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Previously...



The Fundamental Formula of Modern Cryptography
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Usually conservative modeling
of adversary’s capabilities

Widely studied, concrete
assumptions

Breaking M at least as
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The “obvious” way to adapt classical definitions to the
guantum setting is to simply replace PPT with QPT



. Classically, typically of the form:
Computational “For all PPT adversaries A4, there exists a

Assumption P | negligible €(\) such that Pr[A....] < e()\) ”

The “obvious” way to adapt classical assumptions to the
guantum setting, again is to simply replace PPT with QPT

Sometimes these assumptions will be false (e.g. DLog); in
this case replace with suitable post-quantum assumptions



Classical proofs are a reduction, transforming

P,rOOf,that P PPT adversary A for M into PPT algorithm 3
implies M for P

Classical reductions take classical inputs and produce classical outputs

If we feed a quantum A into the reduction, will the output B be
anything meaningful?



All the proofs we’ve seen so far in this course work out quantumly:

CPA security from LWE
Collision resistance from Dlog on group action

CPA security from DDH on groups / group actions

Hardness of LWE from hardness of SIS



Let’s see an example where this fails!

Commitments from collision-resistance



PI‘[WQ] —+ PI‘[Wl

of the same length
e Giveb to A

Def (Commitment, Computational Sum-Binding): A commitment
scheme is classically/quantumly sum-binding if, for all PPT/QPT
adversaries A, there exists a negligible function € such that

<1+¢€(N)

where W3 () is the event that A succeeds in the following:

e A produces a commitment ¢ and two msgs Mg, M1 € {0, 1}*

-+ A tries to output 7 € {0, 1}* st. ¢ = Com(my, )

~




Lemma (informal): If H is classically collision-resistant, then Com is
classically sum-binding

-

\

J

Intuition: if you could “open” ¢ to two distinct messages,
that would give a collision for H

Challenge: in security proof, commitment adversary only
gives us one opening. How to we get two for a collision?

Solution: Keep program trace, get one input, “rewind”
adversary, and run again to get second



Ok, so what happens when we move to quantum?

Recall that B runs A, but keeps a program trace so
that it can return to a previous state

This simply does not make sense quantumly. By
observer effect, extracting "o may have irreversibly
altered the state of A, so there’s no returning to it




Today: what to do about rewinding



Modeling the adversary
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Natural idea: rewind anyway
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Doesn’t work
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Let’s remove the problematic measurement

C, o, 1My

Cancel each other out, same
as just queryingon 1 — p.
But now don’t get 7p
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Something between
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Something between

: | I —
\Lm'J' 55 Al ~' |Bit that equals 1 if and
only if H(myp,7p) = C




Something between




We still changed the state by measuring wy,

But Wp is just a bit - maybe change is small?



Gentle Measurement Lemma

/

Lemma: Consider two computations
(1)) =T =V = M; and 2)|v) =T —-U = My - U" -V — M

Where 1, U,V are unitaries and M, M7 measure a single qubit.

et P1 be pro
et P(,) e pro
et D1 be pro
outputting 1

0d
0d

0d

o]
o]

o]

ity M1 outputs 1 in (1)
ity M, outputs 1 in (2)
ity )/, outputs 1in (2), conditioned on M|

Then [p1 — p7| < \/8(1 — Po)

\




Part 1: For any state |¢), let |¢") be the result of measuring some
qubit, conditioned on the outcome being 1. Let g be the probability

of outputting 1. Then | |¢) — |¢") | < \/2(1 —q)

/Part 2: Fix any states |7‘>, \7") such that | \7‘) — \T') \ < €. letr, 7“'\
be the probabilities that measuring some qubit of |7), |7") gives 1.
Then |r —r'| < 2¢




Proof of Lemma: Recall two computations
(1)) =T -V = M;and (2)|v) 2T —-U = My - U" -V — M

et P1

0[S
0[S
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Pro
Pro
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outputting 1
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ity N, out
ity M, out
ity M, out

outs 1in (1)
outs 1in (2)

outs 1 in (2), conditioned on M




Proof of Lemma: Recall two computations
(1)) =T -V = M;and (2)|v) 2T —-U = My - U" -V — M

et P1 be probability )/, outputs 1in (1)
et pg be probability )f, outputs 1 in (2)
et p; be probability M4 outputs 1in (2), conditioned on M,

outputting 1
Invoke Part 1 on |@) = UT|), let |¢") be conditioned on M,
giving 1 mmmmp | |¢) — |¢') | < v/2(1 — po)

mm) | VUT|p) - VUT|¢') | < v/2(1 — po)

Invoke Part 2 -\m —P,l‘ < \/8(1 —PO)




Part 1: For any state |@), let |@") be the result of measuring some
qubit, conditioned on the outcome being 1. Let g be the probability

of outputting 1. Then | |¢) — |¢") | < \/2(1 —q)

1) = 1¢') 9) = V/1—qe’|0) + /g™ |1)

[18) —1¢') P =1 —q) + (1 - /g)*
=(1-¢+1+4+q9g—2q
=2—-2,/q

<2-2q

0)



