
CS 258: Quantum Cryptography

Mark Zhandry

Previously…

In a nutshell, quantum computing is about using interference
so that different computational paths leading to the correct

answer constructively interfere, and computational paths
leading to the wrong answers destructively interfere. The

result is that the right answer is achieved with higher
probability than what is possible classically

Obtaining the right answer with higher probability often
means being able to obtain the right answer faster

Qubit

A qubit is just a 2-dimensional quantum
system over and

Quantum Circuit

Input encoded as
computational basis state

“Ancillas”

Unitaries,
called “gates”

Each wire is a qubit

Quantum >= Classical

Thm: There exists a quantum algorithm that performs
evaluations of , and finds an such that with
probability

<latexit sha1_base64="bU61rjMgIvuW3eAM0PtjHpr1NzE=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHEQ9kVqR6LXjxWsB+wXUs2zbah2WRJZsWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YSK4Adf9dpaWV1bX1gsbxc2t7Z3d0t5+06hUU9agSijdDolhgkvWAA6CtRPNSBwK1gqH1xO/9cC04UrewShhQUz6kkecErCS//R4f9rRRPYF65bKbsWdAi8SLydllKPeLX11eoqmMZNABTHG99wEgoxo4FSwcbGTGpYQOiR95lsqScxMkE1PHuNjq/RwpLQtCXiq/p7ISGzMKA5tZ0xgYOa9ifif56cQXQYZl0kKTNLZoigVGBSe/I97XDMKYmQJoZrbWzEdEE0o2JSKNgRv/uVF0jyreNVK9fa8XLvK4yigQ3SETpCHLlAN3aA6aiCKFHpGr+jNAefFeXc+Zq1LTj5zgP7A+fwBRfmRRA==</latexit>

|x⇤i

<latexit sha1_base64="7m2JZ0esnJQ5AzYsEAmTMYcPgcs=">AAACDXicbZDLSgMxFIYzXmu9jbp0E6yCIJQZkepGKLpxWcFeoDMOmTTThmaSIckIZdoXcOOruHGhiFv37nwb03YW2vpD4OM/53By/jBhVGnH+bYWFpeWV1YLa8X1jc2tbXtnt6FEKjGpY8GEbIVIEUY5qWuqGWklkqA4ZKQZ9q/H9eYDkYoKfqcHCfFj1OU0ohhpYwX24dBLFA0cTyLeZeRyeJLTfeYJTWOiIB8FdskpOxPBeXBzKIFctcD+8joCpzHhGjOkVNt1Eu1nSGqKGRkVvVSRBOE+6pK2QY7MHj+bXDOCR8bpwEhI87iGE/f3RIZipQZxaDpjpHtqtjY2/6u1Ux1d+BnlSaoJx9NFUcqgFnAcDexQSbBmAwMIS2r+CnEPSYS1CbBoQnBnT56HxmnZrZQrt2el6lUeRwHsgwNwDFxwDqrgBtRAHWDwCJ7BK3iznqwX6936mLYuWPnMHvgj6/MHCBicMA==</latexit>

| 0i = |+i⌦n

<latexit sha1_base64="3cQ0p2ckhS7mnp0vkHLSEo3TNYA=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cK9gOaWDbbSbt0swm7G6XE/g8vHhTx6n/x5r9x2+agrQ8GHu/NMDMvSDhT2nG+rcLK6tr6RnGztLW9s7tX3j9oqTiVFJs05rHsBEQhZwKbmmmOnUQiiQKO7WB0PfXbDygVi8WdHifoR2QgWMgo0Ua6f/KSIeu5niRiwLFXrjhVZwZ7mbg5qUCORq/85fVjmkYoNOVEqa7rJNrPiNSMcpyUvFRhQuiIDLBrqCARKj+bXT2xT4zSt8NYmhLanqm/JzISKTWOAtMZET1Ui95U/M/rpjq89DMmklSjoPNFYcptHdvTCOw+k0g1HxtCqGTmVpsOiSRUm6BKJgR38eVl0jqrurVq7fa8Ur/K4yjCERzDKbhwAXW4gQY0gYKEZ3iFN+vRerHerY95a8HKZw7hD6zPH4uPko8=</latexit>

