CS 258: Quantum Cryptography

Mark Zhandry

Previously...

Short Integer Solution (SIS)

Input: $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ (short, wide)

Chosen uniformly at random

Goal: find vector $\mathbf{x} \in \mathbb{Z}^m$ such that:

$$\mathbf{A} \cdot \mathbf{x} \mod q = 0$$

$$0 < |\mathbf{x}| \le \beta$$

Search LWE

Input:
$$\mathbf{A} \leftarrow \mathbb{Z}_q^{n imes m}$$
 (short, wide) Chosen uniformly at random $\mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \bmod q$ where \mathbf{s} uniform in \mathbb{Z}_q^n $\mathbf{e} \leftarrow D_\sigma^m$

Output: s (in this regime, s is whp unique)

Thm (restated): If SIS cannot be solved in quantum polynomial time for $\beta=mq/2\sigma$, then neither can decision LWE with error σ

Now used to justify hardness of LWE

Even earlier...

Group Action

An (abelian) group action is a triple $(\mathbb{G},\mathcal{X},*)$ where:

- G is an (abelian) group, written additively
- $oldsymbol{\cdot} \mathcal{X}$ is a set
- $ullet *: \mathbb{G} imes \mathcal{X} o \mathcal{X}$ is an efficient binary operation satisfying

$$g * (h * x) = (g+h) * x$$

- There is some element $x_0 \in \mathcal{X}$ that can be efficiently computed
- Usually ask that for each $x,y\in\mathcal{X}$, there exists a unique $g\in\mathbb{G}$ such that y=g*x
- Also usually ask that it is possible to efficiently identify elements of ${\mathcal X}$

Thm [Kuperberg]: Dlog in (abelian) group actions can be solved in time $2^{O(\sqrt{\log q})}$, where q is the group order

Broader Picture: Hidden Shifts

Kuperberg actually solves a much more general problem called hidden shift

Given
$$f_0, f_1: \mathbb{G} o \mathcal{X}$$
 injective, such that $f_1(g) = f_0(a+g)$, find a (\mathbb{G} written additively)

Group action Dlog is a special case of hidden shift where

$$f_0(g) = g * x_0$$
 $f_1(g) = g * x_1 = (g + a) * x_0$

Today: More Quantum Algorithms for Lattices

LWE as Hidden Shift

Suppose for the moment that LWE had no error

Input:
$$\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$$
 (short, wide) Chosen uniformly at random $\mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} \bmod q$ where \mathbf{s} uniform in \mathbb{Z}_q^n

Output: s (in this regime, s is whp unique)

Of course, this is easy due by Gaussian elimination

LWE as Hidden Shift

$$f_0(\mathbf{r}) = \mathbf{A}^T \cdot \mathbf{r} \bmod q$$

$$f_1(\mathbf{r}) = \mathbf{A}^T \cdot \mathbf{r} + \mathbf{u} \mod q = \mathbf{A}^T \cdot (\mathbf{r} + \mathbf{s}) \mod q = f_0(\mathbf{r} + \mathbf{s} \mod q)$$

So solving hidden shift allows us to recover s

Ok, but what about the error e?

