CS 258: Quantum Cryptography

Mark Zhandry

Previously...

Composite systems

Suppose we had two states

= ZO@:W |p) = Zﬁj\ﬁ

The two together also form a quantum state on a larger system

V) ® |¢) = Zazﬁg\z J

Also write as ‘?Pqu) {‘7,]>} . is computational

basis for composite system

Composite systems

Often convenient to name systems

V) A 9)5

System A4 is in state W) System B3 is in state |§15>

) aB

Joint system AB is in state |C)

Entanglement

() aB = Z Yi,j|%).Al7)B
1,]

Separable states: K)AB — W>A‘¢>B

Most states are not separable. In such case, we
say A, B are entangled

Cloner: unitary {J such that

Ul)[0)[0) = [} |4)|ry) forany [3)

|T¢> is arbitrary state

{No-cloning Thm: For dimension >1, there is no cloner

Today: guantum computing!

What quantum computing is not

Wrong idea: a qguantum computer can be in a superposition
over all exponentially-many states of a classical computer.
Therefore, it can try all possibilities at the same time

Reason its wrong: Same can be said of our model of classical
statistical mechanics, but clearly that doesn’t offer any
speedup. Any actual speedups need to use something

inherently quantum

Recall:

N\

i

Constructive Interference

N/

i

Destructive Interference

In a nutshell, quantum computing is about using interference
so that different computational paths leading to the correct
answer constructively interfere, and computational paths
leading to the wrong answers destructively interfere. The
result is that the right answer is achieved with higher
probability than what is possible classically

Obtaining the right answer with higher probability often
means being able to obtain the right answer faster

Qubit

A qubit is just a 2-dimensional quantum
system over |0) and |1)

Quantum Circuit
A

Unitaries,
> B — called “gates”

Each wireisa qubit — |

P) - i
Input & encoded as —
computational basis state

)

— (y,junk)

- 10) -
“Ancillas”

Each quantum circuit defines a (potentially probabilistic)
process to convert an input x into an output y

Our goal: design an “efficient” quantum circuit to solve
some task much faster than what is possible classically

BQP = “Bounded-error Quantum Polynomial time”

Efficient quantum circuits

Many ways to define that (fortunately) turn out to be
equivalent. For this class, the following definition suffices

* Circuit comprised of polynomially-many (in ||) gates
* Each gate is either a 1-qubit unitary, or

()
\ /

 Classical description of circuit computable by classical
machine in polynomial-time from only the input length

CNOT =

CNOT|a,b) = |a,b ® a)

o OO =
O O = O
_o O O
O = O O

For convenience, we will typically allow quantum
algorithms to make intermediate measurements
as well. It turns out that this model and the
model where are measurements are at the end
are essentially equivalent.

Challenges with quantum computing

» Gates are unitary =2 no fanout, all gates reversible

* No-cloning theorem -2 cannot copy internal state of
algorithm (no assigning quantum variables and then

using them twice)

* Observer effect 2 even looking at internal state
changes it (no reading quantum variables without

changing them)

* Entanglement = changing a variable changes other
variables

Quantum Circuit
A

Unitaries,
> B — called “gates”

Each wireisa qubit — |

P) - i
Input & encoded as —
computational basis state

)

— (y,junk)

- 10) -
“Ancillas”

Quantum >= Classical

Efficient classical circuits can be mapped to efficient
guantum circuits with minimal overhead

But even specifying what this means requires some care

f:{0,1}" — {0,1}™

Might not be injective. How to encode as unitary?

Quantum >= Classical

Uslz,y) = |z,y ® f(x))

Quantum >= Classical

Actually allow for workspace/ancilla qubits that get returned to O:

Utlz,y,0%) = o,y @ f(x),0%)

It turns out that if we have an efficient classical
circuit for f, we can construct an efficient
quantum circuit for U ¢ (see homework)

Phase Kickback

Let f:4{0,1}" — {0,1}. Define

Pflz,0%) = (-=1)7@z, 0*)

Phase Kickback
w _i T w\ ([
Ut|z)|—)|0%) = ﬂ;Ufl ,b,0%)(—1)°
. %Z 2,b® f(z),07)(~1)"
b

1 /
= — 1z, b, 0%)(—1)0 ®f (@)
§)

4/
e yf@ 0 =hel@)

- P; = [I® (XH) @ U;[I® (HX) ®I]

Grover’s Algorithm

Unstructured search

Setup: we have a function f : {0,1}" — {0, 1} with the
promise that there is some x such that f(x) =1

Our goal: find suchan &

Captures tons of problems, in fact all of NP search
problems: f(a?) = “Is T a satisfying assighment for
the Boolean formula C”

In particular, a general solution for this problem would
break almost all classical cryptography

The Classical Setting

If f itself is efficient, and P = NP, the this problem can be
solved in polynomial time

However, best known algorithms, even if f is efficient,
cannot do much better than just trying f on all inputs
(that is, brute force)

