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Previously...



Short Integer Solution (SIS)

Input: A ngxm (short, wide)

Chosen uniformly at random

Goal: find vector x € Z™ such that:
A-xmodqg=0

0< x| <P



Search LWE

Input: A <+ Z'g’xm (short, wide) Chosen uniformly at random
u=A’.s+ emod g where
S uniformin Z'g

e+ D

Output: s (in this regime, s is whp unique)



p
Thm (restated): If SIS cannot be solved in quantum polynomial

time for 3 — mq/Qg, then neither can decision LWE with error o
N

~

/

Now used to justify hardness of LWE



Even earlier...



Group Action

An (abelian) group action is a triple (G, X, x) where:
(3 is an (abelian) group, written additively

e X is a set
ex: (G X X — X isan efficient binary operation satisfying

gx(hxx)=(g+h)*x

* Thereis some element xg € X that can be efficiently computed
e Usually ask that for each ,y € &, there exists a unique g € G

suchthat Yy = g * &
* Also usually ask that it is possible to efficiently identify elements

of X



p
Thm [Kuperberg]: Dlog in (abelian) group
actions can be solved in time 90(vlogq),

where ¢ is the group order
-

~




Broader Picture: Hidden Shifts

Kuperberg actually solves a much more
general problem called hidden shift

Given fo, f1 : G — X injective, such that
f1(g) = fola+g).finda ( G written additively)

Group action Dlog is a special case of hidden shift where

fo(g) = g * xo fi(g) =g*xz1 = (g+a) *x



Today: More Quantum Algorithms for Lattices



LWE as Hidden Shift

Suppose for the moment that LWE had no error

Input: A <+ ngm (short, wide) Chosen uniformly at random

u=A"-smodgq where

S uniform in Z'g

Output: s (in this regime, s is whp unique)

Of course, this is easy due by Gaussian elimination



LWE as Hidden Shift

fo(r) = AT .rmod q

fir)=AT .r+umodg=A" . (r

s) mod g = fo(r

So solving hidden shift allows us to recover s

s mod q)



Ok, but what about the error e ?

Solution: round

Output closest of —q/4,0,q/4,q/2
e
fo(r) = |AT - r mod q] 7/4

fi(r) = |[AT - r +umod q|q/4

ldea: if error small enough, rounding eliminates error
T+elga=|T|q/a typicallyif e small







Nowif u= A’ -s+emod g

filr=[A" -r+umod q],/4
= |A" - (r +s) + emod q] /4
=? |A" - (r +s) mod q],/4

= fo(r + s mod g)



Need to show:
* Rounding actually gets rid of e

« fo, J1 are Injective



Injectivity

Suffices to only look at fo, as hidden shift property will imply
injectivity for f1

fo(r) = fo(r') <= |AT - r mod qlq/a = AT . 1’ mod q|q/4
— AT (r —1')| < q/4
T~

Max of absolute
values of entries



Injectivity




Injectivity

fo(r) = fo(r'), r #1’

m) v : [AL . v mod g|o < g/4

Claim: with overwhe

N\

ming probability over A , no suchv

Proof: for any v, Pr
A

|A; - vmod q| < q/4] =1/2

=) Pr[|A v mod gl < g/4] =27 = 271020
Union-bound over all 271084 choices of v

mmp Pr[3v: |AL

v mod gl < g/4] < 27%Unlogq)

N\




Rounding eliminates €

q/4



The problem with roundin

q/4



The problem with rounding

Fach entry hasa = O(0/q) chance of being too close to
a rounding boundary

Over m entries, probability of some erroris ~ O(am/q)



Can we apply Kuperberg?