Solution: round

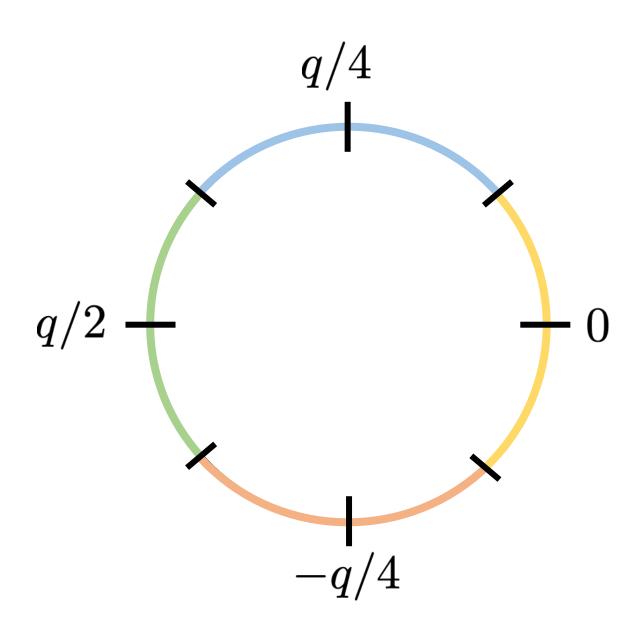
Output closest of
$$-q/4,0,q/4,q/2$$

$$f_0(\mathbf{r}) = \lfloor \mathbf{A}^T \cdot \mathbf{r} \bmod q \rceil_{q/4}$$

$$f_1(\mathbf{r}) = \lfloor \mathbf{A}^T \cdot \mathbf{r} + \mathbf{u} \bmod q \rceil_{q/4}$$

Idea: if error small enough, rounding eliminates error

$$\lfloor x + e \rceil_{q/4} = \lfloor x \rceil_{q/4}$$
 typically if e small



Now if $\mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \bmod q$

$$f_1(\mathbf{r} = \lfloor \mathbf{A}^T \cdot \mathbf{r} + \mathbf{u} \bmod q \rceil_{q/4})$$

$$= \lfloor \mathbf{A}^T \cdot (\mathbf{r} + \mathbf{s}) + \mathbf{e} \bmod q \rceil_{q/4}$$

$$= ? \lfloor \mathbf{A}^T \cdot (\mathbf{r} + \mathbf{s}) \bmod q \rceil_{q/4}$$

$$= f_0(\mathbf{r} + \mathbf{s} \bmod q)$$

Need to show:

- Rounding actually gets rid of ${f e}$ f_0, f_1 are injective

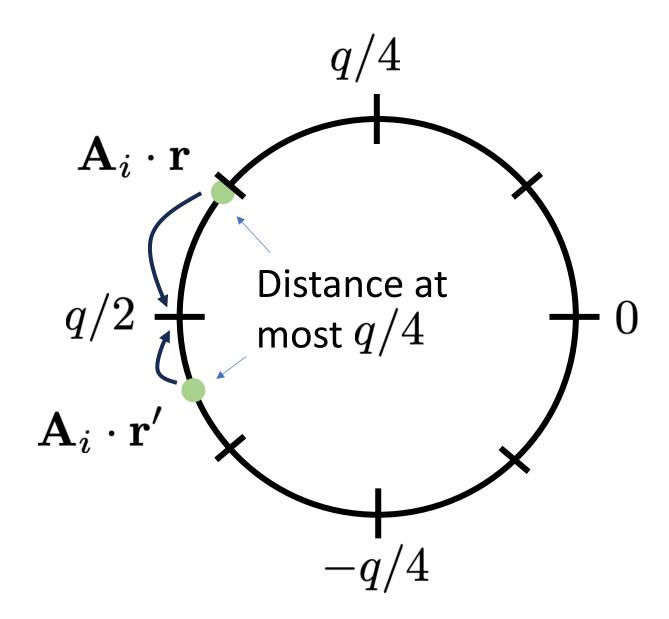
Injectivity

Suffices to only look at f_0 , as hidden shift property will imply injectivity for f_1

$$f_0(\mathbf{r}) = f_0(\mathbf{r}') \iff [\mathbf{A}^T \cdot \mathbf{r} \bmod q]_{q/4} = [\mathbf{A}^T \cdot \mathbf{r}' \bmod q]_{q/4}$$
$$\implies |\mathbf{A}^T \cdot (\mathbf{r} - \mathbf{r}')|_{\infty} \le q/4$$

Max of absolute values of entries

Injectivity



Injectivity

$$f_0({f r})=f_0({f r}')$$
 , ${f r}
eq {f r}'$

$$\exists \mathbf{v} : |\mathbf{A}^T \cdot \mathbf{v} \bmod q|_{\infty} \le q/4$$

