CS 258: Quantum Cryptography

Mark Zhandry

Midterm Logistics

Available on Gradescope from 10/25 - 10/28

Any 2 hour increment

Completed individually (including no AI)

Handwritten ok. Open computer, notes, internet

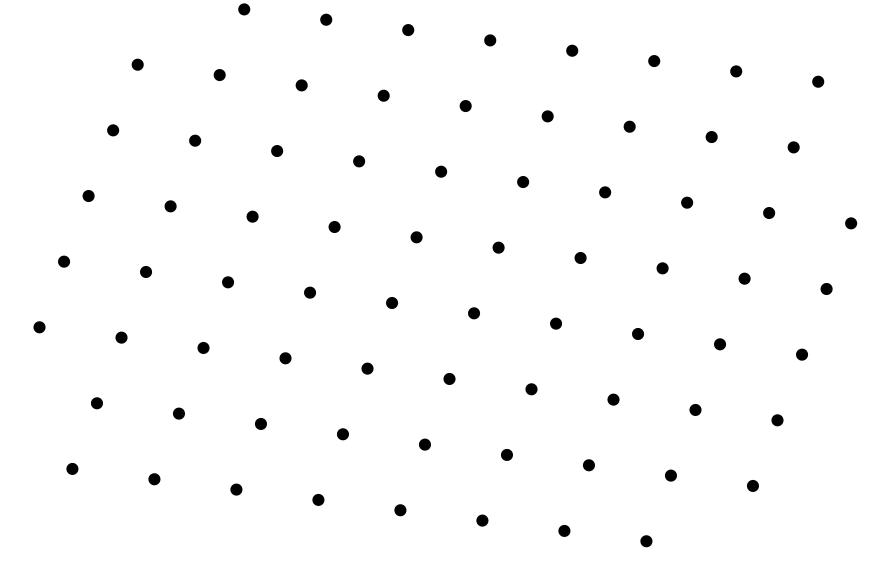
Material through group actions + Kuperberg (no lattices)

No Class Monday 10/27!

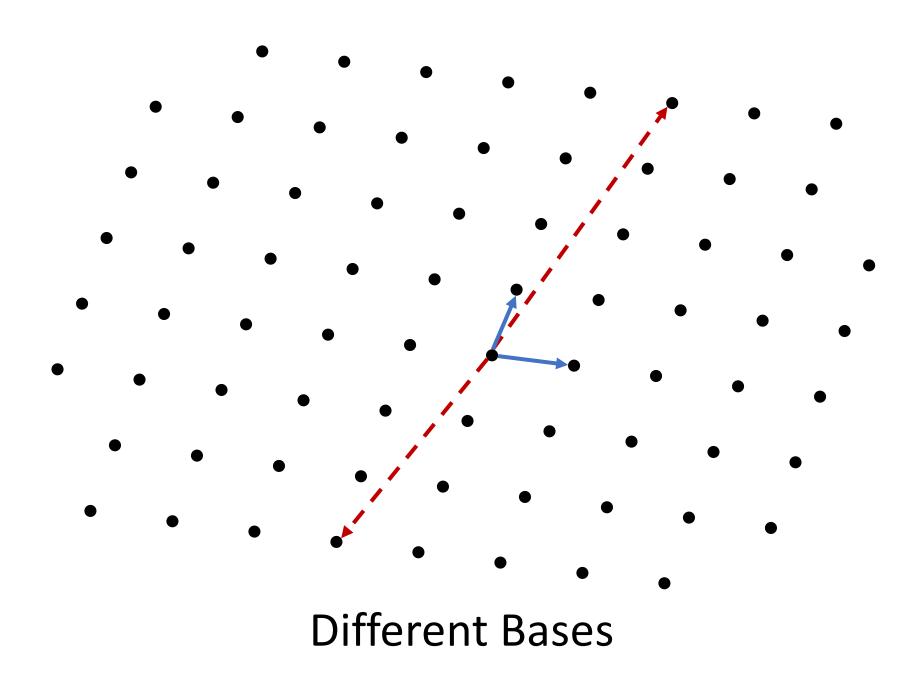
Next Class: Wednesday 10/29

Previously...