|�1i

<latexit sha1_base64="G+bWy3yMSs25xBhxSfK9bctm+Ro=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laRI9Vj04rGC/YAmls120i7dbMLuRimx/8OLB0W8+l+8+W/ctjlo64OBx3szzMwLEs6Udpxva2V1bX1js7BV3N7Z3dsvHRy2VJxKik0a81h2AqKQM4FNzTTHTiKRRAHHdjC6nvrtB5SKxeJOjxP0IzIQLGSUaCPdP3nJkPWqniRiwLFXKjsVZwZ7mbg5KUOORq/05fVjmkYoNOVEqa7rJNrPiNSMcpwUvVRhQuiIDLBrqCARKj+bXT2xT43St8NYmhLanqm/JzISKTWOAtMZET1Ui95U/M/rpjq89DMmklSjoPNFYcptHdvTCOw+k0g1HxtCqGTmVpsOiSRUm6CKJgR38eVl0qpW3Fqldnterl/lcRTgGE7gDFy4gDrcQAOaQEHCM7zCm/VovVjv1se8dcXKZ47gD6zPH40akpA=</latexit>

|�2i

<latexit sha1_base64="/PV8OR52qDjKdXAH+9eHMeFh6Es=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cK9gOaWDbbSbt0swm7G6XE/g8vHhTx6n/x5r9x2+agrQ8GHu/NMDMvSDhT2nG+rcLK6tr6RnGztLW9s7tX3j9oqTiVFJs05rHsBEQhZwKbmmmOnUQiiQKO7WB0PfXbDygVi8WdHifoR2QgWMgo0Ua6f/ISxXquJ4kYcOyVK07VmcFeJm5OKpCj0St/ef2YphEKTTlRqus6ifYzIjWjHCclL1WYEDoiA+waKkiEys9mV0/sE6P07TCWpoS2Z+rviYxESo2jwHRGRA/VojcV//O6qQ4v/YyJJNUo6HxRmHJbx/Y0ArvPJFLNx4YQKpm51aZDIgnVJqiSCcFdfHmZtM6qbq1auz2v1K/yOIpwBMdwCi5cQB1uoAFNoCDhGV7hzXq0Xqx362PeWrDymUP4A+vzB5ypkpo=</latexit>

| 1i

<latexit sha1_base64="jaZhSGFWKy8BbsYANs82A7oRNQQ=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laRI9Vj04rGC/YAmls120i7dbMLuRimx/8OLB0W8+l+8+W/ctjlo64OBx3szzMwLEs6Udpxva2V1bX1js7BV3N7Z3dsvHRy2VJxKik0a81h2AqKQM4FNzTTHTiKRRAHHdjC6nvrtB5SKxeJOjxP0IzIQLGSUaCPdP3mJYr2qJ4kYcOyVyk7FmcFeJm5OypCj0St9ef2YphEKTTlRqus6ifYzIjWjHCdFL1WYEDoiA+waKkiEys9mV0/sU6P07TCWpoS2Z+rviYxESo2jwHRGRA/VojcV//O6qQ4v/YyJJNUo6HxRmHJbx/Y0ArvPJFLNx4YQKpm51aZDIgnVJqiiCcFdfHmZtKoVt1ap3Z6X61d5HAU4hhM4AxcuoA430IAmUJDwDK/wZj1aL9a79TFvXbHymSP4A+vzB540kps=</latexit>

| 2i

x axis

y axis =

reflects about x-axis reflects about

Today: Quantum Period Finding (Shor’s Algorithm)

Period Finding
aka hidden subgroup problem

Let be a discrete abelian group, written additively. e.g.

Proof: If are periods, then

Claim: periods of form a subgroup

is a period

Def: A function is periodic if there exists a
 such that for all
 . In this case, is a period of

Period Finding

Let be a discrete abelian group, written additively. e.g.

