CS 258: Quantum Cryptography

Mark Zhandry

So far in CS 258: security of classical protocols against quantum attacks

Good guy = classical

Bad guy = quantum

Rest of course: quantum protocols

Everyone = quantum

Why quantum protocols?

Possibly better security / security under milder or no assumptions (e.g. QKD)

This week

Accomplish classically-impossible tasks (e.g. Quantum Money)

Final week

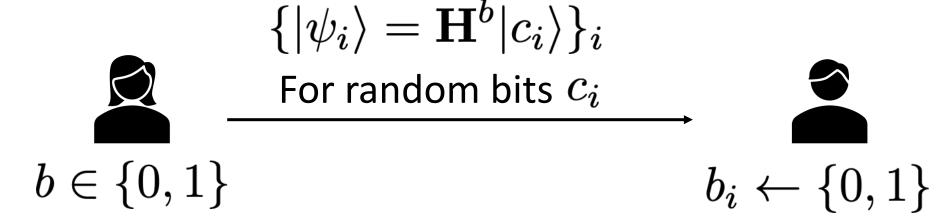
Dream inspired by QKD: maybe everything can be made information-theoretic!

Today: unfortunately, as with classical crypto, basically everything requires computational security

Example: quantum commitments

A protocol inspired by QKD

Commit phase:



measure
$$\mathbf{H}^{b_i}|\psi
angle = \mathbf{H}^{b_i\oplus b}|c_i
angle$$

Roughly half the b_i will be correct $\Rightarrow c_i' = c_i$ Roughly half the b_i will be incorrect $\Rightarrow c_i'$ uniform Theorem: Protocol is (statistically) hiding

Density matrix

Consider a distribution over quantum states, where $|\phi_i\rangle$ is sampled with probability p_i . This is called a "mixed state"

Define
$$ho = \sum_i p_i |\phi_i\rangle\langle\phi_i|$$

ho captures all statistical information about the mixed state

$$\begin{aligned} |\phi_0\rangle &= |0\rangle \\ |\phi_1\rangle &= |1\rangle \end{aligned} \qquad p_0 = p_1 = \frac{1}{2}$$

$$\rho = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

Called the maximally mixed state

$$|\phi_0\rangle = |+\rangle$$

$$|\phi_1\rangle = |-\rangle$$

$$p_0 = p_1 = \frac{1}{2}$$

$$\rho = \frac{1}{2} \left[\frac{1}{2} (|0\rangle + |1\rangle) (\langle 0| + \langle 1|) \right] + \frac{1}{2} \left[\frac{1}{2} (|0\rangle - |1\rangle) (\langle 0| - \langle 1|) \right]$$
$$= \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

$$|\phi_0\rangle = |+\rangle$$

$$|\phi_1\rangle = |-\rangle$$

$$p_0 = p_1 = \frac{1}{2}$$

$$\rho = \frac{1}{2} \left[\frac{1}{2} (|0\rangle + |1\rangle) (\langle 0| + \langle 1|) \right] + \frac{1}{2} \left[\frac{1}{2} (|0\rangle - |1\rangle) (\langle 0| - \langle 1|) \right]$$
$$= \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

$$|\phi_0\rangle = |0\rangle$$
 $p_0 = 1/4$ $|\phi_1\rangle = |+\rangle$ $p_1 = 1/4$ $|\phi_2\rangle = |-\rangle$ $p_2 = 1/2$

$$\rho = \frac{1}{4}|0\rangle\langle 0| + \frac{1}{4}|+\rangle\langle +| + \frac{1}{2}|-\rangle\langle -|$$

$$= \begin{pmatrix} 5 & -1 \\ -1 & 3 \end{pmatrix}/8$$

Observations

Hermitian
$$ho^\dagger = (\sum_i p_i |\phi_i\rangle\langle\phi_i|)^\dagger = \sum_i p_i |\phi_i\rangle\langle\phi_i| =
ho$$

Positive semi-definite

$$\operatorname{Tr}(\rho) = \operatorname{Tr}\left(\sum_i p_i |\phi_i\rangle \langle \phi_i|\right) = \sum_i p_i \operatorname{Tr}(|\phi_i\rangle \langle \phi_i|) = \sum_i p_i \operatorname{Tr}(\langle \phi_i |\phi_i\rangle) = \sum_i p_i = 1$$

Classical probabilities distributions correspond to diagonal

$$\rho = \sum_{i} p_{i} |i\rangle\langle i|$$

Density matrix also captures individual systems of entangled states

$$|\psi\rangle_{\mathcal{A},\mathcal{B}} = \sum_{x,y} \alpha_{x,y} |x,y\rangle$$

System A has density matrix, which can be captured by imagining measuring B, and taking the probability measurement over outcomes