Lattices



Imagine dimension in the 100s



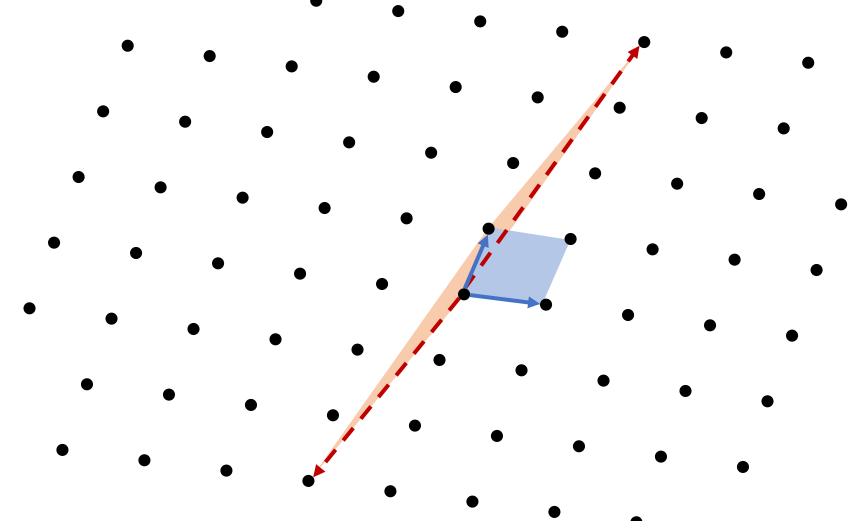
Different Bases

For vector spaces: two bases ${f B}_1, {f B}_2$ generate the same vector space if and only if there is an invertible ${f U}$ such that ${f B}_2={f B}_1\cdot {f U}$

For lattices: two bases ${f B}_1, {f B}_2$ generate the same lattice if and only if there is a unimodular ${f U}$ such that ${f B}_2={f B}_1\cdot {f U}$

Def: \mathbf{U} is unimodular if $\mathbf{U} \in \mathbb{Z}^{n \times n}$ and $\det(\mathbf{U}) \in \{+1, -1\}$

Determinant of lattice



Measure of how dense the lattice is

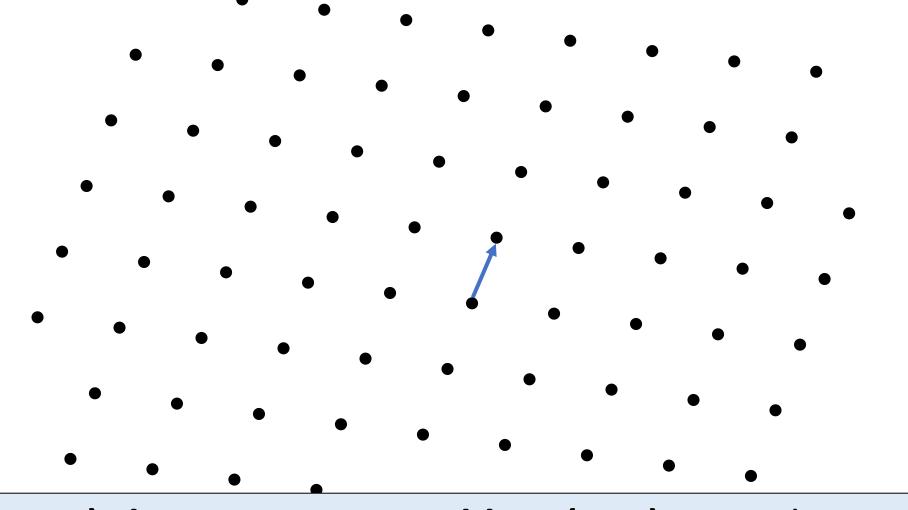
Full-rank lattice: $\mathsf{span}(\mathbf{B}) = \mathbb{R}^n \Longleftrightarrow \mathbf{B} \in \mathbb{R}^{n \times n}$