Claim: with overwhelming probability over ${f A}$, no such ${f v}$

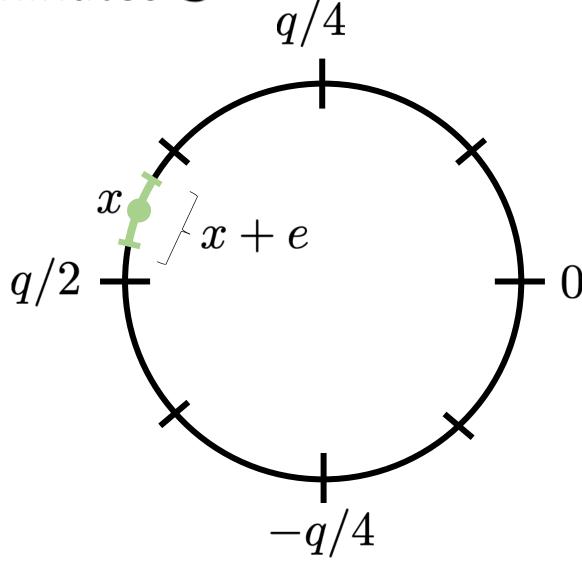
Proof: for any
$$\mathbf{v}$$
, $\Pr[|\mathbf{A}_i \cdot \mathbf{v} \bmod q| \le q/4] = 1/2$

$$\longrightarrow \Pr[|\mathbf{A} \cdot \mathbf{v} \bmod q|_{\infty} \le q/4] = 2^{-m} = 2^{-\Omega(n \log q)}$$

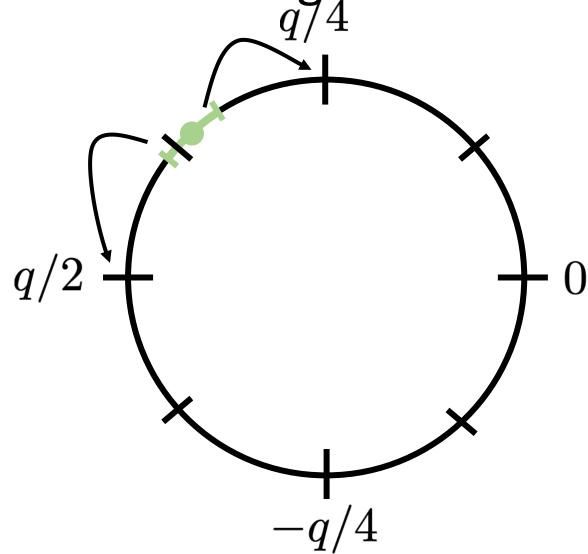
Union-bound over all $2^{n \log q}$ choices of ${f v}$

$$ightharpoonup \Pr[\exists \mathbf{v} : |\mathbf{A}^T \cdot \mathbf{v} \bmod q|_{\infty} \le q/4] \le 2^{-\Omega(n \log q)}$$

Rounding eliminates **e**



The problem with rounding



The problem with rounding

Each entry has a $\approx O(\sigma/q)$ chance of being too close to a rounding boundary

Over m entries, probability of some error is $pprox O(\sigma m/q)$

Can we apply Kuperberg?

• Prepare
$$\frac{1}{\sqrt{2q^n}}\sum_{\mathbf{r}\in\mathbb{Z}_q^n,b\in\{0,1\}}|\mathbf{r},b\rangle_{\mathcal{A}}|0\rangle_{\mathcal{B}}$$

• Apply
$$U_f$$
 where $f(\mathbf{r},b)=f_b(\mathbf{r})$:
$$\frac{1}{\sqrt{2q^n}}\sum_{\mathbf{r}\in\mathbb{Z}_q^n,b\in\{0,1\}}|\mathbf{r},b\rangle_{\mathcal{A}}|f_b(\mathbf{r})\rangle_{\mathcal{B}}$$

$$= \frac{1}{\sqrt{2q^n}} \sum_{\mathbf{r} \in \mathbb{Z}_q^n, b \in \{0,1\}} |\mathbf{r}, b\rangle_{\mathcal{A}} ||\mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) + b\mathbf{e} \bmod q|_{q/4}\rangle_{\mathcal{B}}$$

Can we apply Kuperberg?

$$\frac{1}{\sqrt{2q^n}} \sum_{\mathbf{r} \in \mathbb{Z}_q^n, b \in \{0,1\}} |\mathbf{r}, b\rangle_{\mathcal{A}} ||\mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) + b\mathbf{e} \bmod q|_{q/4}\rangle_{\mathcal{B}}$$