/Part 2: Fix any states |7‘>, \T') such that | \T) — \7") | < €. letr, ’r'\
be the probabilities that measuring some qubit of |7), |7') gives 1.
Then r — ’r’| < 2e¢




Going back to our setup
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Recall: Let Pr[Wj|c] be the probability conditioned on A
producing a particular commitment ¢

Then for particular ¢, Pr{wy = 1] = Pr[{W,|c]|
Suppose we are given that Pr[Wy|c|, Pr[W1|c| > 9/10

By Gentle Measurement,
Pr[H (mi_p,m1—-p) = clwp = 1] > 9/10 — 1/8(1 — 9/10) > 5/1000




Under our assumption of a really good adversary, we can at
least guarantee that it produces a superposition over good
T'b, and then later produces a good 71_p

But by the time it gets r1_; , the prior 7, may be gone



~

g
Def: A hash function H is collapsing if, for all QPT adversaries A ,
there exists a negligible function € such that

| PI‘[W()(A)] — Pr|Internal state of adversary

where Wy () is the event that A thhe following:

» A produces a superposition Z .|, 2)

T,z

 If b =1, measure x;if p = () measure HK
/

* Return state of 4 et
- Oém,z|37,z> —> Zaw,z‘xazvﬂ(x» g
A

T,z

€L,

Then measure and discard last register




~

g
Def: A hash function H is collapsing if, for all QPT adversaries A ,
there exists a negligible function € such that

| Pr{Wo(A)] = PriVi(A)]] < €(A)

where Wy () is the event that A outputs 1 in the following:
» A produces a superposition Z .|, 2)

T,z

* If b= 1, measure ;if p = 0 measure H(x)
* Return state of 4, which outputs a bit b’

- )

Because hash functions take big inputs to small outputs, measuring
H(x) does not fully collapse x. Nevertheless, it “looks like” it does



Intuition for collision resistance: even though hash function
is many-to-1, it “behaves like” it is injective

One thing injective functions have is
that it is impossible to find collisions

Same intuition for collapsing hash functions, but observe
that in a quantum world, there are tasks that do not directly

involve finding collisions

For an injective function, measuring
output same as measuring input



Going back to our setup
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Indistinguishable by collapsing
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Just measure wy :
Prlw, = 1|c] > 9/10
Pr|{H(m1_p,m1_p) = clwp = 1] > 5/1000

Measure T'p :
Pr|H (my, 1) = ¢| = Prlwy = 1|c| > 9/10
Pr|H(mq_p,r1-p) = clwp = 1] > 5/1000 — €
PrlH(mi_p,71-5) = c= H(my,rp)] > (5/1000 — €) x 9/10




Our proof only worked when

Pr|[Wylcl|, Pr[Wilc] > 9/10

With a more cleaver proof, possible to show that collapsing
implies sum-binding in full generality



Collapsing Hashes from LWE

fA : {O, 1}m — ZZ

SIS hash function:
fa(x) =A -xmodq

Thm: Assuming (quantum) LWE, SIS is collapsing




Thm: Assuming (quantum) LWE, SIS is collapsing

g
Proof idea: choose many random vectors
u; < Z;n

Define event V; : measure A - x mod g as well as
T

Lui - X mod q_‘q/4forj = 1,

Notice Vo = Wy, Vo(m) = W1 since no collisions in
measurement




Thm: Assuming (quantum) LWE, SIS is col

apsing

?Proof idea: Must show that | Pr|V;| — Pr|V;_{]

Idea: first consider case U; = Als + e mod ¢
(s A +e!) - x mod ¢] q/4

~ |s" Ax mod q,/4

is negligible

To do so, shoqw that if already measuring A - x mod g , can
measure Luz- .- X mod (ﬂ g/4 Without detection

Solely a function of

T T
= |s”" Ax + e x mod q:lq/4/ SIS hash output

\’




Thm: Assuming (quantum) LWE, SIS is collapsing
Proof idea: Must show that | Pr|V;| — Pr|V;.1]| is negligible

\’

To do so, shoqw that if already measuring A - x mod g , can
measure Luz- .- X mod (ﬂ g/4 Without detection

: : T
Idea: first consider case U; = A" s + e mod ¢

‘ Measuring Lu;r - X mod c_ﬂ g/4 causes no change




Thm: Assuming (quantum) LWE, SIS is collapsing

\’

Proof idea: Must show that | Pr|V;| — Pr|V;,1]| is negligible

To do so, shoqw that if already measuring A - x mod g , can
measure Luz- .- X mod (ﬂ g/4 Without detection

Thus, if measuring Lu? - X mod q| g/4 foruniform u; was
detectable, we would distinguish uniform from LWE sample (i.e.
break decision LWE)




Annoying issue:
(s A +e!) - x mod q] q/4

= |s" Ax + e’ x mod q] /4

@TAX mod q|4/4

Does not actually perfectly erase error. Need a more
sophisticated proof to get full reduction to work




Next time: Another place where classical proofs break:
The Quantum Random Oracle Model



