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Previously...



Dream inspired by QKD: maybe everything can
be made information-theoretic!

Unfortunately, as with classical crypto, basically
everything requires computational security



Example: qguantum commitments



A protocol inspired by QKD

Commit phase:

{[¥i) = H°|c;) }s

@ For random bits ¢C;

@
: dh
b € {07 1} b; {O, 1}

measure HY

¥) = H"lc)
=

Roughly half the b; will be correct mp C,’L- = ¢;
Roughly half the b; will be incorrect mp ¢; uniform



EPR Attack

Commit phase:
Send n halves of EPR pairs,

@ keep other halves for herself N
dh : dh

Recall: |EPR) = (]00) 4+ |11))

L
v



Reveal phase: To open to b, measure

Hbei C;> — Hbi@b‘(};>
@ to get C; @
dh - .
{H”|c})}s b;, C.

Roughly half the b; will be correct mp C,’L- = ¢;
Roughly half the b; will be incorrect mp ¢; uniform



g
Theorem: No commitment can be both statistically binding

and hiding
-

~




Canonical commitment

Commit phase:

@) Register B 3
PN = dh

Alice prepares |¢b>A,B

Checks if joint

Reveal phase: b, Register 4 system is ‘?Pb)




Statistical hiding implies:
Vo) = SVl ) = Vi)

1
Since {\TB)}Z and 1|7 ) }i are each orthonormal sets,
there exists a unitary &/ mapping between them



Alice’s Binding Attack

e Committo O

e Later open to 1 by applying W



Today: quantum commitments even if P=NP



Thm: If P=NP, classical commitments impossible

Intuition: Alice sends ¢ = Com(m; ’r) to Bob

Two cases:
e ¢ statistically binds to m

Bob can use NP solver to find satisfying assignment to
C(m,r) = (c == Com(m;r))
mp Must reveal m



Thm: If P=NP, classical commitments impossible

Intuition: Alice sends ¢ = Com(m; ’r) to Bob

Two cases:
e ¢ statistically hides m

Alice can use NP solver to find satisfying assignment to
C(m',r") = (c == Com(m/, ") Am' #m)

m) Must reveal valid opening (m', ") withm' # m



Last time, we saw that commitments
require some computational bound

But unclear how to adapt P=NP
impossibility to quantum setting



Y0) = Z Vil T)|) Y1) = Z Vdi|TH)

Alice needs to map \7’,&-0> to |Ti1>

This is in general a unitary transformation. Unclear how
Alice would solve this with a (classical or quantum)
procedure for NP, which computes a function



Candidate commitments in a world where P=NP

Let Uy, U1 be two “random” circuits on 3\ qubits

Ex: random brickwork:

\

—

S

—

Depth somewhat
larger than 3\

Random 2-qubit unitaries



Candidate commitments in a world where P=NP

Yp) = Up|0°7)

Alice’s system A = first 2\ qubits

Bob’s system B=last \ qubits



/Lemma: The protocol is statistically hiding. More precisely,\

Bob’s state is very close to the maximally mixed state,
regardless of bit being committed

Reason: a random circuit generates the quantum
analog of “2-universal” random quantum states

For such states, if you look at any subsystem with much less
than half the qubits, the state looks maximally mixed



Because the protocol is statistically hiding,
we know it cannot be statistically binding

1 o 1 .
tho) = N > )i 1) = N Z 75 )]2)

While there must exist a unitary mapping \7‘?) to \7',}),
it is not clear how to derive such a unitary from Uy, Uq



Theorem: If [/, /; modeled as random black box

-

unitaries, then the protocol is computationally binding

Provides some evidence that the protocol
is binding, even if we cannot prove it




Now what if P = NP?

We want to give some justification that the
commitment scheme remains secure, even in this case



Black-box Separations

Used to argue that A does not imply B, where A,B are
complexity-theoretic or cryptographic statements

A = “Commitments exist” B=“Pl=NP”
Equiv. A=“P=NP” B="“Commitments don’t exist”



Challenge
Typical crypto statement:
A—B equiv: -B = -A, oreven -A 'V B

e.g. L(WE = PKE
P = NP = classical commitments don’t exist

Sometimes additionally have converse

e.g. LWE < particular PKE is secure



Challenge

With A = B or A & B, we are formally making no
statements about whether A is true or false, just
drawing an implication

Of course, we usually believe A (and hence B) to
be true, but the proof doesn’t show this



Challenge

For a separation, we are interested in:
- (A = B) equiv: A\ -B

e.g. - (P = NP = quantum commitments don’t exist)

The only way this can be true is if both A is true and B is false

P=NP and quantum commitments exist

Both incredibly hard problems, and we believe P = NP!



Black-box Separations

Solution: provide oracle relative to which A is true but B is false

Takeaway: any techniques which work
relative to oracles (“relativize”) are
incapable of proving B from A

For example, all the security proofs we’ve seen in this
course relativize, since they just treat adversary as a
black box. It’s fine if that black box makes queries



Black-box Separations

Black-box separations must be interpreted with care,
as there are non-relativizing techniques which
famously circumvent certain impossibilities

So black-box separations usually interpreted as
heuristic evidence, but far from a full proof



How to design a black box separation

Step 1: provide oracles relative to which A is true

Want commitments to exist. Natural choice
of oracle is two random unitaries Uy, U;



How to design a black box separation

Step 2: provide oracles relative to which B is false

Want P=NP. So give oracle

1 if C(z) =1 for some x

0O if there does not exist an x

SAT(C) = {

Clearly breaks all of NP



Must be careful!

We can do the same thing in the classical world:

To make commitments exist, give out a random oracle O

To make P = NP, give out an oracle SAT

But we know that “commitments exist” implies
“P 1= NP”. Why not a contradiction?



Reason: “commitments exist” implies “P 1= NP” applies
supposed NP solver to the commitment

But in this world, the commitment uses the
random oracle. SAT doesn’t work on circuits
that make oracle queries

Results in a rather meaningless separation,
since it doesn’t even capture simple attacks



Instead, SAT should work on circuits that
themselves can make oracle queries

Now such an oracle will break even
commitments constructed using O

Thus in this world, P=NP and commitments
don’t exist, so no separation



Back to quantum separation

If our commitment is built instead using  [J,, U, it is natural to
restrict circuits that are input toSAT from querying
Uo, Ui After all, SAT is supposed to work on classical circuits

Gives a meaningful separation, but perhaps
unsatisfying since we restricted inputs to SAT from
guerying commitment oracles for trivial reasons



Turns out, it is actually possible to give a classical
oracle relative to which commitments exist, even in
the presence of an NP solver that works on circuits

make queries to the classical oracle



Bigger picture



Typically treated (classically) g%
as the bottom of the mountain






P 1= NP

Quantumly computable
one-way functions

Quantum cryptography with
classical communication

Tons more. Community Pseudorandom unitaries

IS just now starting to

: Pseudorandom
explore this area

guantum states
Quantum

Commitments Computational

hardness

QKD Secret key qguantum money



Next week: Thanksgiving

Final week: quantum protocols achieving the impossible



