CS 258: Quantum Cryptography

Mark Zhandry

A long long time ago...

Signatures

Signatures
(sk, pk) < Gen()

! _/
) m,a»' m, o &
dh 5 dh

sk pk
o <+ Sign(sk, m) 0/1 < Ver(pk,m’, o)

Adversary who sees pk and a signed messagem, o cannot
produce another signed message that verifies

Schnorr Signatures

Assume a “good” hash function H

sk = s pk =g

Sign(sk,m) : choose random = Ver(pk, m, (a, ¢, 7)) : check:
<

a=4g c = H(m,a)
c= H(m,a) g" = a x pk°
r=2z-+=cCs

o= (a,c,r)

Intuition for security

a =g~ c = H(m,a) r=z+cs
o= (a,c,r)
The hash enforces that challenge formed after m, a

by construction,

Otherwise, pickr, c, let a = g’ X Pk,_c
findm st ¢ = H(m,a)

9" = a x pk°

Schnorr for Group Actions

Assume a “good” hash function H

sk = s kaS*CE()

Sign(sk, m) : choose random 21, -- ,2x
a; = 2; X X
/c:H(m,al,-‘;- ,7677,)\)
= {07 1}>\ T, = (1 — Cz’)Zz' + C;S
0 = (af17°°° y ANy Cy Ty 7TA)

Question for today: How do we formally argue security?

In particular, what does it mean for a hash function
to be “good” in this context?

Problem: in general, we have no idea how to prove security
of Schnorr from “typical” properties of hash functions

But in real world, nevertheless seems secure. So what do we do?

The (Classical) Random Oracle Model

In real world:

a

Adversary may do more, but in
typical attacks all it does is
evaluate H

Random oracle model:

O+ FUNCS

' Ge\slg\n

Treat hash function as a truly
random function that everyone
gueries

The random oracle model is not an assumption about H

H is clearly distinguishable from a random
function, since we have efficient code that
evaluates it

Instead, it’s an assumption that attacks don’t do anything
which depends on the code except evaluate. Sometimes
called a “heuristic”

The heuristic is known to fail in certain contrived settings.
But for “practical” applications, seems to be reasonable

It turns out that the random oracle model is
the only way we know how to justify the
security of many of the cryptosystems we

currently use today

This continues to be true in the quantum setting

Random oracles in a quantum world

Consider running Grover search on a hash function H
This requires applying the unitary U g

Just given classical queries to H, there is no way to apply Uy

The classical ROM fails to capture standard quantum algorithms!

The Quantum Query Model

A quantum query to a function () just means that we get to
press a button, and Uy will be applied to our state. No need
to implement it ourselves

Grover search (and collision finding) work in this
model, and are known to be optimal in this model

Quantum random oracle model

Typically, the “honest” algorithms will still
only make classical queries

Now let’s see a classical security proof, and how it
fails when we move to the quantum setting

Sigma Protocols (sk, pk) < Gen(1*)

Accept/reject

Public coin: c is just a random string
Soundness: impossible for adversary to impersonate Alice

Zero-knowledge: Anyone can sample (a, ¢,) for themselves

Schnorr Identification

8 —_
-4 —r=zte gm
sk = s pk = g°

Accept/reject

Lemma: Under Dlog assumption, protocol is sound

Proof idea: Dlog implies hard to find (a, c1,71), (@, c2, 72) with
C1 7 C2. Using rewinding to extract such a “collision” from an
Impersonator

Schnorr Identification

8 —_
-4 —r=zte gm
sk = s pk = ¢°

Accept/reject

Lemma: Protocol is zero knowledge

Proof: Choose random ¢, 7, set a = g" X pk™ ©

-

Group Action-based Identification

a = (21 *xg, - ,2\ * To)

\
& —— %

r

- =0 ..
sk = s pk = s x xg

Accept/reject

ri = (1 —c¢;)z;“+7¢;s

Lemma: Under GA-Dlog assumption, protocol is sound

Lemma: Protocol is zero knowledge

The Fiat-Shamir Transform

g o = (a,c:H(m,:a,),r) z
sk pk

Shnorr signatures = Schnorr identification + Fiat-Shamir
GA-based signatures = GA-based identification + Fiat-Shamir

‘Thm (informal): Assuming Sigma protocol is sound, impossible for h
_efficient classical adversary to forge a signature in ROM

~) <
Proof idea:

Assume without loss of generality that (m7 a) was some query

Choose random query i € [1,q + 1]
Choose random function ()’

For all queries except 3, answer with
/
(mj,a;) — O (mj,a;)

For 9 =1, send @4, receive C;
re-program O’ (m;, a;) = ¢;
answer with C;

(future queries use re-programmed oracle)

— Uponoutput 0 = (a,c,r),send r

‘Thm (informal): Assuming Sigma protocol is sound, impossible for h
_efficient classical adversary to forge a signature in ROM

/ °
Proof idea:

J
<

If we happen to correctly guess 7 to be the first time (’m, a)

was queried, then adversary sees truly random oracle O

— —70(my;,a;) = ¢;

efore query 7, we A _ ,

were answering with (mj7 aj) =0 (m]) a’J)for J 7’é [
/

O (mi, CL,,;) 75 C; .

But by assumption, no

such query made

2

‘Thm (informal): Assuming Sigma protocol is sound, impossible for h
_efficient classical adversary to forge a signature in ROM

)
4 I
Proof idea: Where to get (O’ ? Problem: exponential-sized object

Solution: lazy sampling. Answer each query
randomly, but keep track of previous queries to
ensure same answer if same query made twice

Moving to quantum

Problem 1: how to simulate random oracle?
 “Keep track of previous queries” implies writing the queries
down; observer effect 2 changes adversary’s state

Problem 2: How to get @;?
* Adversary’s query is superposition. Perform a measurement?