Not hard to see that such algorithms must evaluate f for
roughly 2™ times

‘Thm: There exists a quantum algorithm that performs O(v/ 2")\
evaluations of Uf, and finds an x such that f(:c) — 1 with

probability 1 — O(2™")

Gover’s Algorithm

(we will ignore ancillas needed to compute Uf, Pf)

1
1. Initialize system to |+)®" = Z |2)

xe{0,1}"
2. Repeat the following I’ times:
* Apply Pr |
« Apply H®" Z(z) = 0 ?fx:O
* Apply P, 1 ifxz#0"
« Apply H®"™

3. Measure

Analysis

Suppose there is a unique * s.t. f(2™) =1

Prlz™) = —|x™) P¢|+)®" = Py

Analysis

H®" P,H®"|+)®" = H®" P,|0")
= H®"|0")
= [+)®"

Analysis

1]
H®"P;H®"|z*) = H®" P —1)** |z
RO at) = B LS (1))

I

\/27 xA£O"
— H®“\/127 (2|0"> - Z(—1)$°m*|x>)
— e o)

Analysis

H®"P,H®"|z*) = —|z*)

H®nPZH®n|_|_>®n — ‘_|_>®n

Analysis
Let S be span of |z™) and [4)®n

Then the state of the algorithm always stays in S

Define: |¢0> _ |_|_>®n
¢i) = Prlhi—1)
;) = HO" P,H®"|¢;)

y axis = [z")

Pf reflects about x-axis H®"PZH®” reflects about \—|—>®n

Analysis

Composing two reflections gives a rotation

Let §, be angle |1);) makes with x-axis

Let 7; be angle |@;) makes with x-axis

Py reflects about x-axis mp 7; = —0;_1

H®" P, H®" reflects about |%0) = \-|—>®n
» 92 — 0() — (—90 —I-Tz) = 200 — T; — 290 -+ 92'_1

Angle |¢;) makes with [%0)

Analysis

Goal: O ~ /2

Analysis

Solve O = (2T + 1)8y ~ 7/2

eozsin—1(<¢o\x*>):sm—1< !)z

p
T = ~ —
So set 490 5 1

Analysis
Success probability:

78 1

Defi :Tz
efine 16,

my $=2x(T-T)¢c[-1,1]

(@*|ehr)|? = sin® [(2T + 1)6o]
— sin? | (27 + 1)6, + 590]

_ a2 |7
— sin : —|—590]

>1—6%05 >1—0(27")

More generally, can run Grover for any
desired number of iterations /', and achieve
success probability O(T?/2™)

What if there is more than one accepting input?

T 27
Number of evaluations: ~ — 4/ —
4V K

More generally, can run Grover for any
desired number of iterations /', and achieve

success probability O(T? K /2™)

Problem: what if don’t know K ?

e.g. K = 4, but we think its 1

In each step, our angle increases ~ 24/ — =4

2™ vV 2m

-
We erroneously make =~ ZV 2™ steps

Final angle: = 7

Will essentially give random strings

Solution: try powers of 2

For ¢ =1,2,---

T =
Run Grover’s algorithm for Z\/ 2 steps

If solution found, stop

Will stop roughly when 2° ~ 2" K

[on WAL
Total iterations: Z(\/T+\/§+\/é_l+\/§+---+ K)SO(K)

s it possible to do better?

Probably not

In the unlikely event that NPESBQP, then yes, can do better

However, widely considered unlikely

Some formal evidence that Grover may, in fact, be optimal

Black-box

Treat f
applicat

/ Query model

as a black-box, only access is through
ions/queries to U ¢

-

P
Thm: Grover’s algorithm is optimal among

black-box quantum algorithms

~

Impact on cryptography

9n/2 s still exponential time, so does
not break any cryptosystem

In theory:

We set parameters so that best attacks
take time 2128 or 9296

For symmetric key cryptography, best attacks
In practice: typically were simply brute-force search, so
could set key size = 128 or 256

Grover would break such keys in time 904
or 2128

Simple Solution: double key sizes

Keys of length 256 if we want attack time 2128

Keys of length 512 if we want attack time 22°°

Downside: crypto will run at half the speed

But actually, maybe not necessary

Observation 1: 2190 time is cusp of what is possible today,
but only because of extreme parallelism

Any given processor can only
perform ~~ 2°7 operations per year

Brute-force search is inherently
parallelizeable, but Grover is sequential

Parallel Classical Brute-Force

Total sequential time 1’ Total processors P
(say, 260) (say, 240)
. . .. TP
Can find answer with probability on

Can break if T'P > 2™

Parallel Grover

Total sequential time 1’ Total processors P
(say, 260) (say, 240)

T2
Each processor has success probability —
p

2n

Overall success probability

Can break if T2 P > 2"

But actually, maybe not necessary

Observation 2: the overheads for guantum may be huge
Maybe the clock speed is vastly slower than classical

Due to errors, may be very difficult to
keep computation going for months

Ultimately, impacts of Grover will depend
on how good future quantum hardware
is, so hard to tell.

Conservative approach is to double key
sizes, but possibly overkill

Next time: Shor’s algorithm

(Exponential qguantum speedups)

