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Previously…



Thm: There exists a quantum algorithm that performs           
evaluations of        , and finds an     such that                      with 
probability 



Quantum Period Finding

Thm: There exists a QPT algorithm making only a polynomial 
number of queries which solves the period-finding problem with 
overwhelming probability

Includes in particular Discrete Log and Factoring



Main tool: the Quantum Fourier Transform (QFT)





Unfortunately, all currently deployed public key 
cryptosystems rely on the hardness of either Discrete 

Log or Factoring

Basically all of our communication is broken once 
quantum computers are able to run Shor’s algorithm



Starting Today: Candidate Post-Quantum 
Cryptosystems



This Week: Group Actions



Recall Diffie-Hellman

a cyclic group of order     with generator   



Recall Shor’s Algorithm

Given               , define  

Finding periods in      reveals  



Shor vs Diffie-Hellman
Shor requires group multiplication and discrete 
exponentiation (                ) to compute

Typically, discrete exponentiation is obtained 
from multiplication by repeated squaring 

Diffie-Hellman “only” requires discrete exponentiation

What if we had a group where we could 
perform exponentiation but not multiplication?



Group Action
An (abelian) group action is a triple                      where:
•    is an (abelian) group
•    is a set
•                                  is an efficient binary operation satisfying

• There is some element                  that can be efficiently computed
• Usually ask that for each                    , there exists a unique           

such that
• Also usually ask that it is possible to efficiently identify elements 

of    



Diffie-Hellman over Group Actions



Supposedly Hard Problems on Group Actions

Discrete Log: computing      from 

Computational Diffie-Hellman: computing                     from
                 and 

Decisional Diffie-Hellman: Distinguishing                     from             ,
 given               and  



Given a cyclic group      of order     with generator   

Cyclic Groups as Group Actions

Let                    ,                  ,                 , and  

discrete log in              discrete log in  

CDH in               CDH in  
DDH in               DDH in  

Then Group Diffie-Hellman Group Action Diffie-Hellman



But group actions based on cyclic groups 
have quantumly-easy discrete logs

Instead, we use isogenies over elliptic curves



Elliptic curves

For crypto, defined over         or finite field 



Isogenies
Rational maps between elliptic curves



It turns out that these rational maps have a 
group structure (Ideal Class Group)

For “ordinary” elliptic curves, this group is abelian



The Challenge with Group Actions

Group exponentiation Group action

Group multiplication ✘

The presumed post-quantum security of group actions derives 
from the inability to meaningfully combine set elements 

Combining set elements

But, the inability to combine set elements also limits the kinds 
of cryptographic protocols we can build



Example: Signatures



Example: Signatures

Adversary who sees         and a signed message            cannot 
produce another signed message that verifies



Schnorr Signatures

Assume a “good” hash function 

choose random check:



Intuition for security

Challenge     determines linear function in unknowns   

hidden in the exponent

One equation in two unknowns cannot be solved “in clear”

But can be verified “in the exponent” using group operations



Intuition for security

The hash enforces that challenge formed after

Otherwise, pick        , let                           ,  
find       s.t 

by construction, 



Schnorr Signatures for Group Actions?

Assume a “good” hash function 

choose random check:

??? ???



Muxing: A simple way to “combine” set elements

For a bit    ,

Similar, define muxing for additive operations



Schnorr Signatures for Group Actions?

Assume a “good” hash function 

choose random check:



Insecure! Recall Schnorr intuition

The hash enforces that challenge formed after

Otherwise, pick        , let                           ,  
find       s.t 

by construction, 

Time to brute-force an       at most  



Increasing the muxing index

Assume a “good” hash function 

choose random check:



Parallel Repetition

Assume a “good” hash function 

choose random



Can combine both ideas to get a signature 
containing                           set elements to have a 

challenge from a set of size       . Some formal 
evidence that this may be optimal, but still open

Compare to Schnorr, which only needs            elements 



Example: Hashing

Collision resistance: collisions exist in abundance, 
but impossible to find in polynomial time

Collision =                   s.t. 



Hashing from Groups

Let           be two group elements 

Claim: collision for       à     s.t.  

Proof: suppose                                        but 
 à                                      à                    (why?)  
 à 



Hashing from Groups

Let           be two group elements 

Let     be bit-length used to represent group elements

will be shrinking provided 

For larger    , can generalize to  



Hashing from Group Actions?

Let                be two set elements 

Can generalize to 

Claim: collision for       à     s.t.  

Proof: suppose                                       but 
 à                  (why?)   à can take 
 à 

polynomial



Hashing from Group Actions?

Problem: in group actions based on isogenies, typically 

Let     be bit-length used to represent set elements

So       has input length  

Thus,      is not compressing! 



Hashing from Group Actions?

Some weak formal evidence that collision resistance 
is not possible from group action discrete log, but 

still very much open

Note: there are other hash function proposals using 
supersingular isogenies (not abelian), but based on 

different favor of hard computational problem



Next time: quantum algorithms for group actions


