
CS 258: Quantum Cryptography

Mark Zhandry

A long long time ago…

Signatures

Signatures

Adversary who sees and a signed message cannot
produce another signed message that verifies

Schnorr Signatures

Assume a “good” hash function

choose random check:

Intuition for security

The hash enforces that challenge formed after

Otherwise, pick , let ,
find s.t

by construction,

Schnorr for Group Actions

Assume a “good” hash function

choose random

Question for today: How do we formally argue security?

In particular, what does it mean for a hash function
to be “good” in this context?

Problem: in general, we have no idea how to prove security
of Schnorr from “typical” properties of hash functions

But in real world, nevertheless seems secure. So what do we do?

The (Classical) Random Oracle Model

In real world:

Adversary may do more, but in
typical attacks all it does is
evaluate

Random oracle model:

Treat hash function as a truly
random function that everyone
queries

The random oracle model is not an assumption about

is clearly distinguishable from a random
function, since we have efficient code that
evaluates it

Instead, it’s an assumption that attacks don’t do anything
which depends on the code except evaluate. Sometimes
called a “heuristic”

The heuristic is known to fail in certain contrived settings.
But for “practical” applications, seems to be reasonable

It turns out that the random oracle model is
the only way we know how to justify the
security of many of the cryptosystems we

currently use today

This continues to be true in the quantum setting

Random oracles in a quantum world

Consider running Grover search on a hash function

This requires applying the unitary

Just given classical queries to , there is no way to apply

The classical ROM fails to capture standard quantum algorithms!

The Quantum Query Model

A quantum query to a function just means that we get to
press a button, and will be applied to our state. No need
to implement it ourselves

Grover search (and collision finding) work in this
model, and are known to be optimal in this model

Quantum random oracle model

Typically, the “honest” algorithms will still
only make classical queries

Now let’s see a classical security proof, and how it
fails when we move to the quantum setting

Sigma Protocols

Soundness: impossible for adversary to impersonate Alice

Accept/reject

Public coin: is just a random string

Zero-knowledge: Anyone can sample for themselves

Schnorr Identification

Accept/reject

Lemma: Under Dlog assumption, protocol is sound

Proof idea: Dlog implies hard to find with
 . Using rewinding to extract such a “collision” from an
impersonator

Schnorr Identification

Accept/reject

Lemma: Protocol is zero knowledge

Proof: Choose random , set

Group Action-based Identification

Accept/reject

Lemma: Under GA-Dlog assumption, protocol is sound

Lemma: Protocol is zero knowledge

The Fiat-Shamir Transform

Shnorr signatures = Schnorr identification + Fiat-Shamir
GA-based signatures = GA-based identification + Fiat-Shamir

Thm (informal): Assuming Sigma protocol is sound, impossible for
efficient classical adversary to forge a signature in ROM
Proof idea:

Assume without loss of generality that was some query

Choose random query
Choose random function

For all queries except , answer with

For , send , receive
 re-program
 answer with
(future queries use re-programmed oracle)

Upon output , send

Thm (informal): Assuming Sigma protocol is sound, impossible for
efficient classical adversary to forge a signature in ROM
Proof idea:

If we happen to correctly guess to be the first time
was queried, then adversary sees truly random oracle

for
Before query , we
were answering with

 .
But by assumption, no
such query made

Thm (informal): Assuming Sigma protocol is sound, impossible for
efficient classical adversary to forge a signature in ROM
Proof idea: Where to get ? Problem: exponential-sized object

Solution: lazy sampling. Answer each query
randomly, but keep track of previous queries to
ensure same answer if same query made twice

Moving to quantum

Problem 1: how to simulate random oracle?
• “Keep track of previous queries” implies writing the queries

down; observer effect à changes adversary’s state

Problem 2: How to get ?
• Adversary’s query is superposition. Perform a measurement?

Simulating Random Oracles

Lemma: A 2q-wise independent function is perfectly
indistinguishable from a random function

Def: A family of functions is k-
wise independent if, for all tuples of k distinct points

and all tuples of k (possibly non-distinct) points

We have that

Solving Problem 2

First idea: same as classical, but measure query to get

Choose random query
Choose random function

For all queries except , answer with

For , measure query to get
 send , receive
 re-program
 answer with reprogrammed
(future queries use re-programmed oracle)

Upon output , send

Unfortunately, doesn’t work. By observer effect,
measuring ith query messes up adversary’s state

Miraculously, however, a small change actually does
work, despite observer effect

Choose random query ,
Choose random function

For all queries except , answer with

For , measure query to get
 send , receive
 re-program
 answer with re-programmed
(future queries use re-programmed oracle)

Upon output , send

Choose random query ,
Choose random function

For all queries except , answer with

For , measure query to get
 send , receive
 answer with existing
 re-program
(future queries use re-programmed oracle)

Upon output , send

Why on earth does this work?!

Possible to evaluate by direct calculation, but I’m
going to attempt to give an intuitive explanation

Phase queries

So we can assume adversary is making phase queries

A path view

Each wall corresponds to phase query
Each slit corresponds to basis state

For a path , define as function

General computation:

imparts a phase to each path equal to

Key observations:
• Initially, everywhere
• If , adversary learns nothing about
• So we can assume at end, adversary’s paths have

• All paths must have transitioned from zero to non-zero at some
query

Another Gentle Measurement Lemma: if an intermediate
measurement gives only t possible outcomes,

Constructive interference can only amplify by the
the number of different paths

Idea: if we measure a query and get , we are only
separating paths by the query number that went from

 to

Intuitively, if this partitions the paths,
then we can apply Gentle Measurements

to show that success probability didn’t
decrease too much

Define set of paths = set of paths where
just prior to query
just after to query

= final output

Notice that for paths in , can re-program at query

This is essentially what the first attempt was doing

Problem: some paths may be in multiple

So not a partition, and therefore cannot
use Gentle Measurements

Basically, if path goes back and forth between
and

Define set of paths = set of paths where
just prior to query
just after to query

Notice that for paths in , can re-program
immediately after query

Also note that these paths must transition back to
 at some point

Observe: for each path

Second, correct attempt is measuring a path in

This works because the exactly capture overcounting in

Note: This analysis assumes that we get the actual
when we measure. That is, that we guessed the correct query

where we transitioned from to
 .

In reality, only correctly guess with probability

Overall success probability:

Where did we use Zero Knowledge?

We didn’t; ZK is used to prove security
even against an adversary that sees many

signed messages

Intuitively, why did we need a new proof? After all,
the model of security for signatures didn’t change
(signature security is still just PPT vs QPT)

But it did! In the ROM/QROM, the model includes the
queries made to the RO. For QROM, not only do we
have to worry about quantum computing, but we also
have to worry about superposition queries

Next time: quantum protocols, applications and limitations

