Shor vs Diffie-Hellman
Shor requires group multiplication and discrete
exponentiation () to compute

Typically, discrete exponentiation is obtained
from multiplication by repeated squaring

Diffie-Hellman “only” requires discrete exponentiation

What if we had a group where we could
perform exponentiation but not multiplication?

Group Action
An (abelian) group action is a triple where:
• is an (abelian) group
• is a set
• is an efficient binary operation satisfying

• There is some element that can be efficiently computed
• Usually ask that for each , there exists a unique

such that
• Also usually ask that it is possible to efficiently identify elements

of

Diffie-Hellman over Group Actions

Hashing from Groups

Let be two group elements

Hashing from Group Actions?

Let be two set elements

Today: Kuperberg’s Algorithm

An (abelian) group action is a triple where:
• is an (abelian) group
• is a set
• is an efficient binary operation satisfying

To make Kuperberg’s algorithm easier to follow, we will
switch to an additive notation for group actions

Nothing changes except notation

We are given , our goal is to find

Let’s Try Attacking Group Actions Anyway

• Prepare

• Apply to obtain

• Measure à Measurement outcome
 State collapses to

Now apply to the first register

Measure first register
random

Turns out a single sample doesn’t contain enough
information to find

With polynomially-many samples, it turns out there is an
inefficient algorithm to recover

Kuperberg’s algorithm: a tradeoff between samples and
computation time

For simplicity, we will take to be a power of 2,

Notice that if ,

Apply :

If odd, learn least significant bit of

Our goal then is to gradually reduce until it’s 1

We will show this momentarily

If have same lsb, then

Combining Samples

Step 1:

Step 2: Measure

Random choice of

Attempt 1
• Generate random samples

• Partition samples into odd and even parities

Even Odd

• Even’s are already good

• Pair off odds and combine

Attempt 1

Evens and odds will have samples each

End samples will include all evens and half of odds
samples after first iteration

Repeat times à final number of samples

Total running time:

Slightly better than Grover search, but still exponential

• Generate random samples

• Partition samples based on lowest bits

Ends in

• Pair off within each set and combine

Kuperberg’s algorithm

Ends in Ends in …

• Keep only the terms

Kuperberg’s algorithm

Since agree on lowest bits, ends in zeros

After one step, have samples
• Lose half because of merging
• Lose another half for the outcomes

How many samples do we need?

In each iteration, we need to fill each set with at least 2 samples
In particular, for the very last iteration, need samples

In each iteration, we only keep of samples

Each iteration reduces by à iterations

Need to start with

Set à

Thm [Kuperberg]: Dlog in (abelian) group
actions can be solved in time ,
where is the group order

Known as “subexponential” time

Impact on cryptography

Recall: want security against attacks running in time

Classical groups: can in principle set group size
Find collision in in time

by birthday paradox

Post-quantum group actions: need groups at least

Results in much less efficient schemes

Tension between structure and security

Groups have lots of structure à lots of applications,
but also Shor’s algorithm

Group actions have less structure, but some à fewer
applications, resistant to Shor’s, but subject to Kuperberg’s

Other concepts may have even less structure à even fewer
applications, but also fewer attacks

The Case of SIKE (Supersingular Isogeny Key Exchange)

Motivated to block Kuperberg’s algorithm, SIKE was proposed
using isogenies over “supersingular” elliptic curves

These curves are not abelian group actions, so plausible
exponential security à improved efficiency

But, since there is no commutation, also not clear how to do key
exchange. Solution was for Alice, Bob to give each other extra hints

Turns out these hints completely broke the protocol

Broader Picture: Hidden Shifts

Kuperberg actually solves a much more
general problem called hidden shift

Given injective, such that
 , find (written additively)

Group action Dlog is a special case of hidden shift where

An even broader picture: Non-abelian groups

Recall: Shor’s algorithm solves the period-finding / hidden
subgroup problem in abelian groups

Natural question: what about non-abelian groups?

Turns out that non-abelian groups seem much harder

An even broader picture: Non-abelian groups

Hidden shift can be seen as hidden subgroup for the dihedral group

is a rotation + reflection

An even broader picture: Non-abelian groups

Period-finding hardness:

Class of groups Hardness
Abelian Polynomial time (Shor)
Dihedral Sub-exponential-time (Kuperberg)
General Exponential

Proven upper bounds (attacks)
Conjectured lower bounds

A central challenge

Recall: the classical black box query complexity of abelian
hidden subgroup provably was exponential
àGives exponential lower bound for “generic”
 classical algorithms

Not a proof of actual hardness, but a
good heuristic to justify security

A central challenge

Want: a black box query lower-bound for group actions

Unfortunately, this is impossible as the query complexity
is actually polynomial

A central challenge

Apply Hadamard and measure

Prob 1 =

Prob 0 =

Noisily learn whether

Is closer to 0 or

With samples, information-theoretically fixed

So we will never know for sure if group actions are
even generically secure. But despite tons of interest,

still no polynomial-time attack

Next time: lattices

