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Previously…



Bra-Ket Notation

Column vector Row vector

Inner products:



A quantum transformation is a unitary transformation:

A unitary matrix       is square and satisfies 

Or equivalently

In particular, the inverse always exists



0 w/ probability 

1 w/ probability 

Normalization ensures valid probability distribution, and squaring matches the 
relationship between underlying wave and observed intensity/probability

In general: w/ probability 



Post-measurement state of system

Rather than a measurement destroying the state, we will 
usually think of it as simply “collapsing” the state to be at a 

given location; the state can then be further acted on

w/ probability 

Then state collapses to 



We used the double slit experiment as a motivation, but 
the mathematical framework of quantum mechanics is 

an abstraction describing many possible systems

Atomic orbitals Photon polarization



Today: Comparison to classical 
mechanics, the observer effect, and QKD



Comparison to classical 
statistical mechanics



Classical statistical mechanics

Probability 
vectors

Transition 
probabilities



= probability vector at wall

= transition probabilities from wall              to 

      must map probability vectors to probability 
vectors à columns are probability vectors

(called a “stochastic matrix”)



A path view of classical statistical mechanics

Let       be a path a particle can take through the walls

= slit path goes through in wall



Quantum mechanics

Quantum states = 
amplitude vectors

Transition 
amplitudes



= amplitude vector at wall

= transition probabilities from wall              to 

      must map amplitude vectors to amplitude 
vectors à unitary



A path view of quantum mechanics

Let       be a path a particle can take through the walls

where



A path view of quantum mechanics

Let       be a path a particle can take through the walls

where

Probability of observing photon 
at position     at wall      : 



Intermediate Measurements



What happens if we look at the particle in two places?



Classical Statistical Mechanics

= probability of seeing photon at slit     at 
wall       and slit      at wall



Classical Statistical Mechanics

Now, what if we look at photon at      , but forget it’s location?



Quantum Mechanics

probability of seeing photon at 
slit     at wall       and slit      at wall



Quantum Mechanics

Now, what if we look at photon at      , but forget it’s location?



The observer effect

Looking at photon at       inherently changes its final state



Applying the observer effect to cryptography: 
Quantum Key Distribution (QKD)



Motivation:

Recall that in a classical world, it is impossible 
to send information in a way that is hidden to 
a computationally unbounded eavesdropper

Due to complexity-theoretic challenges (P vs NP), all 
our cryptosystems are only conditionally secure



Quantum key distribution = unconditionally secure* 
exchange of secret keys against unbounded eavesdroppers

* with major caveats



Authenticated classical channel = adversary can’t tamper

Unauthenticated quantum channel

Goal: Alice and Bob establish secret key 
that is hidden to any eavesdropper



Choose random

Recall:

Idea behind BB84
Bennett, Brassard





Choose random





are independent random bits

Distribution of     : 

If               :  

If               :  random





over classical channel

If               ,  
If               ,   abort  

classical channel



Expected key length = 



Why do we need the classical 
channel to be authenticated?



“Man-in-the-middle”

Play role of Bob

Adversary learns Alice’s key entirely



“Man-in-the-middle”

Play role of Bob

Fortunately, because the classical channel 
is authenticated, Alice cannot send these 

messages pretending to be Bob



Why not just assume the quantum 
channel is authenticated?



Authentication à Encryption

Recall the observer effect: looking at 
the quantum channel changes it

An authenticated quantum channel cannot even be 
looked at! That is, authenticated quantum channels 

are necessarily already encrypted

Encryption/key agreement is 
trivial/uninteresting if quantum 

channel is authenticated



Other possible attacks



The wait-and-see attack

Adversary actually can learn 



Catching Eavesdroppers

Check if Check if

Since           just an arbitrary state, unlikely  



Problem: to catch eavesdroppers, send 

Now Alice and Bob have no more secrets!



Information-reconciliation

Ensure Alice and Bob have same key, while keeping that key secret



Tool: 2-Universal Hash Function

Def: A family      of functions                                                is called 
2-universal if for all                               ,  

Example: random linear functions
where

arithmetic over some finite field of size



Information-reconciliation

Check if Check if

Still unlikely that                             , but now      is still mostly hidden  



Information-reconciliation

In actual protocols, we are also worried about errors just 
do to random noise. As such, information-reconciliation 

doesn’t just detect errors, but also tries to fix them



Another Problem:     not completely hidden 

• Information-reconciliation reveals information
• What if adversary only waits-and-sees on a single state, 

and otherwise just forwards the states?

Constant probability             stay same, while 
adversary still learns 1 bit



Randomness Extraction / Privacy Amplification

Conditioned on view of adversary,     has entropy, but is non-uniform 

Want to extract a uniform secret key 

Def (informal): A function                      is a randomness extractor 
if, for all distributions        of sufficient “entropy”, for    drawn 
uniformly and for                 ,                     is close to uniform, even 
given  

Leftover Hash Lemma: 2-universal hash functions are good 
randomness extractors



Privacy Amplification

Check if Check if

Actual shared key is 



Other attacks are possible as well

• Guess      , measure                        à , send 

• Measure                   for different unitary

• Perform operations/measurements over multiple

May allow adversary some information 
about     while also having some chance of 

evading detection



Theorem (informal): By instantiating protocol correctly, can achieve 
security against arbitrary eavesdroppers:
• Abort if eavesdropper looks at “too much” of quantum message
• If no abort, shared key is hidden to eavesdropper



QKD vs classical alternatives



Authenticated-to-private Channels

QKD assumes as a resource an authenticated classical 
channel, and unconditionally converts it into a private 

channel against computationally unbounded adversaries

Public key encryption solves this classically, but only 
against computationally-bounded adversaries, and 

only under computational assumptions

Known to be impossible classically without 
computational bounds



But where does the authenticated classical channel come from?

Typically, from cryptography!

But then we’re back to needing 
computationally-bounded adversaries and 

computational assumptions



Digital Signatures



Digital Signatures

1 = “accept”, 0 “reject}Security: impossible for adversary to 
generate valid signature on any 

message that wasn’t signed by Alice



Possible advantages of QKD

Everlasting security: as long as the adversary cannot break 
the authenticated channel during the protocol execution, 
the key will be secure even if the adversary later gains the 
power to break the authentication.
Milder assumptions: In theory, it is believed that classical 
authenticated channels can be obtained using milder 
computational assumptions than public key encryption. 
QKD only needs these milder assumptions

However, in practice, authentication uses the 
same assumptions as public key encryption



Possible advantages of QKD

Conceptual: similar ideas come up in many 
other applications of quantum information, and 

QKD is an interesting test-bed for these ideas



Next time: more quantum:
no-cloning and quantum money


