CS 258: Quantum Cryptography

Mark Zhandry



Midterm Logistics

Available on Gradescope from 10/25 —-10/28

Any 2 hour increment
Completed individually (including no Al)
Handwritten ok. Open computer, notes, internet

Material through group actions + Kuperberg (no lattices)



No Class Monday 10/27!

Next Class: Wednesday 10/29



Previously...



Lattices

Imagine dimension in the 100s



Different Bases



Different Bases

For vector spaces: two bases B1, By generate the same vector space
if and only if there is an invertible Usuchthat B, =B, - U

For lattices: two bases B, B generate the same lattice if and
only if there is a unimodular U suchthat Bo = B; - U

Def: U is unimodular if U € Z"*™and det(U) € {+1, —1} J




Determinant of lattice

Measure of how dense the lattice is



Full-rank lattice: span(B) = R" <— B € R"*"

Integer lattice: B € Z™*"™

We will generally consider only full-rank integer lattices

Note that for integer lattices, can consider spanning set
that is not full-rank, and still guarantee discreteness



SVP

(Approx.) shortest vector problem (SVP): given lattice
(described by some basis), find (approx.) shortest vector




SIVP

(Approx.) shortest independent vector problem (SIVP): given
lattice (described by some basis), find (approx.) shortest basis




CVP
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(Approx.) closest vector problem (CVP): given lattice
and point off lattice, find (approx.) closest lattice point




Gram-Schmidt Orthogonalization
(no normalization)

b; = by
by = by
bz = bs

B=( by || )

Note: b; not in lattice




-
Lemma: Babai’s nearest plane alg produces lattice point whose

distance from target vector is at most
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Today: SIS and LWE



Motivating question: what distribution over lattices to choose?



Short Integer Solution (SIS)

Parameterized by 4 quantities 7, m, q, 0
Last 3 are usually functions of first

n intuitively plays role of security parameter

q typically @ = O(nc), but can also make exponential

m typically m = Q(n log q), but sometimes much bigger

3 typically 8 > 4/m butcertainly § < ¢



Short Integer Solution (SIS)

Input: A ngxm (short, wide)

Chosen uniformly at random

Goal: find vector x € Z™ such that:
A-xmodqg=0

0< x| <P



Claim: for m > nlogq and 8 > \/m, solution exists

/Proof: consider fA : {0, 1}m —7 ZZ defined as
fa(x) = A -xmod q

Domain size = 2™ Range size=¢q"& < 2™

m) Must exist distinct Xg,x3 € {0,1}" s.t.

fa(xo) = fa(x1)

» let X = X9 — X1 € {—1,0,1}m

AN




SIS is a special case of SVP

AF(A):={x€Z™: A -xmodq=0}

q

Full-rank integer lattice

Approximate SVP in AqL (A) forarandom A is exactly SIS



Collision-resistance from SIS

fA : {0, 1}m — ZZ
fa(x) = A -xmod q

Collision = distinct Xg, X1 € {0,1}"™ s.t.

fa(xo) = fa(x1)

Security proof: let X = Xg — X1 € {—1, 0, l}m



Why the SIS distribution?

Atjai proved that SIS (on average) is as hard as
approximate SVP in the worst case

That is, if you can solve SIS in polynomial-time on
average, then you can solve approximate SVP in
polynomial time on any lattice



Hardness of SIS

For polynomial-time attacks, best algorithm is
typically LLL or variants

Works whenm > Q(1/nlogq) , B = 20(nledq




Going forward, reducing mod g will produce a point in the interval

(_Q/Qa Q/Q]

Things close to O (positive or negative) don’t get reduced



Learning with Errors (LWE)

Parameterized by 4 quantities 10, ™M, q, 0
Last 3 are usually functions of first

n intuitively plays role of security parameter

q typically @ = O(nc), but can also make exponential

m typically m = Q(n log q), but sometimes much bigger

o typically o = Q(y/n) but certainly ¢ < ¢



Search LWE

Input: A <+ Z'g’xm (short, wide) Chosen uniformly at random
u=A’.s+ emod g where
S uniformin Z'g

e € Z™ “short”

Output: s (in this regime, S is whp unique)



The Distribution on e: Discrete Gaussians

D, =distribution over 7, where
Prlz < D,| x e~ /0

Exact normalization constant is a big infinite sum, but for
large o can be approximated as

Prlx < D,| = le—mﬁ/gZ
o

D" =vector of m iid samples from D,



Search LWE

Input: A <+ Z'g’xm (short, wide) Chosen uniformly at random
u=A’.s+ emod g where
S uniformin Z'g

e+ D

Output: s (in this regime, s is whp unique)



Decision LWE

Input: A <+ Z'g’xm (short, wide) Chosen uniformly at random
Casel: u= Al .s 4+ emod g where
S uniformin ZZ’

e+ D

Case 2: U1 is random

Output: guess which case



LWE is a special case of CVP

Ag(A) ={x€Z™:3s € Z" s.t. x= A’ -s(modq)}

Full-rank integer lattice

LWE = CVP under, for random lattice and random target
promised to be close to lattice



