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So far in CS 258: security of classical protocols against quantum attacks

Good guy = classical Bad guy = quantum

Rest of course: quantum protocols

Everyone = quantum



Why quantum protocols?

Possibly better security / security under milder or no assumptions

Accomplish classically-impossible tasks

(e.g. QKD)

(e.g. Quantum Money)

This week

Final week



Dream inspired by QKD: maybe everything can 
be made information-theoretic!

Today: unfortunately, as with classical crypto, 
basically everything requires computational security



Example: quantum commitments



A protocol inspired by QKD

For random bits 

measure

Commit phase:

Roughly half the       will be correct 
Roughly half the       will be incorrect               uniform 



Theorem: Protocol is (statistically) hiding



Density matrix

Consider a distribution over quantum states, where          is 
sampled with probability      . This is called a “mixed state” 

Define 

captures all statistical information about the mixed state



Examples:

Called the maximally mixed state



Examples:



Examples:



Examples:



Observations

Hermitian

Classical probabilities distributions correspond to diagonal

Positive semi-definite



Density matrix also captures individual systems of entangled states

System       has density matrix, which can be captured by 
imagining measuring     , and taking the probability 
measurement over outcomes  

(Density matrix well-defined even if      not measured) 



Probability measurement gives    : 

Post-measurement state:

Density matrix:



Examples:

Probability measuring      gives    :   

Post-measurement state for     : 



Examples:

Probability measuring      gives    :   

Post-measurement state for     : 



Lemma: If              , then no test can distinguish distributions 

Proof: Suppose we apply a unitary      and measure. 
Probability of observing     is:  



Theorem: Protocol is (statistically) hiding

Proof: Let’s look at density matrix for each 

Independent of    , so no test can distinguish
                             from   



Reveal 

Reveal phase:

Check that when              , then



Theorem: Protocol is (statistically) binding????

Proof: Let’s suppose Alice commits to              and wants to 
open to

Wherever              , she has to send      matching Bob’s

But Bob’s        is a random bit entirely independent of Alice’s 
view (because it is the result of measuring             )     

Prob. of this happening for all such    is exponentially small 



Problem: a malicious Alice doesn’t have to commit honestly



EPR Attack

Commit phase:
Send n halves of EPR pairs, 
keep other halves for herself

Recall:



Equivalently, Alice applying       is equivalent to Bob applying 



Bob’s verification:

Bob applies

Bob measures to get

Alice’s state collapses to

Note that Alice still doesn’t know       or  



Reveal phase: To open to    , measure

to get 

Roughly half the       will be correct 
Roughly half the       will be incorrect               uniform 



Thus, a malicious Alice can perfectly simulate the 
correct view of Bob for any choice of

But it gets worse…



Theorem: No commitment can be both statistically binding 
and hiding



To make proof simpler, we will assume:

• Commitment is a single message from Alice to Bob

• Hiding is perfect

Both of these conditions can be relaxed, with more work



Canonical commitment

Alice prepares

Register

Commit phase:

Reveal phase: , Register
Checks if joint 
system is 



Lemma: Any single-message perfectly hiding commitment 
can be transformed into a canonical perfectly hiding 
commitment

Step 1: delay all of Alice’s measurements until end

Step 2: “copy” 

Don’t actually perform measurement



In general, “copying” value is indistinguishable from measuring it

Measure “copy”     , then view subsystem 



Lemma: For any perfectly hiding canonical commitment, 
Alice has a perfect attack on binding

Let       be density matrix for system       of 

By perfect hiding, 



Assemble           into matrix 



Singular Value Decomposition

Where:                 unitary
       diagonal, real, and non-negative

Moreover, 



Equivalently:

Equivalently:

Where orthonormal

orthonormal

(called Shmidt decomposition)



What is Bob’s density matrix?

Applying         to Alice’s state doesn’t affect Bob’s state 

Density matrix for Bob is therefore



Now perform same calculation for

Perfect hiding:

Insight: Left and right sides are eigen-decompositions of same matrix



Since                   and                   are each orthonormal sets, 
there exists a unitary        mapping between them

We actually already almost worked it out:



Alice’s Binding Attack

• Commit to 0

• Later open to 1 by applying 



It turns out that, just like in the classical world, for 
almost anything we would like to do in cryptography, 

computational security remains necessary

Intuition: with enough “information” observed, 
secrets revealed even if information is quantum



Next time: While quantum doesn’t 
usually eliminate assumptions, it can 

make them milder

In particular, while classical cryptography 
cannot exist if P=NP, quantum cryptography 

might still exist if NP ⊆ BQP