Integer lattice: $\mathbf{B} \in \mathbb{Z}^{m \times n}$

We will generally consider only full-rank integer lattices

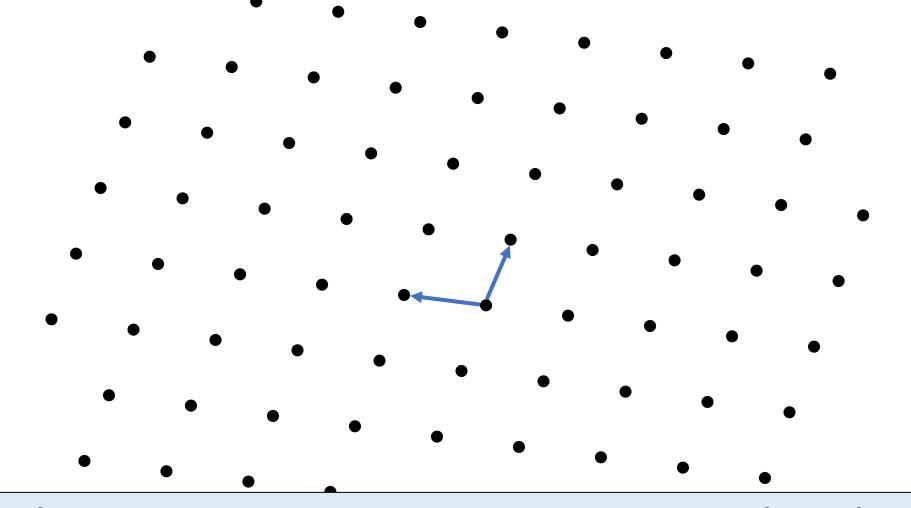
Note that for integer lattices, can consider spanning set that is not full-rank, and still guarantee discreteness

SVP



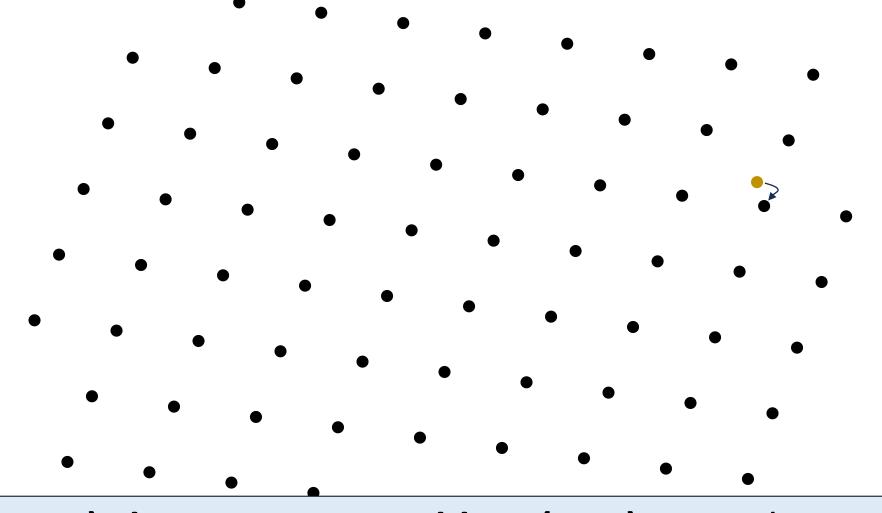
(Approx.) shortest vector problem (SVP): given lattice (described by some basis), find (approx.) shortest vector

SIVP



(Approx.) shortest independent vector problem (SIVP): given lattice (described by some basis), find (approx.) shortest basis

CVP



(Approx.) closest vector problem (CVP): given lattice and point off lattice, find (approx.) closest lattice point

Gram-Schmidt Orthogonalization (no normalization)

$$\mathbf{B} = (\mathbf{b}_1 \mid \mathbf{b}_2 \mid \cdots)$$

$$\mathbf{b}_1 = \mathbf{b_1}$$

$$ilde{\mathbf{b}}_2 = \mathbf{b}_2 - rac{ ilde{\mathbf{b}}_1 \cdot \mathbf{b}_2}{| ilde{\mathbf{b}}_1|^2} ilde{\mathbf{b}}_1$$