Simulating Random Oracles

Lemma: A 2g-wise independent function is perfectly
indistinguishable from a random function

-

Def: A family H. of functions : {0,1}™ — {0,1}™ is k-
wise independent if, for all tuples of k distinct points
(wla T 7$k) S ({07 l}n)k

and all tuples of k (possibly non-distinct) points

(1, ,yk) € ({0,1}™)"

hzg{[h(xz) = YVt € [k]] — 9—km

We have that

Solving Problem 2

First idea: same as classical, but measure query 7 to get m;, a;

Choose random query i € [1,q + 1]
Choose random function ()’

For all queries except 3 , answer with
Uo

For 7 = ¢, measure query to getm,;, a;

send Q; , receive C;

re-program O’ (m;, a;) = ¢;
answer with reprogrammed U
(future queries use re-programmed oracle)

— Uponoutput 0 = (a,c,r),send r

Unfortunately, doesn’t work. By observer effect,
measuring ith query messes up adversary’s state

Miraculously, however, a small change actually does
work, despite observer effect

Choose random query i € [1,¢g+1], b € {0,1}

Choose random function ()’

For all queries except 3 , answer with
Uo

For 9 = ¢, measure query to get m;, a;

send @i, receive C;

b — (. re-program O'(m;,a;) = ¢;
~ | answer with re-programmed U -
(future queries use re-programmed oracle)

— Uponoutput 0 = (a,c,r),send r

Choose random query i € [1,¢g+1], b € {0,1}

Choose random function ()’

For all queries except 3 , answer with
Uo
For 9 = ¢, measure query to get m;, a;
_send @, receive C;
p — 1 answer with existing U
~ = | re-program O’ (m;, a;) = ¢;
(future queries use re-programmed oracle)

— Upon output o = (a, ¢,), send 7

Why on earth does this work?!

Possible to evaluate by direct calculation, but I'm
going to attempt to give an intuitive explanation

Phase queries

T HE™)Vy(To HE™)|z,y)

= @ HOVilo) 3l 2) (1)

my L e £
= (I H®)ﬁzmzﬂ_l) (y& f(x))

= |z,y ® f(z)) = Uslz, y)

So we can assume adversary is making phase queries

A path view

-

. [
0. ~~
. -~
* -~
0' -~
hal T

Each wall corresponds to phase query
Each slit corresponds to basis state ‘(mj, aj), Zj>

For a path P, define Parity(P) as function

Parity(P)(m;,a;) = ®((m,,a,),2;)ePZ

General computation: U, Vo U,_; Vp --- Us Vp Uy|0)

Vo imparts a phase to each path equal to
(—1)Zm,a O(m,a)-Parity(P)(m,a)

Key observations:
» Initially, Parity(P)(m, a) = 0 everywhere
» If Parity(P)(m,a) = 0, adversary learns nothing about O(m, a)
 So we can assume at end, adversary’s paths have
Parity(P)(m, a) # 0

* All paths must have transitioned from zero to non-zero at some
query

Another Gentle Measurement Lemma: if an intermediate

.

measurement gives only t possi

Pr|z|with measurement| > Pr

vle outcomes,

x|without measurement]/t

~

J

Z ‘aw,y|2 >
Y

Constructive interference can only amplify by the
the number of different paths

§ :aw,y
Y

2

/t

ldea: if we measure a query and get (m, a) , we are only
separating paths by the query number that went from
Parity(P)(m,a) = 0
to Parity(P)(m,a) # 0

Intuitively, if this partitions the paths,
then we can apply Gentle Measurements
to show that success probability didn’t
decrease too much

Define set of paths (); = set of paths P where
Parity(P)(m,a) = 0 just prior to query ;
Parity(P)(m, a) # 0 just after to query ¢

(m, a) =final output

Notice that for paths in (J;, can re-program O(m, a) at query 1

This is essentially what the first attempt was doing

Problem: some paths may be in multiple ();

Basically, if path goes back and forth between
Parity(P)(m,a) =0 and Parity(P)(m,a) # 0

So not a partition, and therefore cannot
use Gentle Measurements

Define set of paths R; = set of paths P where

Parity(P)(m,a) # 0 Just prior to query ¢
Parity(P) (m, a) — () just after to query 7

Notice that for paths in R;, can re-program O(m, a)
immediately after query 7

Also note that these paths must transition back to
Parity(P)(m, a) # 0 at some point

Observe: for each path P

#{i: PecQ;}=1+#{i: P R;}

Second, correct attempt is measuring a path in {Qz}z U {Rz}z

This works because the R; exactly capture overcounting in Qz

Note: This analysis assumes that we get the actual (m, a)
when we measure. That is, that we guessed the correct query

¢ where we transitioned from Parity(P)(m,a) = 0 to
Parity(P)(m,a) # 0 -

In reality, only correctly guess with probability 1/q

Overall success probability: O(l/qz)

Where did we use Zero Knowledge?

We didn’t; ZK is used to prove security
even against an adversary that sees many
signed messages

Intuitively, why did we need a new proof? After all,
the model of security for signatures didn’t change
(signature security is still just PPT vs QPT)

But it did! In the ROM/QROM, the model includes the
gueries made to the RO. For QROM, not only do we
have to worry about quantum computing, but we also
have to worry about superposition queries

Next time: quantum protocols, applications and limitations