• Measure $\mathcal{B} \rightarrow$ Measurement outcome zState collapses to ${f r}, b$ consistent with z

If $\mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) \bmod q$ is far from rounding boundary, $[\mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) + b\mathbf{e} \bmod q]_{q/4} = [\mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) \bmod q]_{q/4}$

State collapses to $\frac{1}{\sqrt{2}}|\mathbf{r},0\rangle + \frac{1}{\sqrt{2}}|\mathbf{r}-\mathbf{s} \bmod q,1\rangle$

Possible issues with applying Kuperberg

1. The shift lives in \mathbb{Z}_q^n instead of \mathbb{Z}_{2^n}

Turns out to not be a problem

2. The errors

Big problem!!!

If $\mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) \bmod q$ is **close** to rounding boundary,

$$\lfloor \mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) + b\mathbf{e} \bmod q \rceil_{q/4} \neq \lfloor \mathbf{A}^T \cdot (\mathbf{r} + b\mathbf{s}) \bmod q \rceil_{q/4}$$

Recall next step of Kuperberg: apply QFT_q to first register, measure

$$\frac{1}{\sqrt{q^n}} \sum_{\mathbf{t}} |\mathbf{t}, b\rangle e^{i2\pi \mathbf{r} \cdot \mathbf{t}/q} \implies |\mathbf{t}, b\rangle$$

Combining Samples

Bad sample

$$\mathbf{t}_{0}, |\psi_{0}\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}e^{-i2\pi\mathbf{s}\cdot\mathbf{t}_{0}/q}|1\rangle \qquad \mathbf{t}_{1}, |\psi_{1}\rangle = |b\rangle$$

$$|\mathbf{t}_1,|\psi_1
angle=|b
angle$$

$$\mathsf{CNOT}|\psi_0\rangle|\psi_1\rangle = \frac{1}{\sqrt{2}}|0,b\rangle + \frac{1}{\sqrt{2}}e^{-i2\pi\mathbf{s}\cdot\mathbf{t}_0/q}|1,1-b\rangle$$

Measure second qubit: $|0\rangle$ or $|1\rangle$

Combining with bad samples gives bad samples

Kuperberg requires $2^{O(\sqrt{\log(q^n)})} = 2^{O(\sqrt{n\log q})}$ samples

If any of those samples are bad, Kuperberg fails

ightharpoonup Need $\sigma m/q=2^{-\Omega(\sqrt{n\log q})}$ to have decent chance of all samples being good

It turns out that, in this regime, classical attacks already exist

Significant open question: can Kuperberg's algorithm be made robust to errors?

A positive solution would give a subexponential-time attack on LWE, which would give lattice crypto a significant efficiency penalty

Even beyond LWE, making robust to errors could be important for realizing Kuperberg on a realistic quantum computer

Other possible algorithms

Quasi-polynomial attack on hidden shifts over \mathbb{Z}_q^n , when $q=2^r$

Note that for LWE, hardness is robust to modulus, and can take it to be power of 2

$$\mathbf{t}_{j}, |\psi_{\mathbf{t}_{j}}\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}e^{-i2\pi\mathbf{s}\cdot\mathbf{t}_{j}/q}|1\rangle$$

Write
$$|\psi_{\mathbf{t}_1}\rangle|\psi_{\mathbf{t}_2}\rangle\cdots$$
 as

$$\frac{1}{\sqrt{2^{\ell}}} \sum_{\mathbf{b} \in \{0,1\}^{\ell}} |\mathbf{b}\rangle e^{-i2\pi \mathbf{s}^T \mathbf{T} \mathbf{b}/q}$$

Where
$$\mathbf{T} = (\mathbf{t}_1 \ \mathbf{t}_2 \ \cdots \ \mathbf{t}_\ell)$$

$$\frac{1}{\sqrt{2^{\ell}}} \sum_{\mathbf{b} \in \{0,1\}^{\ell}} |\mathbf{b}\rangle e^{-i2\pi \mathbf{s}^T \mathbf{T} \mathbf{b}/q}$$