Note: \mathbf{b}_i not in lattice

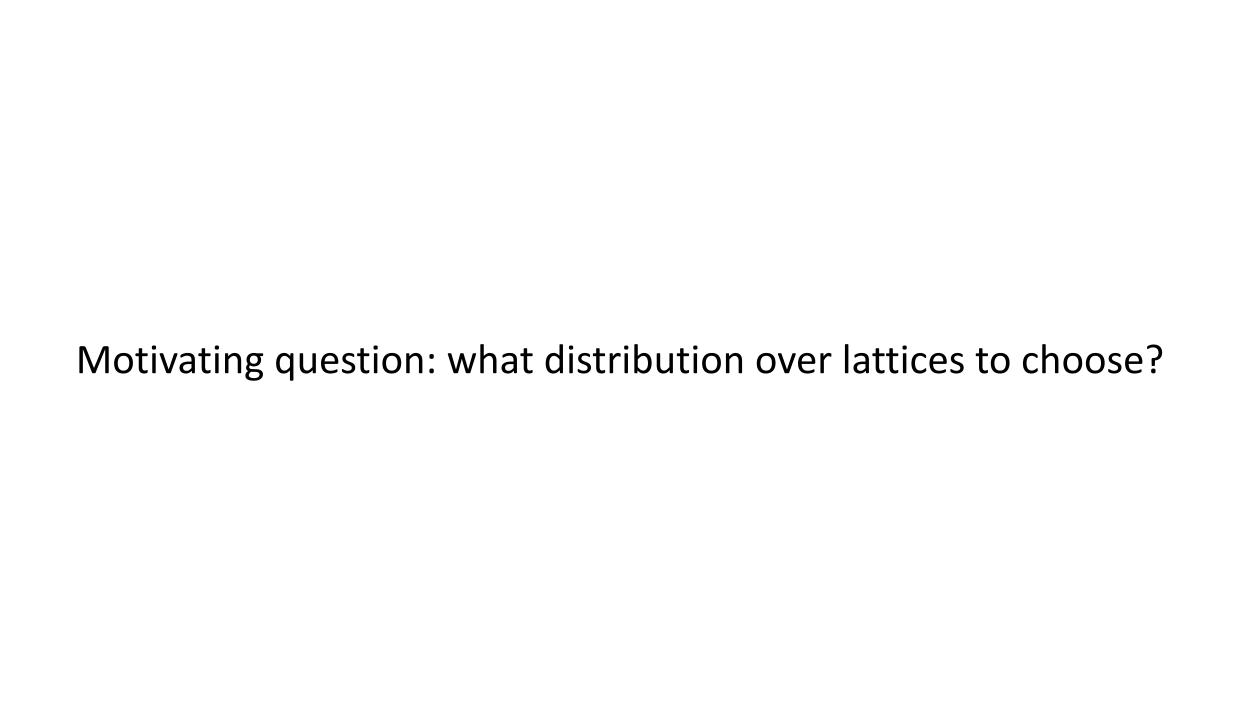
$$\tilde{\mathbf{b}}_3 = \mathbf{b}_3 - \frac{\tilde{\mathbf{b}}_1 \cdot \mathbf{b}_3}{|\tilde{\mathbf{b}}_1|^2} \tilde{\mathbf{b}}_1 - \frac{\tilde{\mathbf{b}}_2 \cdot \mathbf{b}_3}{|\tilde{\mathbf{b}}_2|^2} \tilde{\mathbf{b}}_2$$

• • •

Lemma: Babai's nearest plane alg produces lattice point whose distance from target vector is at most

$$\frac{1}{2}\sqrt{\sum_{i}|\tilde{\mathbf{b}}_{i}|^{2}}$$

Today: SIS and LWE



Short Integer Solution (SIS)

Parameterized by 4 quantities n,m,q,β Last 3 are usually functions of first

- n intuitively plays role of security parameter
- $q \;\;$ typically $q = O(n^c)$, but can also make exponential
- m typically $m = \Omega(n \log q)$, but sometimes much bigger
 - β typically $\beta \geq \sqrt{m}$ but certainly $\beta \ll q$

Short Integer Solution (SIS)

Input: $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ (short, wide)

Chosen uniformly at random

Goal: find vector $\mathbf{x} \in \mathbb{Z}^m$ such that:

$$\mathbf{A} \cdot \mathbf{x} \mod q = 0$$

$$0 < |\mathbf{x}| \le \beta$$

Claim: for $m>n\log q$ and $\beta\geq \sqrt{m}$, solution exists

Proof: consider
$$f_{\mathbf{A}}:\{0,1\}^m o \mathbb{Z}_q^n$$
 defined as $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} \bmod q$