(Density matrix well-defined even if ${\cal B}$ not measured)

$$|\psi\rangle_{\mathcal{A},\mathcal{B}} = \sum_{x,y} \alpha_{x,y} |x,y\rangle$$

Probability measurement gives y: $p_y = \sum |\alpha_{x,y}|^2$

Post-measurement state: $|\psi_y\rangle=\frac{1}{\sqrt{p_y}}\sum_x \alpha_{x,y}|x\rangle$

Density matrix:

$$\rho = \sum_{y} p_{y} |\psi_{y}\rangle\langle\psi_{y}| = \sum_{x,x',y} \alpha_{x,y} \alpha_{x',y}^{\dagger} |x\rangle\langle x'|$$

$$|\psi\rangle_{\mathcal{A},\mathcal{B}} = \frac{1}{\sqrt{2}}|0,0\rangle + \frac{1}{\sqrt{2}}|1,1\rangle$$

Probability measuring ${\cal B}$ gives $b\colon p_0=p_1=1/2$

Post-measurement state for \mathcal{A} : $|\psi_b\rangle=|b\rangle$

$$\rho = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0,0\rangle + \frac{1}{2}|0,1\rangle + \frac{1}{2}|1,1\rangle$$

Probability measuring ${\cal B}$ gives $b\colon p_0=p_1=1/2$

Post-measurement state for \mathcal{A} : $\begin{vmatrix} \phi_0 \rangle = |0 \rangle \\ |\phi_1 \rangle = |+ \rangle \end{vmatrix}$

$$\rho = \left(\begin{array}{cc} 3 & 1 \\ 1 & 1 \end{array}\right) / 4$$

Lemma: If $\rho = \rho'$, then no test can distinguish distributions

Proof: Suppose we apply a unitary U and measure. Probability of observing x is:

$$\sum_{i} p_{i} |\langle x|U|\phi_{i}\rangle|^{2} = \sum_{i} p_{i} \langle x|U|\phi_{i}\rangle\langle\phi_{i}|U^{\dagger}|x\rangle$$

$$= \langle x|U\left(\sum_{i} p_{i}|\phi_{i}\rangle\langle\phi_{i}|\right)U^{\dagger}|x\rangle$$

$$= \langle x|U\rho U^{\dagger}|x\rangle$$

Theorem: Protocol is (statistically) hiding

Proof: Let's look at density matrix for each $|\psi_i
angle$

$$\rho_b = \frac{1}{2} \sum_{c_i=0}^{1} \mathbf{H}^b | c_i \rangle \langle c_i | \mathbf{H}^b = \frac{1}{2} \mathbf{H}^b \left(\sum_{c_i} |c_i \rangle \langle c_i | \right) \mathbf{H}^b$$
$$= \frac{1}{2} \mathbf{H}^b \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{H}^b = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Independent of b , so no test can distinguish b=0 from b=1

Reveal phase:

Reveal
$$b, \{c_i\}_i$$
 $b \in \{0, 1\}$ b_i, c_i'

Check that when $b_i=b$, then $c_i^\prime=c_i$

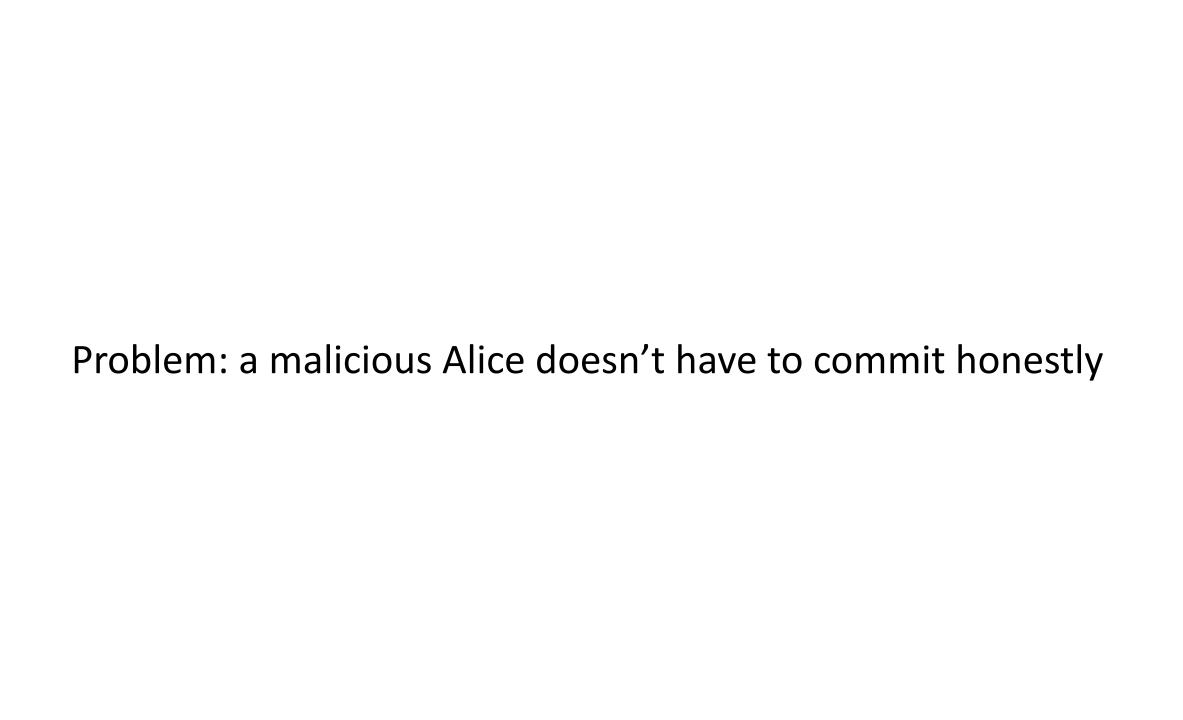
Theorem: Protocol is (statistically) binding????