* Prepare 1 Z \r b)
S 3 A|O>B
2q reZ?,be{0,1}

* Apply Us where f(r,b) = fi(r):
S b)alfe(r)s

v 2qn reZ?,be{0,1}
1
LS e AT bomod gl

reZ?,be{0,1}



Can we apply Kuperberg?

v 2q™

rEZZ,bE{O,l}

1
»  r,b)a [|AT - (r+bs) + be mod q]4/4)5

e Measure B =2 Measurement outcome z
State collapses to r, b consistent with 2

if AL . (r - bs) mod q is far from rounding boundary,
A" - (r+bs) + bemod ¢l /4 = |[A" - (r + bs) mod ¢, /4

1
State collapsesto —|r, 0
-) ﬂl )

1
V2

r—smodgq,1)



Possible issues with applying Kuperberg

1. The shift lives in ZZ instead of Zign

Turns out to not be a problem

2. The errors Big problem!!!



if AT . (r 4+ bs) mod q is close to rounding boundary,

A" - (r +bs) + be mod q],/4 # |A" - (r + bs) mod q,/4

mm) State collapses to |r, b)

Recall next step of Kuperberg: apply QFTq to first register, measure

1 |
T 260 w6,
t




Combining Samples

Good sample Bad sample

/

1 I 5 B
to, |Y0) = \/§‘O> | \/56 #msto/d|q) t1, [11) = |b)
CNOT _ L 0.b ie—im'to/q 1.1 -0
|¢0>|¢1> \/§| 9 >_|_ \/5 | : >

Measure second qubit: |0) or |1)

Combining with bad samples gives bad samples



Kuperberg requires 90(\/10g(¢a™)) — 9O(v/n1ogq) samples

If any of those samples are bad, Kuperberg fails

> Need om/q = 27Vn1o89) 4 have decent chance of
all samples being good

It turns out that, in this regime, classical attacks already exist



Significant open question: can Kuperberg’s
algorithm be made robust to errors?

A positive solution would give a sub-
exponential-time attack on LWE, which would
give lattice crypto a significant efficiency penalty

Even beyond LWE, making robust to errors could
be important for realizing Kuperberg on a
realistic quantum computer



Other possible algorithms



Quasi-polynomial attack on hidden shifts over Z'g , whenqg = 2"

Note that for LWE, hardness is robust to
modulus, and can take it to be power of 2



ldea: combine several samples at a time

1 1
—10) 4 e
ﬂH >

Write Wt1>‘¢t2> "t as

1 o T
T Z ‘b>6—7,27rs Tb/q
\/27 be{0,1}#

—z’27rs-tj/q|1>

tj? Wtﬂ —

Where Tz(tl to - tg)



ldea: combine several samples at a time

1 o T
- Z ‘b>6—7,27rs Tb/q
\/27 be{0,1}4

Let’s assume mod 2 that T has a 1-dimensional kernel
Will be true if we choose ¢/ =~ n + 1



ldea: combine several samples at a time

\F Z ‘b —i2wsT Tb/q

be{0,1}¢

Now apply map |b) — |b, Tb mod 2), and measure
second register 2 Z

1 T T
|b0> —i2ws” Tbo/q + |b1> —i27s” Th1/q
V2 \f
. T ]_ . T
_ e—szs Tbo/q (ﬂ|b0> 4 \/§|b1>6—z27rs T(bl—bo)/q>

Where bg, by are the two values with
Tbg mod 2 = Tb; mod 2 =z



ldea: combine several samples at a time

o T 1 1 o T
€ — i €
(\/Q‘ O> \/i‘ 1>

Now map |bg) > |0), |by) — [1)

1 T
> _|_ _|1>e—227rs T(bl—bo)/q
V2

e—iZwsTTbo/q (

Lo
V2

Global phase doesn’t matter: WT(bl—bo)>



ldea: combine several samples at a time

Now, observe that T'(b; — bg) is even, say 2t/

‘1>e—z’27rs-2t’/q _ L|O> | 1 |1>e—z‘27rs-t’/(q/2)

1
/al NN

1
V2 V2

Reduced the modulus by factor of 2



Each step divides number of samples by = n

divides modulus by 2

Number of samples needed:
~ nlogq — 9(logn)(logq)

2
For LWE parameters, this is 20198 ) quasi-polynomial!

But, errors still break this algorithm



Multiple shifts



Multiple shifts

fo If we could go all the way to f; , we’d
actually get a periodic function. Maybe
r -+ S
fl( ) fo( ) something in between makes the
fz( ) fO(r 25) problem easier?

=

=



Multiple shifts for LWE

fi(r) =[A" -r+jumod qlya = |[A" - (r + js) + je mod ¢,/

Larger j means larger errors = definitively
can’t get all the way to periodic

To date, no attack on LWE based on any of these ideas



Next time: when using post-quantum
building blocks is not enough