Domain size = 2^m Range size = $q^n < 2^m$

Must exist distinct
$$\mathbf{x}_0, \mathbf{x}_1 \in \{0,1\}^m$$
 s.t. $f_{\mathbf{A}}(\mathbf{x}_0) = f_{\mathbf{A}}(\mathbf{x}_1)$

Let
$$\mathbf{x} = \mathbf{x}_0 - \mathbf{x}_1 \in \{-1, 0, 1\}^m$$

SIS is a special case of SVP

$$\Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{x} \bmod q = 0 \}$$

Full-rank integer lattice

Approximate SVP in $\, \Lambda_q^\perp({f A}) \,$ for a random ${f A} \,$ is exactly SIS

Collision-resistance from SIS

$$f_{\mathbf{A}}: \{0,1\}^m \to \mathbb{Z}_q^n$$
$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} \bmod q$$

Collision = distinct
$$\mathbf{x}_0, \mathbf{x}_1 \in \{0,1\}^m$$
 s.t. $f_{\mathbf{A}}(\mathbf{x}_0) = f_{\mathbf{A}}(\mathbf{x}_1)$

Security proof: let $\mathbf{x} = \mathbf{x}_0 - \mathbf{x}_1 \in \{-1, 0, 1\}^m$

Why the SIS distribution?

Atjai proved that SIS (on average) is as hard as approximate SVP in the worst case

That is, if you can solve SIS in polynomial-time on average, then you can solve approximate SVP in polynomial time on **any** lattice

Hardness of SIS

For polynomial-time attacks, best algorithm is typically LLL or variants

Works when
$$m \geq \Omega(\sqrt{n\log q})$$
 , $\beta = 2^{O(\sqrt{n\log q})}$

Going forward, reducing mod q will produce a point in the interval $\left(-q/2,q/2\right]$

Things close to 0 (positive or negative) don't get reduced

Learning with Errors (LWE)

Parameterized by 4 quantities n,m,q,σ Last 3 are usually functions of first

- n intuitively plays role of security parameter
- $q \;\;$ typically $q = O(n^c)$, but can also make exponential
- m typically $m = \Omega(n \log q)$, but sometimes much bigger
- σ typically $\sigma = \Omega(\sqrt{n})$ but certainly $\sigma \ll q$

Search LWE

Input:
$$\mathbf{A} \leftarrow \mathbb{Z}_q^{n imes m}$$
 (short, wide) Chosen uniformly at random $\mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \bmod q$ where \mathbf{s} uniform in \mathbb{Z}_q^n $\mathbf{e} \in \mathbb{Z}^m$ "short"

Output: s (in this regime, s is whp unique)

The Distribution on e: Discrete Gaussians

$$D_{\sigma}$$
 = distribution over \mathbb{Z} where $\Pr[x \leftarrow D_{\sigma}] \propto e^{-\pi x^2/\sigma^2}$

Exact normalization constant is a big infinite sum, but for large σ can be approximated as

$$\Pr[x \leftarrow D_{\sigma}] \approx \frac{1}{\sigma} e^{-\pi x^2/\sigma^2}$$

 D_{σ}^{m} = vector of m iid samples from D_{σ}

Search LWE

Input:
$$\mathbf{A} \leftarrow \mathbb{Z}_q^{n imes m}$$
 (short, wide) Chosen uniformly at random $\mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \bmod q$ where \mathbf{s} uniform in \mathbb{Z}_q^n $\mathbf{e} \leftarrow D_\sigma^m$

Output: s (in this regime, s is whp unique)

Decision LWE

Input: $\mathbf{A} \leftarrow \mathbb{Z}_q^{n imes m}$ (short, wide) Chosen uniformly at random Case 1: $\mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \bmod q$ where \mathbf{s} uniform in \mathbb{Z}_q^n $\mathbf{e} \leftarrow D_\sigma^m$