Let's assume mod 2 that ${f T}$ has a 1-dimensional kernel Will be true if we choose $\ell pprox n+1$

$$\frac{1}{\sqrt{2^{\ell}}} \sum_{\mathbf{b} \in \{0,1\}^{\ell}} |\mathbf{b}\rangle e^{-i2\pi \mathbf{s}^T \mathbf{T} \mathbf{b}/q}$$

Now apply map $|\mathbf{b}\rangle\mapsto |\mathbf{b},\mathbf{Tb} \bmod 2\rangle$, and measure second register $\to \mathbf{z}$

$$\frac{1}{\sqrt{2}}|\mathbf{b}_{0}\rangle e^{-i2\pi\mathbf{s}^{T}\mathbf{T}\mathbf{b}_{0}/q} + \frac{1}{\sqrt{2}}|\mathbf{b}_{1}\rangle e^{-i2\pi\mathbf{s}^{T}\mathbf{T}\mathbf{b}_{1}/q}$$

$$= e^{-i2\pi\mathbf{s}^{T}\mathbf{T}\mathbf{b}_{0}/q} \left(\frac{1}{\sqrt{2}}|\mathbf{b}_{0}\rangle + \frac{1}{\sqrt{2}}|\mathbf{b}_{1}\rangle e^{-i2\pi\mathbf{s}^{T}\mathbf{T}(\mathbf{b}_{1}-\mathbf{b}_{0})/q}\right)$$

Where $\mathbf{b}_0, \mathbf{b}_1$ are the two values with

$$\mathbf{Tb}_0 \mod 2 = \mathbf{Tb}_1 \mod 2 = \mathbf{z}$$

$$e^{-i2\pi\mathbf{s}^T\mathbf{T}\mathbf{b}_0/q}\left(\frac{1}{\sqrt{2}}|\mathbf{b}_0\rangle + \frac{1}{\sqrt{2}}|\mathbf{b}_1\rangle e^{-i2\pi\mathbf{s}^T\mathbf{T}(\mathbf{b}_1-\mathbf{b}_0)/q}\right)$$

Now map
$$|\mathbf{b}_0\rangle \mapsto |0\rangle, |\mathbf{b}_1\rangle \mapsto |1\rangle$$

$$e^{-i2\pi\mathbf{s}^T\mathbf{T}\mathbf{b}_0/q}\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle e^{-i2\pi\mathbf{s}^T\mathbf{T}(\mathbf{b}_1-\mathbf{b}_0)/q}\right)$$

Global phase doesn't matter: $|\psi_{\mathbf{T}(\mathbf{b}_1 - \mathbf{b}_0)}\rangle$

Now, observe that ${f T}({f b}_1-{f b}_0)$ is even, say $2{f t}'$

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle e^{-i2\pi\mathbf{s}\cdot2\mathbf{t}'/q} = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle e^{-i2\pi\mathbf{s}\cdot\mathbf{t}'/(q/2)}$$

Reduced the modulus by factor of 2

Each step divides number of samples by pprox n divides modulus by 2

Number of samples needed:

$$\approx n^{\log q} = 2^{(\log n)(\log q)}$$

For LWE parameters, this is $2^{O(\log^2 n)}$, quasi-polynomial!

But, errors still break this algorithm

Multiple shifts

Multiple shifts

$$f_0$$

 $f_1(\mathbf{r}) = f_0(\mathbf{r} + \mathbf{s})$
 $f_2(\mathbf{r}) = f_0(\mathbf{r} + 2\mathbf{s})$

If we could go all the way to f_q , we'd actually get a periodic function. Maybe something in between makes the problem easier?

• • •

Multiple shifts for LWE

$$f_j(\mathbf{r}) = \lfloor \mathbf{A}^T \cdot \mathbf{r} + j\mathbf{u} \bmod q \rceil_{q/4} = \lfloor \mathbf{A}^T \cdot (\mathbf{r} + j\mathbf{s}) + j\mathbf{e} \bmod q \rceil_{q/4}$$

Larger j means larger errors → definitively can't get all the way to periodic

To date, no attack on LWE based on any of these ideas

Next time: when using post-quantum building blocks is not enough