CS 258: Quantum Cryptography

Mark Zhandry



So far in CS 258: security of classical protocols against quantum attacks

Good guy = classical Bad guy = quantum

Rest of course: quantum protocols

Everyone = quantum



Why quantum protocols?

Possibly better security / security under milder or no assumptions

(e.g. QKD) \

Accomplish classically-impossible tasks

This week

(e.g. Quantum Money)
Final week



Dream inspired by QKD: maybe everything can
be made information-theoretic!

Today: unfortunately, as with classical crypto,
basically everything requires computational security



Example: qguantum commitments



A protocol inspired by QKD

Commit phase:

{[¥i) = H°|c;) }s

@ For random bits ¢C;

@
: dh
b € {07 1} b; {O, 1}

measure HY

¥) = H"lc)
=

Roughly half the b; will be correct mp C,’L- = ¢;
Roughly half the b; will be incorrect mp ¢; uniform



Theorem: Protocol is (statistically) hiding




Density matrix

Consider a distribution over quantum states, where |®;) is
sampled with probability P;. This is called a “mixed state”

Define p = sz‘¢z><¢z‘

P captures all statistical information about the mixed state



Examples:
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p= 00+ gmai=( V2, )

Called the maximally mixed state
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Examples:

$o) = |0) po =1/4
¢1) = |[+) p1=1/4
B2) = |- p2 =1/2

p= 710001+ )G + 51-) =

:<_51 _31>/8




Observations

Hermitian  p = (D piloa) ()T = > pilea) (ds] = p
Positive semi-definite

Tr(p) = TIr (sz|¢z> ¢2 ) ZP@TF |¢z (rbz szTr ¢z|¢z Zpi =1

Classical probabilities distributions correspond to diagonal

p=sz-|i><z



Density matrix also captures individual systems of entangled states

‘¢>A,B — Z O‘:r;,yla?a y>
L,Y

System A has density matrix, which can be captured by
imagining measuring 3, and taking the probability
measurement over outcomes

(Density matrix well-defined even if 3 not measured)



Density matrix:

P = ZpyWy (Yy| = Z O‘:vya ,y

x,x’ .,y



Examples:

1 1
:E‘an> | \/§|171>

Probability measuring BB givesb: pg = p1 = 1/2

V) A8

Post-measurement state for A: |¥s) = |b)

= ()



Examples: .

1 1

V2

Probability measuring BB givesb: pg = p1 = 1/2

bo) =
P1) =

p=(1 1)

Post-measurement state fOI’A :

0)
+)



. )

Lemma: If p = p, then no test can distinguish distributions

\ /
/ )

Proof: Suppose we apply a unitary U and measure.
Probability of observing z is:

sz [(2|U]¢:)|? sz (z|U|¢s) (i |UT|x)

= (z|U (Zpi|¢i><¢z'|) U'|z)

= (z|UpU"|z)




(

Theorem: Protocol is (statistically) hiding

>

Proof: Let’s look at density matrix for each |¢z>

1

_ 1 b b __ 1 b b
=y S 0 (Sl ) 1

C,,;ZO
_1b 1 b_l 1
—éH( 1)H—5( 1>

Independent of b, so no test can distinguish

b=0frompbp=1

A




Reveal phase:

@ Reveal b, {c;}; )
dh : dh
b € {O, 1} bi) C;j

Check that when b; = b, then ¢, = ¢;



Theorem: Protocol is (statistically) binding????

Y4

.

Proof: Let’s suppose Alice commits to b = ( and wants to
opento h =1

Wherever b; = 1, she has to send ¢; matching Bob’s Cg

But Bob’s C,’L- Is @ random bit entirely independent of Alice’s
view (because it is the result of measuring H|c7;>)

Prob. of this happening for all such 7 is exponentially small

AN




Problem: a malicious Alice doesn’t have to commit honestly



EPR Attack

Commit phase:
Send n halves of EPR pairs,

@ keep other halves for herself N
dh : dh

Recall: |EPR) = (]00) 4+ |11))