Case 2: **u** is random

Output: guess which case

LWE is a special case of CVP

$$\Lambda_q(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^m : \exists \mathbf{s} \in \mathbb{Z}^n \text{ s.t. } \mathbf{x} = \mathbf{A}^T \cdot \mathbf{s}(\bmod q) \}$$

Full-rank integer lattice

LWE = CVP under, for random lattice and random target promised to be close to lattice

Public Key Encryption from LWE

$$\begin{aligned} \mathsf{pk} &= (\mathbf{A}, \mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \bmod q) & \mathbf{s} \text{ uniform in } \mathbb{Z}_q^n \\ \mathsf{sk} &= (\mathbf{s}, \mathbf{e}) & \mathbf{e} \leftarrow D_\sigma^m \end{aligned}$$

Enc(pk,
$$m \in \{0,1\}$$
) : Sample \mathbf{r} uniform in $\{0,1\}^m$
Output $(\mathbf{v}^T = \mathbf{r}^T \mathbf{A}^T \ , \ w = \mathbf{r}^T \mathbf{u} + m \lfloor q/2 \rceil \bmod q)$

$$\mathsf{Dec}(\mathsf{sk}, (\mathbf{v}, w)) : \mathsf{Compute}$$
 $w - \mathbf{v}^T \cdot \mathbf{s} \bmod q = (\mathbf{r}^T \mathbf{A}^T \mathbf{s} + \mathbf{r}^T \mathbf{e} + m \lfloor q/2 \rceil) - \mathbf{r}^T \mathbf{A}^T \mathbf{s} \bmod q$ $= \mathbf{r}^T \mathbf{e} + m \lfloor q/2 \rceil \bmod q$

Public Key Encryption from LWE

$$w - \mathbf{v}^T \cdot \mathbf{s} \mod q = \mathbf{r}^T \mathbf{e} + m \lfloor q/2 \rfloor \mod q$$

$$\mathbf{r} \in \{0, 1\}^m$$

 $\mathbf{r} \in \{0,1\}^m$ e Gaussian of width σ

 $\mathbf{r}^T\mathbf{e}$ is Guassian of width at most $\sigma\sqrt{m}$

With all but negligible probability, $|\mathbf{r}^T\mathbf{e}| \leq \sigma m$

$$\mathbf{r}^T \mathbf{e} + m \lfloor q/2 \rceil \mod q \approx \begin{cases} 0 & \text{if } m = 0 \\ \pm q/2 & \text{if } m = 1 \end{cases}$$

Decryption errors

Technically, there is a tiny chance that $\mathbf{r}^T\mathbf{e}$ is huge

In this case, decryption fails

Technically, scheme doesn't satisfy definition we saw on first day of class

Def (PKE, syntax): A public key encryption scheme is a triple of algorithms (Gen, Enc, Dec) satisfying the following:

- $\mathsf{Gen}(1^\lambda)$: probabilistic polynomial-time (classical) procedure which takes as input a security parameter λ (represented in unary), and samples a secret/key public pair $(\mathsf{sk},\mathsf{pk})$
- $\mathsf{Enc}(\mathsf{pk}, m)$: PPT procedure which takes as input the public key pk and message m , and samples a ciphertext c
- $\mathsf{Dec}(\mathsf{sk},c)$: Deterministic PT procedure which takes as input the secret key sk and ciphertext C , and outputs a message m
- Correctness: $\forall \lambda, (\mathsf{sk}, \mathsf{pk})$ in support of $\mathsf{Gen}(1), \forall m \in \{0, 1\}^*$ $\Pr[\mathsf{Dec}(\mathsf{sk}, \mathsf{Enc}(\mathsf{pk}, m)) = m] = 1$

Decryption errors

Solution 1: Truncate discrete Gaussian so that $\mathbf{e} \in [-B, B]^m$ $B = \sigma \sqrt{m}$

$$|\mathbf{r}^T\mathbf{e}| \leq mB$$
 always

Generally results in larger error bounds → larger modulus → less efficient

Solution 2: Relax correctness definition to allow negligible probability of decryption errors

Sometimes (rarely) approximate correctness is insufficient

Proof: Let \mathcal{A} be a supposed adversary for the CPA-security of the encryption scheme

Define $W_b(\lambda)$ as the event that $\mathcal A$ outputs 1 in the following:

