
CS 258: Quantum Cryptography

Mark Zhandry

Previously…

Thm: There exists a quantum algorithm that performs
evaluations of , and finds an such that with
probability

Quantum Period Finding

Thm: There exists a QPT algorithm making only a polynomial
number of queries which solves the period-finding problem with
overwhelming probability

Includes in particular Discrete Log and Factoring

Main tool: the Quantum Fourier Transform (QFT)

Unfortunately, all currently deployed public key
cryptosystems rely on the hardness of either Discrete

Log or Factoring

Basically all of our communication is broken once
quantum computers are able to run Shor’s algorithm

Starting Today: Candidate Post-Quantum
Cryptosystems

This Week: Group Actions

Recall Diffie-Hellman

a cyclic group of order with generator

Recall Shor’s Algorithm

Given , define

Finding periods in reveals

Shor vs Diffie-Hellman
Shor requires group multiplication and discrete
exponentiation () to compute

Typically, discrete exponentiation is obtained
from multiplication by repeated squaring

Diffie-Hellman “only” requires discrete exponentiation

What if we had a group where we could
perform exponentiation but not multiplication?

Group Action
An (abelian) group action is a triple where:
• is an (abelian) group
• is a set
• is an efficient binary operation satisfying

• There is some element that can be efficiently computed
• Usually ask that for each , there exists a unique

such that
• Also usually ask that it is possible to efficiently identify elements

of

Diffie-Hellman over Group Actions

Supposedly Hard Problems on Group Actions

Discrete Log: computing from

Computational Diffie-Hellman: computing from
 and

Decisional Diffie-Hellman: Distinguishing from ,
 given and

Given a cyclic group of order with generator

Cyclic Groups as Group Actions

Let , , , and

discrete log in discrete log in

CDH in CDH in
DDH in DDH in

Then Group Diffie-Hellman Group Action Diffie-Hellman

But group actions based on cyclic groups
have quantumly-easy discrete logs

Instead, we use isogenies over elliptic curves

Elliptic curves

For crypto, defined over or finite field

Isogenies
Rational maps between elliptic curves

It turns out that these rational maps have a
group structure (Ideal Class Group)

For “ordinary” elliptic curves, this group is abelian

The Challenge with Group Actions

Group exponentiation Group action

Group multiplication ✘

The presumed post-quantum security of group actions derives
from the inability to meaningfully combine set elements

Combining set elements

But, the inability to combine set elements also limits the kinds
of cryptographic protocols we can build

Example: Signatures

Example: Signatures

Adversary who sees and a signed message cannot
produce another signed message that verifies

Schnorr Signatures

Assume a “good” hash function

choose random check:

Intuition for security

Challenge determines linear function in unknowns

hidden in the exponent

One equation in two unknowns cannot be solved “in clear”

But can be verified “in the exponent” using group operations

Intuition for security

The hash enforces that challenge formed after

Otherwise, pick , let ,
find s.t

by construction,

Schnorr Signatures for Group Actions?

Assume a “good” hash function

choose random check:

??? ???

Muxing: A simple way to “combine” set elements

For a bit ,

Similar, define muxing for additive operations

Schnorr Signatures for Group Actions?

Assume a “good” hash function

choose random check:

Insecure! Recall Schnorr intuition

The hash enforces that challenge formed after

Otherwise, pick , let ,
find s.t

by construction,

Time to brute-force an at most

Increasing the muxing index

Assume a “good” hash function

choose random check:

Parallel Repetition

Assume a “good” hash function

choose random

Can combine both ideas to get a signature
containing set elements to have a

challenge from a set of size . Some formal
evidence that this may be optimal, but still open

Compare to Schnorr, which only needs elements

Example: Hashing

Collision resistance: collisions exist in abundance,
but impossible to find in polynomial time

Collision = s.t.

Hashing from Groups

Let be two group elements

Claim: collision for à s.t.

Proof: suppose but
 à à (why?)
 à

Hashing from Groups

Let be two group elements

Let be bit-length used to represent group elements

will be shrinking provided

For larger , can generalize to

Hashing from Group Actions?

Let be two set elements

Can generalize to

Claim: collision for à s.t.

Proof: suppose but
 à (why?) à can take
 à

polynomial

Hashing from Group Actions?

Problem: in group actions based on isogenies, typically

Let be bit-length used to represent set elements

So has input length

Thus, is not compressing!

Hashing from Group Actions?

Some weak formal evidence that collision resistance
is not possible from group action discrete log, but

still very much open

Note: there are other hash function proposals using
supersingular isogenies (not abelian), but based on

different favor of hard computational problem

Next time: quantum algorithms for group actions

