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CS 258 so far

Quantum algorithms can break much of the crypto we use today

So we design new building blocks that
presumably resist these attacks

But, just if the building block is quantum resistant,
does that mean the applications are as well?



The Fundamental Formula of Modern Cryptography

Secure
Cryptosystem

Protocol

+

Formal Security
Model M

+

Computational
Assumption P

+

Proof that P
implies M

Usually conservative modeling
of adversary’s capabilities

Widely studied, concrete
assumptions

Breaking M at least as
hard as solving P



Formal Security
Model M

Classically, typically of the form:
“For all PPT adversaries 4, there exists a

negligible 6()\) such that PI‘[.A..,,] < e()\) ”



or just CPA-secure) if, for af PPT aglversaries A4 , there exists a
negligible function € such

| Pr[Wo(A)] — PriWi(V)]] < e(A)
where Wp () is the event that A outputs 1 in the following:
* Run (sk, pk) < Gen(1*) , give pk to 4
* A produces two msgs mg,my € {0,1}" of the same length
* Run ¢ « Enc(pk, mb) and give ¢ toA

A outputs an output guess p’ € {0,1}
N J

/Def (PKE, security): A PKE scheme (Gen, Enc, Dec)
indistinguishable under a cIaintext attack (IND™SRA-seecere




The “obvious” way to adapt classical definitions to the
guantum setting is to simply replace PPT with QPT



or just CPA-secure) if, for aj QPT aHversaries 4 , there exists a
negligible function € such

| Pr[Wo(A)] — PriWi(V)]] < e(A)
where Wp () is the event that A outputs 1 in the following:
* Run (sk, pk) < Gen(1*) , give pk to 4
* A produces two msgs mg,my € {0,1}" of the same length
* Run ¢ « Enc(pk, mb) and give ¢ toA

A outputs an output guess p’ € {0,1}
N J

/Def (PKE, security): A PKE scheme (Gen, Enc, Dec)
indistinguishable under a cIaintext attack (IND™SRA-seecere




: Classically, typically of the form:
Computational “For all PPT adversaries 4, there exists a

Assumption P negligible €(\) such that PrlA....] <e(A)”

The “obvious” way to adapt classical assumptions to the
guantum setting, again is to simply replace PPT with QPT

Sometimes these assumptions will be false (e.g. DLog); in
this case replace with suitable post-quantum assumptions



Classical proofs are a reduction, transforming
PPT adversary A for M into PPT algorithm B
for P

Proof that P
implies M

Classical reductions take classical inputs and produce classical outputs

If we feed a quantum A into the reduction, will the output B be
anything meaningful?



Example 1: A case where things work out



Public Key Encryption from LWE

pk = (A7 u=A".s + e mod C_I) S uniform in Z'g
sk = (s, e) e« DM

Enc(pk,m € {0,1}) :sample r uniformin {0, 1}™
output (v =rTAT | w=r"u+m|q/2] mod q)

Dec(sk, (v,w)) : Compute
w—v! -smodq=(r'ATs+rle+m|q/2]) — r' ATs mod q
=rle+m|q/2] mod g



Public Key Encryption from LWE

w—v! -smod qg=rle+m|q/2] mod q
r C {07 1}m € Gaussian of width o
. /

rTe is Guassian of width at most o/ ™M

With all but negligible probability, |I'Te| < om

r

0 itm=20

m) r'et 2 dag~
mlq/2| mod g <\j:q/2 ifm=1




\

P
\Lemma: Assuming decisional LWE, encryption scheme is CPA secure |

>
Proof: Let A be a supposed adversary for the CPA-security of the
encryption scheme

Define Wy(\) as the event that A outputs 1 in the following:

e Run (sk, pk) < Gen 12 _give k to A Since message is binary,
(sk, p) (7). & P /might as well take to be 0,1
» A produces two msgs M, 1M1

* Runc < Enc(pk, mb) and give C to A4
» Aoutputs an output guess b’ € {0,1}

 Our goal: bound | Pr[Wo(A)] — Pr[Wi(N)]] < €(A) for negligible € y




\

P
\Lemma: Assuming decisional LWE, encryption scheme is CPA secure |

>
Proof: Let A be a supposed adversary for the CPA-security of the
encryption scheme