L
v



1
H®?|EPR) = H®>— ) |b,b)
V24
1 :
= —= ) le, ) (=1)>e*e
7 2

/
b,c,c

= %Z\c,c) = |EPR)

Equivalently, Alice applying H is equivalent to Bob applying H



1
Bob’s verification: |EPR) = E (]00) + |11))

‘ Bob applies H"

I ® H*|EPR) = H” ® I|EPR)

‘ Bob measures to get Cf,i

Alice’s state collapses to H? c;)

. . ) /
Note that Alice still doesn’t know b; or C;



Reveal phase: To open to b, measure

Hbei C;> — Hbi@b‘(};>
@ to get C; @
dh - .
{H”|c})}s b;, C.

Roughly half the b; will be correct mp C,’L- = ¢;
Roughly half the b; will be incorrect mp ¢; uniform



Thus, a malicious Alice can perfectly simulate the
correct view of Bob for any choice of b

But it gets worse...



g
Theorem: No commitment can be both statistically binding

and hiding
-

~




To make proof simpler, we will assume:

e Commitment is a single message from Alice to Bob

* Hiding is perfect

Both of these conditions can be relaxed, with more work



Canonical commitment

Commit phase:

@) Register B 3
PN = dh

Alice prepares |¢b>A,B

Checks if joint

Reveal phase: b, Register 4 system is ‘?Pb)




p
Lemma: Any single-message perfectly hiding commitment

can be transformed into a canonical perfectly hiding

kcommltment

Step 1: delay all of Alice’s measurements until end

‘be> — Z am,y,m1,m2‘xamlay7m2>
LyY,M1,1M2

Step 2: “copy” mo
Z Xy y,mq,mo ‘337 mi, m2>A‘y7 m2>B

L,Y,M1,M2

Don’t actually perform measurement



In general, “copying” value is indistinguishable from measuring it

Z g,y |T, Y)

Measure Y “copy” Yy, then view subsystem
P= Z O‘w,yalf,y\%y><5’3’»y| Y
T,z ,y ‘
p= D Gy,

/
w7m 7y

z,y)(x’, Yyl




-

Lemma: For any perfectly hiding canonical commitment,

\Alice has a perfect attack on binding

Let Pb be density matrix for system 5 of |¢b>A,B

By perfect hiding, po = p1




|¢o> — Z Oy |£L', y>
L,Y

Assemble Gz 4 into matrix

1.1 G112 1.3
Q21 Q22 (23

Mo = Q31 Q32 (33



Singular Value Decomposition

MO —_ UODOVOT

Where: Uy, V| unitary
Dgdiagonal, real, and non-negative

Moreover, Tr[Dg] =1

L= Tr[Mg Mo] = Tr[Vg DoUg U DoVy'] = Tr(Vg DgVy'] = Tr([V' V' DF] = Tr[D]



Equivalently: My = Z A /dg‘TZQM(fY?)*

)
Where ng =1 { 7‘,?)},,; orthonormal
. { ”Yf?>}i orthonormal

Equivalently: |¢O ‘/ ‘7- h’z

(called Shmidt decomposition)



What is Bob’s density matrix?

Applying Ug to Alice’s state doesn’t affect Bob’s state

— >/ El)

Density matrix for Bob is therefore

Po = ng‘%oﬂﬁ‘

1



Now perform same calculation for b =1
pr =y di|7} )]
)

perfect hiding: Y dj [ ) (vi | = D dY|d) (77|

7 7

Insight: Left and right sides are eigen-decompositions of same matrix

) O=—d )=



Yo) = VAl ) = Vi

1
Since {\TB)}Z and 1|7 ) }i are each orthonormal sets,
there exists a unitary W mapping between them

We actually already almost worked it out: W = U; Ug



Alice’s Binding Attack

e Committo O

e Later open to 1 by applying W



It turns out that, just like in the classical world, for
almost anything we would like to do in cryptography,
computational security remains necessary

Intuition: with enough “information” observed,
secrets revealed even if information is quantum



Next time: While quantum doesn’t
usually eliminate assumptions, it can
make them milder

In particular, while classical cryptography
cannot exist if P=NP, quantum cryptography
might still exist if NP € BQP