Proof: Let's suppose Alice commits to b=0 and wants to open to b=1

Wherever $b_i=1$, she has to send c_i matching Bob's c_i^\prime

But Bob's c_i' is a random bit entirely independent of Alice's view (because it is the result of measuring $\mathbf{H}|c_i
angle$)

Prob. of this happening for all such i is exponentially small



EPR Attack

Commit phase:

Send n halves of EPR pairs, keep other halves for herself

Recall:
$$|\mathsf{EPR}\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

$$\mathbf{H}^{\otimes 2}|\mathsf{EPR}\rangle = \mathbf{H}^{\otimes 2} \frac{1}{\sqrt{2}} \sum_{b} |b,b\rangle$$

$$= \frac{1}{\sqrt{8}} \sum_{b,c,c'} |c,c'\rangle (-1)^{bc+bc'}$$

$$= \frac{1}{\sqrt{2}} \sum_{c} |c,c\rangle = |\mathsf{EPR}\rangle$$

Equivalently, Alice applying ${f H}$ is equivalent to Bob applying ${f H}$

Bob's verification:
$$|\mathsf{EPR}\rangle = \frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right)$$

Bob applies \mathbf{H}^{b_i}

$$\mathbf{I}\otimes\mathbf{H}^{b_i}|\mathsf{EPR}
angle=\mathbf{H}^{b_i}\otimes\mathbf{I}|\mathsf{EPR}
angle$$

Bob measures to get c_i^\prime

Alice's state collapses to $|\mathbf{H}^{b_i}|c_i'
angle$

Note that Alice still doesn't know b_i or c_i^\prime

Reveal phase:

 $\{\mathbf{H}^{b_i}|c_i'\rangle\}_i$

To open to \boldsymbol{b} , measure

$$\mathbf{H}^b\mathbf{H}^{b_i}|c_i'
angle = \mathbf{H}^{b_i\oplus b}|c_i'
angle$$
 to get c_i

$$b_i, c_i'$$

Roughly half the b_i will be correct $\Rightarrow c_i' = c_i$ Roughly half the b_i will be incorrect $\Rightarrow c_i'$ uniform

Thus, a malicious Alice can perfectly simulate the correct view of Bob for any choice of \boldsymbol{b}

But it gets worse...

Theorem: No commitment can be both statistically binding and hiding

To make proof simpler, we will assume:

Commitment is a single message from Alice to Bob

Hiding is perfect

Both of these conditions can be relaxed, with more work

Canonical commitment

Commit phase:

Register ${\cal B}$

Alice prepares $|\psi_b\rangle_{\mathcal{A},\mathcal{B}}$

Reveal phase:

b , Register ${\cal A}$

Checks if joint system is $|\psi_b
angle$

Lemma: Any single-message perfectly hiding commitment can be transformed into a canonical perfectly hiding commitment

Step 1: delay all of Alice's measurements until end

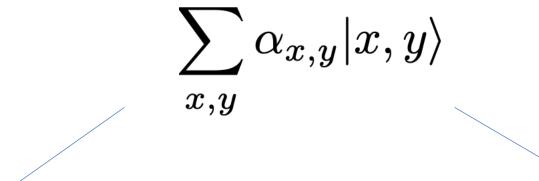
$$|\phi_b\rangle = \sum_{x,y,m_1,m_2} \alpha_{x,y,m_1,m_2} |x,m_1,y,m_2\rangle$$