Define Wy(\) as the event that A outputs 1 in the following:
* Run (sk, pk) < Gen(1?), give pk to.A

* Run C < Enc(pk, b) and give C to 4

A outputs an output guess p’ € {0,1}

 Our goal: bound | Pr[Wo(A)] — Pr[Wi(N)]] < €(A) for negligible € y




\

P
\Lemma: Assuming decisional LWE, encryption scheme is CPA secure |

>
Proof: Let A be a supposed adversary for the CPA-security of the
encryption scheme

Define Wy(\) as the event that A outputs 1 in the following:
 Givepk = (A,u = AT-S—I—emodq) to A

. Give (vl =rTAT | w=r"u+b|¢/2] mod q) to A
» A outputs an output guess p/ & {0,1}

 Our goal: bound | Pr[Wo(A)] — Pr[Wi(N)]] < €(A) for negligible € y




P
\Lemma: Assuming decisional LWE, encryption scheme is CPA secure

\

S

Proof:

Define

e Give

o

V() as the event that A outputs 1 in the following:

(A, u uniformin Z,)

to A

. Give (vl =rTAT | w=r"u+b|q/2] modq) to A
» A outputs an output guess p/ & {0,1}

LWE > | Pr[W,(A)] — Pr[Vu(A)]] is ne@

e —

<

———



(A,u) | i

- 11+ {0,1}™ :

v =r’ A" mod ¢ i

i w:rTu+qu/2] mod ¢ !

i pk = (A,u),c = (VTaw) i

A

Two LWE cases: TTTTTTTTTTTTTTTTTTTTTTTmmmTmes i """

u=A%s+emodq B Pr[B,(A,u) = 1] = Pr[Wo()\)]
u uniform ) Pr(By(A,u) = 1] = Pr[Vi(N)]



By LWE, the probability By outputs 1 in the two cases
must be negligibly close

Hence | Pr[Wy(A)] — Pr[Vh(A)]| is negligible



Notice that By just runs 4 once on a single input

(A, u)
r « {0,1}™

i vl =rT AT mod q
- w=r"u+b|qg/2] mod q

pk = (A,u),c = (vl,w)




This step of the security proof doesn’t care about how A
works, just that it does

By’s computation is just A plus some extra classical computation

Thus PPTA mmp PPT B3,
QPTA =) QPT B3,



P
\Lemma: Assuming decisional LWE, encryption scheme is CPA secure

\

S

Proof: claim: | Pr[Vo(A)] — Pr[Vi(N)]] is negligible

Recall:(| eftover Hash Lemma: 2-universal hash

functions are good randomness extractors

Since entropy of ris m > (n -+ 1) log q

# rTAT, rlu is statistically close to uniform in ZZ"H
(even given A, 1)

- (v =r'A", w=r"u+b|g/2] mod q) hides b

<

J




This step also doesn’t care about how 4 works; even
unbounded A are fine



Lemma: Assuming decisional LWE is classically / quantumly secure,
encryption scheme is classically / quantumly CPA secure




Actually, all the proofs we’ve seen so far in this course are like this:

CPA security from LWE
Collision resistance from Dlog on group action

CPA security from DDH on groups / group actions

Hardness of LWE from hardness of SIS



Let’s see an example where this fails!

Commitments from collision-resistance



Commitments

0o

Saturn

have two moons

iAha! Saturn must}




Commitments

¢ = Com(“Saturn has two moons!”) *

>

* Actually c was an anagram of the Latin "altissimum planetam tergeminum observavi”
(“I have observed the highest planet tri-form” )



Galileo sends ¢ as a commitment to his
“discovery” to establish priority, while also
giving himself time to do additional research
before actually announcing it

When he announces, everyone checks his
announcement against the commitment



4 I
Def (Commitment, Syntax): A commitment scheme is an algorithm

algorithm Com that takes two inputs:
« Amessage m € {0,1}"
» Randomness 1 € {0, 1}

Once it’s randomness is fixed, Com is deterministic. It outputs a

commitment ¢
\_ J

Commit phase: Galileo sends ¢ < Com(m, 7) for a random 7

Reveal phase: Galileo sends T, T;
everyone confirms that ¢ = COm(m7 "")



g
Def (Commitment, Statistical Hiding): A commitment scheme is

statistically hiding if, for all (potentially inefficient) adversaries 4,
there exists a negligible function € such that

| Pr[Wo(A)] = PriWi(A)]] < e(A)

where Wp () is the event that A outputs 1 in the following:
 Aproduces two msgs mg, m1 € {0,1}" of the same length
. Sample 7 < {0,1}" and give ¢ + Com(m,7) to A

