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Previously…



Dream inspired by QKD: maybe everything can 
be made information-theoretic!

Unfortunately, as with classical crypto, basically 
everything requires computational security



Example: quantum commitments



A protocol inspired by QKD

For random bits 

measure

Commit phase:

Roughly half the       will be correct 
Roughly half the       will be incorrect               uniform 



EPR Attack

Commit phase:
Send n halves of EPR pairs, 
keep other halves for herself

Recall:



Reveal phase: To open to    , measure

to get 

Roughly half the       will be correct 
Roughly half the       will be incorrect               uniform 



Theorem: No commitment can be both statistically binding 
and hiding



Canonical commitment

Alice prepares

Register

Commit phase:

Reveal phase: , Register
Checks if joint 
system is 



Since                   and                   are each orthonormal sets, 
there exists a unitary        mapping between them

Statistical hiding implies:



Alice’s Binding Attack

• Commit to 0

• Later open to 1 by applying 



Today: quantum commitments even if P=NP



Thm: If P=NP, classical commitments impossible

Intuition: Alice sends                                  to Bob  

Two cases:     
•     statistically binds to 

Bob can use NP solver to find satisfying assignment to 

Must reveal 



Thm: If P=NP, classical commitments impossible

Intuition: Alice sends                                  to Bob  

Two cases:     
•     statistically hides 

Alice can use NP solver to find satisfying assignment to 

Must reveal valid opening                   with  



Last time, we saw that commitments 
require some computational bound

But unclear how to adapt P=NP 
impossibility to quantum setting



Alice needs to map           to  

This is in general a unitary transformation. Unclear how 
Alice would solve this with a (classical or quantum) 

procedure for NP, which computes a function



Candidate commitments in a world where P=NP

Let                 be two “random” circuits on        qubits  

Ex: random brickwork:

Random 2-qubit unitaries

Depth somewhat 
larger than



Candidate commitments in a world where P=NP

Alice’s system      = first        qubits 

Bob’s system      = last       qubits 



Lemma: The protocol is statistically hiding. More precisely, 
Bob’s state is very close to the maximally mixed state, 

regardless of bit being committed

Reason: a random circuit generates the quantum 
analog of “2-universal” random quantum states

For such states, if you look at any subsystem with much less 
than half the qubits, the state looks maximally mixed  



Because the protocol is statistically hiding, 
we know it cannot be statistically binding

In fact:

While there must exist a unitary mapping           to          , 
it is not clear how to derive such a unitary from 



Theorem: If                modeled as random black box 
unitaries, then the protocol is computationally binding 

Provides some evidence that the protocol 
is binding, even if we cannot prove it



Now what if P = NP?

We want to give some justification that the 
commitment scheme remains secure, even in this case



Black-box Separations

Used to argue that A does not imply B, where A,B are 
complexity-theoretic or cryptographic statements

A = “Commitments exist” B = “P != NP”
A = “P=NP” B = “Commitments don’t exist”Equiv.



Challenge

Typical crypto statement:

e.g. LWE ⟹ PKE
P = NP ⟹ classical commitments don’t exist

A ⟹ B equiv: ¬B ⟹ ¬A, or even ¬A ⋁ B

Sometimes additionally have converse

e.g. LWE ⟺ particular PKE is secure



Challenge

With A ⟹ B or A ⟺ B, we are formally making no 
statements about whether A is true or false, just 

drawing an implication

Of course, we usually believe A (and hence B) to 
be true, but the proof doesn’t show this



For a separation, we are interested in:

Challenge

¬ (A ⟹ B) equiv: A ⋀ ¬B

The only way this can be true is if both A is true and B is false

e.g. ¬ (P = NP ⟹ quantum commitments don’t exist)

P = NP and quantum commitments exist

Both incredibly hard problems, and we believe P != NP!



Black-box Separations

Solution: provide oracle relative to which A is true but B is false

Takeaway: any techniques which work 
relative to oracles (“relativize”) are 

incapable of proving B from A

For example, all the security proofs we’ve seen in this 
course relativize, since they just treat adversary as a 
black box. It’s fine if that black box makes queries



Black-box Separations

Black-box separations must be interpreted with care, 
as there are non-relativizing techniques which 

famously circumvent certain impossibilities

So black-box separations usually interpreted as 
heuristic evidence, but far from a full proof



How to design a black box separation

Step 1: provide oracles relative to which A is true

Want commitments to exist. Natural choice 
of oracle is two random unitaries



How to design a black box separation

Step 2: provide oracles relative to which B is false

Want P=NP. So give oracle

Clearly breaks all of NP



Must be careful!

We can do the same thing in the classical world:

To make commitments exist, give out a random oracle 

To make P = NP, give out an oracle

But we know that “commitments exist” implies 
“P != NP”. Why not a contradiction?



Reason: “commitments exist” implies “P != NP” applies 
supposed NP solver to the commitment

But in this world, the commitment uses the 
random oracle.           doesn’t work on circuits 

that make oracle queries

Results in a rather meaningless separation, 
since it doesn’t even capture simple attacks



Instead,           should work on circuits that 
themselves can make oracle queries

Now such an oracle will break even 
commitments constructed using  

Thus in this world, P=NP and commitments 
don’t exist, so no separation



Back to quantum separation 

If our commitment is built instead using               , it is natural to 
restrict circuits that are input to           from querying                   

  . After all,            is supposed to work on classical circuits

Gives a meaningful separation, but perhaps 
unsatisfying since we restricted inputs to            from 

querying commitment oracles for trivial reasons   



Turns out, it is actually possible to give a classical 
oracle relative to which commitments exist, even in 
the presence of an NP solver that works on circuits 

make queries to the classical oracle



Bigger picture
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P != NP

Quantum 
Commitments

QKD

Computational 
hardness

Pseudorandom 
quantum states

Quantumly computable 
one-way functions

Pseudorandom unitaries

Quantum cryptography with 
classical communication

Tons more. Community 
is just now starting to 

explore this area

Secret key quantum money



Final week: quantum protocols achieving the impossible 

Next week: Thanksgiving