- Run (sk, pk) \leftarrow Gen(1 $^{\lambda}$), give pk to \mathcal{A} Since message is binary, might as well take to be 0,1
- ${\cal A}$ produces two msgs m_0, m_1
- Run $c \leftarrow \mathsf{Enc}(\mathsf{pk}, m_b)$ and give c to \mathcal{A}
- ${\mathcal A}$ outputs an output guess $b' \in \{0,1\}$

Our goal: bound $|\Pr[W_0(\lambda)] - \Pr[W_1(\lambda)]| \le \epsilon(\lambda)$ for negligible ϵ

Proof: Let \mathcal{A} be a supposed adversary for the CPA-security of the encryption scheme

Define $W_b(\lambda)$ as the event that \mathcal{A} outputs 1 in the following:

- Run (sk, pk) \leftarrow Gen(1 $^{\lambda}$), give **pk** to \mathcal{A}
- Run $c \leftarrow \mathsf{Enc}(\mathsf{pk}, b)$ and give c to \mathcal{A}
- ${\mathcal A}$ outputs an output guess $b' \in \{0,1\}$

Our goal: bound $|\Pr[W_0(\lambda)] - \Pr[W_1(\lambda)]| \le \epsilon(\lambda)$ for negligible ϵ

Proof: Let \mathcal{A} be a supposed adversary for the CPA-security of the encryption scheme

Define $W_b(\lambda)$ as the event that \mathcal{A} outputs 1 in the following:

- Give $\mathsf{pk} = (\mathbf{A}, \mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \bmod q)$ to \mathcal{A}
- Give $(\mathbf{v}^T = \mathbf{r}^T \mathbf{A}^T)$, $w = \mathbf{r}^T \mathbf{u} + b \lfloor q/2 \rfloor \mod q$ to \mathcal{A}
- ${\mathcal A}$ outputs an output guess $b' \in \{0,1\}$

Our goal: bound $|\Pr[W_0(\lambda)] - \Pr[W_1(\lambda)]| \le \epsilon(\lambda)$ for negligible ϵ

Proof:

Define $V_b(\lambda)$ as the event that ${\cal A}$ outputs 1 in the following:

- Give $(\mathbf{A},\mathbf{u}$ uniform in $\mathbb{Z}_q^m)$ to \mathcal{A}
- Give $(\mathbf{v}^T = \mathbf{r}^T \mathbf{A}^T)$, $w = \mathbf{r}^T \mathbf{u} + b \lfloor q/2 \rfloor \mod q$ to \mathcal{A}
- ${\mathcal A}$ outputs an output guess $b' \in \{0,1\}$

LWE
$$\rightarrow |\Pr[W_b(\lambda)] - \Pr[V_b(\lambda)]|$$
 is negligible

Proof: claim: $|\Pr[V_0(\lambda)] - \Pr[V_1(\lambda)]|$ is negligible

Recall:

Leftover Hash Lemma: 2-universal hash functions are good randomness extractors

Since entropy of **r** is $m \gg (n+1) \log q$

 $\mathbf{r}^T \mathbf{A}^T, \mathbf{r}^T \mathbf{u}$ is statistically close to uniform in \mathbb{Z}_q^{n+1} (even given \mathbf{A}, \mathbf{u})

$$(\mathbf{v}^T = \mathbf{r}^T \mathbf{A}^T , w = \mathbf{r}^T \mathbf{u} + b \lfloor q/2 \rceil \mod q)$$
 hides b

Why the LWE distribution

Simple algebraic structure is easy to work with

As hard as worst-case lattice problems

Search-to-decision reduction (decision is no easier than search)

In classical cryptography, used for tons of interesting applications that are not known from other tools

Hardness of LWE

For polynomial-time attacks, best algorithm is typically LLL or variants

Works when
$$m \geq \Omega(\sqrt{n\log q})$$
 , $q/\sigma \geq 2^{\Omega(\sqrt{n\log q})}$

For typical parameter settings, best attacks run in time $2^{O(n)}$

Note that this is very slightly sub-exponential in the secret size $n \log q$

Next Wednesday (10/29): Quantum algorithms for lattice problems

Reminder: no class on Monday 10/27