* A outputs an output guess p/ € {0,1}

-




Def (Commitment, Computational Sum-Binding): A commitment
scheme is classically/quantumly sum-binding if, for all PPT/QPT
adversaries A, there exists a negligible function € such that

PI‘[W()] aF PI‘[Wl] <1+ E()\)

where Wy(\) is the event that A succeeds in the following:

* A produces a commitment ¢ and two msgs mg, M1 € {07 1}*
of the same length

* Giveb to A
-+ A tries to output r € {0, 1}* st. ¢ = Com(my, )




Hash functions are good commitments

Com(m,r) = H(m,r)

4 )
Lemma (informal): With some modifications, if H is sufficiently

compressing, then Com is statistically hiding

\ D%
Proof idea: since HH is compressing, it looses information about it’s
input = all information about m is lost

- J




Lemma (informal): If H is classically collision-resistant, then Com is
classically sum-binding

Intuition: if you could “open” ¢ to two distinct messages,
that would give a collision for H

Challenge: in security proof, commitment adversary only
gives us one opening. How to we get two for a collision?



-

Lemma (informal): If H is classically collision-resistant, then Com is
classically sum-binding
\

~

>
Proof: Let A be a supposed adversary contradicting classical sum-
binding. Then we have that

Pr[Wp| + Pr[W1| > 1 + €(\)

for some non-negligible €(\)

%
<




-

\

Lemma (informal): If H is classically collision-resistant, then Com is

classically sum-binding

~

>

Proof: Pr|Wy| + Pr[W1] > 1+ €(N)

Let Pr[Wb|c] be the probability conditioned on A producing a
particular commitment ¢

Call¢ “good” if Pr|[Wy|c|] + Pr[Wilc] > 1+ €(\)/2

%
<




4 )

Lemma (informal): If H is classically collision-resistant, then Com is
classically sum-binding
\

e <
Proof:
1 4+ e(N\) = Pr[Wy] + Pr[Wq]

= ) Pr[d](Pr[Wy|d] + Pr[Wi|c]) + >  Prlc](Pr[Wy|c] + Pr[Wic])

good c bad ¢
< 3 Prid2+ Y Prld(1 +e(N)/2
good c bad ¢

= 2Pr[good c| + (1 — Pr[good ¢])(1 4 €(A)/2
= 1+ Pr[good c| + €(A)/2 — Pr[good cle(\)/
< 1+ Pr[good c| + €¢(\)/2

)
2




-

classically sum-binding
\

~

Lemma (informal): If H is classically collision-resistant, then Com is

>

%
<

Proof: Pr[good c] > €(\)/2

For good ¢ , Pr[Wy|c] + Pr[Wi|c] > 14 €(\)/2
mp Pr[Wo|c], Pr[Wi|c] > €(N)/2




-

Lemma (informal): If H is classically collision-resistant, then Com is
classically sum-binding
\

~

S
Proof: Now construct the following collision-finder B:

B runs A until it produces ¢, Mg, M1 ; keeps a “program trace”
of all internal steps of A

B sends h = (), gets 7o

B “rewinds” A to just after it sends C, M, M1 (using program
trace)

B sends b =1, gets T'1
B outputs (mo, 7“0), (ml, 7“1)

%
<




4 )

Lemma (informal): If H is classically collision-resistant, then Com is
classically sum-binding
\

> <
Proof:

Pr[H (mo,r0) = H(m1,m1) =] = Y _Prlc] (Pr[Wo|c] Pr[Wi]c])

> Y Pr[c] (Pr[Wy|c] Pr[W1]c])

good c

> (e(N)/2)° = €()°/8

By the assumption that H is classically collision-resistant,
€(\) must therefore be negligible, a contradiction




Ok, so what happens when we move to quantum?

Recall that Bruns A, but keeps a program trace so
that it can return to a previous state

This simply does not make sense quantumly. By
observer effect, extracting "o may have irreversibly
altered the state of A, so there’s no returning to it



Next time: further exploration of quantum rewinding