Step 2: "copy" m_2

$$\sum_{x,y,m_1,m_2} \alpha_{x,y,m_1,m_2} |x,m_1,m_2\rangle_{\mathcal{A}} |y,m_2\rangle_{\mathcal{B}}$$

Don't actually perform measurement

In general, "copying" value is indistinguishable from measuring it



Measure y

$$\rho = \sum_{x,x',y} \alpha_{x,y} \alpha_{x',y}^{\dagger} |x,y\rangle \langle x',y|$$

"copy" y, then view subsystem

$$\sum_{x,y} \alpha_{x,y} |x,y\rangle |y\rangle$$

$$\rho = \sum_{x,x',y} \alpha_{x,y} \alpha_{x',y}^{\dagger} |x,y\rangle \langle x',y|$$

Lemma: For any perfectly hiding canonical commitment, Alice has a perfect attack on binding

Let ho_b be density matrix for system \mathcal{B} of $|\psi_b\rangle_{\mathcal{A},\mathcal{B}}$

By perfect hiding, $ho_0=
ho_1$

$$|\psi_0\rangle = \sum_{x,y} \alpha_{x,y} |x,y\rangle$$

Assemble $\alpha_{x,y}$ into matrix

$$M_{0} = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} & \cdots \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} & \cdots \\ \alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Singular Value Decomposition

$$M_0 = U_0 D_0 V_0^T$$

Where: U_0, V_0 unitary

 D_0 diagonal, real, and non-negative

Moreover,
$$\operatorname{Tr}[D_0^2] = 1$$

$$1 = \mathrm{Tr}[M_0^\dagger M_0] = \mathrm{Tr}[V_0^* D_0 U_0^\dagger U_0 D_0 V_0^T] = \mathrm{Tr}[V_0^* D_0^2 V_0^T] = \mathrm{Tr}[V_0^T V_0^* D_0^2] = \mathrm{Tr}[D_0^2]$$

$$M_0 = U_0 D_0 V_0^T$$

Equivalently:
$$M_0=\sum_i\sqrt{d_i^0}|\tau_i^0\rangle\langle(\gamma_i^0)^*|$$
 Where $\sum_id_i^0=1$ $\{|\tau_i^0\rangle\}_i$ orthonormal $\{|\gamma_i^0\rangle\}_i$ orthonormal

Equivalently:
$$|\psi_0
angle=\sum_i\sqrt{d_i^0| au_i^0
angle|\gamma_i^0
angle}$$

What is Bob's density matrix?

Applying $\,U_0^\dagger$ to Alice's state doesn't affect Bob's state

$$\sum_{i} \sqrt{d_i^0} |i\rangle |\gamma_i^0\rangle$$

Density matrix for Bob is therefore

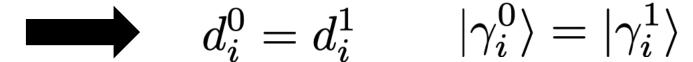
$$\rho_0 = \sum_i d_i^0 |\gamma_i^0\rangle \langle \gamma_i^0|$$

Now perform same calculation for b=1

$$\rho_1 = \sum_i d_i^1 |\gamma_i^1\rangle \langle \gamma_i^1|$$

Perfect hiding:
$$\sum_i d_i^1 |\gamma_i^1\rangle \langle \gamma_i^1| = \sum_i d_i^0 |\gamma_i^0\rangle \langle \gamma_i^0|$$

Insight: Left and right sides are eigen-decompositions of same matrix



$$|\psi_0\rangle = \sum_i \sqrt{d_i} |\tau_i^0\rangle |\gamma_i\rangle \qquad |\psi_1\rangle = \sum_i \sqrt{d_i} |\tau_i^1\rangle |\gamma_i\rangle$$

Since $\{|\tau_i^0\rangle\}_i$ and $\{|\tau_i^1\rangle\}_i$ are each orthonormal sets, there exists a unitary W mapping between them

We actually already almost worked it out: $W=U_1U_0^\dagger$

Alice's Binding Attack

• Commit to 0

ullet Later open to 1 by applying $\,W\,$

It turns out that, just like in the classical world, for almost anything we would like to do in cryptography, computational security remains necessary

Intuition: with enough "information" observed, secrets revealed even if information is quantum

Next time: While quantum doesn't usually eliminate assumptions, it can make them milder

In particular, while classical cryptography cannot exist if P=NP, quantum cryptography might still exist if NP \subseteq BQP