Public Key Encryption from LWE

pk = (A7 u=A""s + e mod C_l) S uniform in ZZ
sk = (s, e) e« DM

Enc(pk,m € {0,1}) :Sample r uniformin {0,1}™
output (v =rPAT | w=r"u+m|qg/2] mod q)

Dec(sk, (v, w)) : Compute
w—v! -smodqg=(rTAls+r'e+m|q/2]) —r' ATs mod q
=rle+ m|q/2] mod q



Public Key Encryption from LWE

w—v! -smod qg=rle+m|q/2] mod q

re{0,1}™ € Gaussian of width o
\ /
rTe is Guassian of width at most o m

rle| < om

With all but negligible probability,

0 itm=0
+q/2 ifm=1

m) r'e+m|g/2] modq = {




Decryption errors

Technically, there is a tiny chance that rle is huge

In this case, decryption fails

Technically, scheme doesn’t satisfy definition
we saw on first day of class



/Def (PKE, syntax): A public key encryption scheme is a triple of

algorithms (Gen, Enc, Dec) satisfying the following:

- Gen(1>‘) . probabilistic polynomial-time (classical) procedure
which takes as input a security parameter )\ (represented in
unary), and samples a secret/key public pair (sk, pk)

. Enc(pk, m) : PPT procedure which takes as input the public
key pk and message 71l, and samples a ciphertext C

» Dec(sk, ¢) : Deterministic PT procedure which takes as input
the secret key Sk and ciphertext C, and outputs a message 771

10,1}

* Correctness: Y, (sk, pk)in support of Gen(1
Pr|Dec(sk, Enc(pk,m)) = m|

X

\

/




Decryption errors

Solution 1: Truncate discrete Gaussian so that e € [—B, B|™

B = o0v/m
) |rTe\ < mB always

Generally results in larger error bounds = larger modulus
-2 less efficient

Solution 2: Relax correctness definition to allow negligible
probability of decryption errors

Sometimes (rarely) approximate correctness is insufficient



4 )

\Lemma: Assuming decisional LWE, encryption scheme is CPA secure

-
Proof: Let A be a supposed adversary for the CPA-security of the
encryption scheme

Define W3(A) as the event that A outputs 1 in the following:

* Run (sk, pk) < Gen 12 give pktoA Since message is binary,
(sk; p) (1), give p /might as well take to be 0,1
» A produces two msgs 1, 7M1

» Runc < Enc(pk,mp) and give C to A
» Aoutputs an output guess b’ € {0,1}

 Our goal: bound | Pr[Wo ()] — Pr[W1(M)]] < e(A) for negligible €
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\Lemma: Assuming decisional LWE, encryption scheme is CPA secure
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Proof: Let A be a supposed adversary for the CPA-security of the
encryption scheme

Define W3(A) as the event that A outputs 1 in the following:
e Run (sk, pk) < Gen(1>‘), give pk to A

e Run C < Enc(pk, b) and give C to A

» A outputs an output guess b’ & {0,1}

Our goal: bound | Pr[Wo(A)] — Pr[Wi(M)]| < e(N) for negligible €




-

\Lemma: Assuming decisional LWE, encryption scheme is CPA secure

\

S
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Proof: Let A be a supposed adversary for the CPA-security of the
encryption scheme

Define W3(A) as the event that A outputs 1 in the following:
. Givepk=(A,u=AT.s+emodq) to 4

. Give (v =rTAT | w=r"u+b|g/2] mod q) to A
» Aoutputs an output guess b’ € {0, 1}

Our goal: bound | Pr[Wo(A)] — Pr[Wi(M)]| < e(N) for negligible €




4 )
\Lemma: Assuming decisional LWE, encryption scheme is CPA secure

J
<
Proof:

Define [V () as the event that A outputs 1 in the following:
> Give (A, u uniformin Z, ) to A

. Give (v =rTAT | w=r"u+b|g/2] mod q) to A
» Aoutputs an output guess b’ € {0, 1}

LWE = | Pr[Wy(A)| — Pr{V,(A)]| is negligible
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\Lemma: Assuming decisional LWE, encryption scheme is CPA secure

\
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Proof: claim: | Pr[Vy(A)] — Pr[V71(A)]| is negligible

.
Recall:( | eftover Hash Lemma: 2-universal hash

functions are good randomness extractors
N Y

Since entropy of ris m > (n + 1) logg

mP AT rTu is statistically close to uniform in ZZ’JA
(even given A, 1)

# (VT =rfTAT  w=rlu+ blq/2| mod q) hides p

S
<




Why the LWE distribution

Simple algebraic structure is easy to work with
As hard as worst-case lattice problems
Search-to-decision reduction (decision is no easier than search)

In classical cryptography, used for tons of interesting
applications that are not known from other tools



Hardness of LWE

For polynomial-time attacks, best algorithm is
typically LLL or variants

For typical parameter settings, best attacks run in time 20(n)

Note that this is very slightly sub-exponential in the secret size T log q



Next Wednesday (10/29): Quantum
algorithms for lattice problems

Reminder: no class on Monday 10/27