Def: A function is periodic if there exists a
nonempty subgroup such that, for all ,
 ,

Def: a periodic function is injective on its
period if, for all such that

aka hidden subgroup problem

Period Finding

The period-finding problem (aka hidden subgroup
problem) is to, given a periodic function , find the
group of all periods

Technically, may be exponential or infinite, but we will
ask instead for a minimal set of generators.

aka hidden subgroup problem

In the case of , bit-length of generators may be
unbounded, so some subtleties in how complexity is
defined. But we won’t need to worry about these

Classical Period Finding

Claim: Any black-box classical algorithm for period-finding
requires exponentially-many queries

Proof idea: Consider a function whose
period is a random subgroup of order 2,

 is otherwise random on its period

For any classical query algorithm, there will be multiple possible
choices consistent with query responses until it queries on
with . Exponentially unlikely until almost queries

Quantum Period Finding

Thm: There exists a QPT algorithm making only a polynomial
number of queries which solves the period-finding problem with
overwhelming probability

Warmup: the case of

Also known as Simon’s algorithm

Suppose has period
and is injective on its period

Simon’s Algorithm: Repeat the following several times:
• Prepare

• Apply to obtain

• Measure à Measurement outcome
 State collapses to

• Discard , apply , and measure à

constructive interference

Weight on :

destructive interference

Weight on :

Measure: obtain a random that is orthogonal to (mod 2)

Simon’s Algorithm: generate random. that
are orthogonal to (mod 2)

Assemble into matrix

With high probability, the kernel of will be exactly

Can find with Gaussian elimination (mod 2)

Suppose has period a general
and is injective on its period

Algorithm still the same, kernel of is still

Shor’s Algorithm: the case of general

Main tool: the Quantum Fourier Transform (QFT)

Main tool: the Quantum Fourier Transform (QFT)

For

Observe:

QFT is unitary

QFT is unitary

Suppose

QFT is unitary

Suppose

QFT is unitary

QFT and Coset States

Consider the group

A coset state is a state of the form

where is a subgroup of

Quotient group:

Evaluating

For , sum is

For , sum is

Shor’s Algorithm: Repeat the following several times:
• Prepare

• Apply to obtain

• Measure à Measurement outcome
 State collapses to

• Discard , apply , and measure à

After polynomially-many steps, will generate

Can use Gaussian elimination to learn

We’ve only sketched the algorithm for , but can be
extended to any discrete abelian group

How to implement the general QFT

We will only consider the case

Recursive construction based on classical fast Fourier transforms

Phase correction

=

Control wire
Apply if control wire is 1

Application 1: Discrete Log

Cyclic group with generator ()

Recall Discrete Log Problem

Order of group:

Discrete log problem: given , find

Examples where Dlog assumed hard:
Elliptic curves over finite fields

Reducing Dlog to Period-Finding

Given , define

Observe:

Therefore, the period of is

Plus, is injective on its period since is a generator

Description of reveals

Application 2: Factoring

Factoring as Period Finding

Choose a random

Can assume , else

The set of such is called

Suppose for simplicity that for primes

Factoring as Period Finding

Suppose for simplicity that for primes

Choose a random

Let be

Period finding on reveals period of , the smallest
positive integer such that

Observations

Let be the period of in

Then

is cyclic of order

Write as

where is a generator of

is random in

Observations

Write for odd

Claim: With probability at least ,

Proof: is #{2’s in } - #{2’s in }
Probability of any particular is at most 1/2

, odd

Observations

Write for odd

, odd

Assume , take

Observe:

The Algorithm

Choose a random
Let be

Period finding on reveals period of

For until is not an integer:

Compute
If , output

Keep trying new until success

Impact on Cryptography

Unfortunately, all currently deployed public key
cryptosystems rely on the hardness of either Discrete

Log or Factoring

Basically all of our communication is broken once
quantum computers are able to run Shor’s algorithm

Harvest-now-decrypt-later

Today:

Future:
Learn Alice and Bob’s

private messages

If quantum computers will arrive in year , and we have
messages that we need to be secure for at least years, must

 transition to post-quantum cryptosystems by year

The situation is urgent, but we also can’t rush since we don’t
want to accidentally introduce vulnerabilities when we do

A Cautionary Tale: The Case of SIKE
Supersingular Isogeny Key Exchange

2014: SIKE proposed, became one of the leading
candidates for post-quantum key exchange

2022: SIKE completely broken by classical attack

If SIKE had been deployed in an effort to protect against
quantum computers, we would’ve actually been

compromised now against today’s classical computers.

Starting Next Time: Candidate Post-
Quantum Cryptosystems

