CS 258: Quantum Cryptography

Mark Zhandry

Pre-modern Cryptography (2000 BC — mid 1900’s AD)

Cryptography = (symmetric) encryption

g

Enc(k,m

@
k -

Serious usage limited mostly to state-level entities

Tug-of-war between code makers & breakers; breakers usually win

Modern Cryptography (Mid 1900’s — Present)

Cryptography =
(Public key) Encryption Attribute-based encryption

Digital signatures Proofs of

Zero knowledge knowledge

Homomorphic o
encryption Program Digital money

Obfuscation

Traitor tracing sooe

Modern Cryptography (Mid 1900’s — Present)
Cryptography is everywhere

@ ® < Bank of America — Banking,

&« C (0 @& Bank of America Corporation [US https:// 'ww.bankofamerica.com

L'-\) 3[\

Bankof America %~

BankAmericard

, CASH REWARDS
g 1234 S5b18 9123

o p0p0/00

000
cnmsmmy{rﬁ VISA
Signature

Modern Cryptography (Mid 1900’s — Present)

Cryptography almost never
fails in the real world, because
we “prove” it is secure

However, we are on the
precipice of another major
shift in cryptography due to

quantum computers

As we will discuss later in this
lecture, cryptography relies on
computational problems that are
intractable for efficient computation

What is “efficient” computation?

1900’s — Present: can run efficiently on today’s computers

’
P

Turing machines (Classical) circuits

can (efficiently) compute anything that can be
9 (efficiently) computed by any physical process

/(Extended) Church-Turing Thesis: Today’s computers\

J

What is “efficient” computation?

The future: can run efficiently on gquantum computers

" (Extended) Church
can (efficiently)
9 (efficiently) com

Today’s computers
ing that can be
physical process P

What does quantum computing mean for cryptography?

Quantum Cryptanalysis: All currently-deployed public key
cryptography will be broken

Post-quantum cryptography: developing new (classical) protocols

that are secure against quantum computers

* Must start now to protect against qguantum “harvest-now-decrypt-later” attacks
e Requires revisiting the entire theory of modern classical cryptography

Quantum cryptography: developing new quantum protocols that
achieve never-before-possible capabilities

This Course

Overview of quantum
cryptanalysis, and post-quantum
and guantum cryptography

Prerequisites: Knowledge of linear algebra and algorithms
(No prior knowledge of cryptography or quantum is assumed)

Brief background of
classical cryptography

For now, focus on encryption

Symmetric Encryption

¢ <= Enc(k, m) m < Dec(k, c)

“learns nothing” about ™

Kerckhoff’s Principle: assume Enc, Dec are
public knowledge, only k kept secret

N\

~

J

How do we build symmetric encryption?

Substitutions:

m—=—110111100001111000100100
| | | |

4

L 4

C = \00100000}\01101100}\11100001}

«ne
« e

k determines S

How do we build symmetric encryption?

N

Substitutions broken by frequency analysis:
Most common byte is probably an “e”, second
most is probably a “t”, etc.

~

/

How do we build symmetric encryption?

Permutations:

11000100100

1

110111100001

TN, —

100101000000001011111111

C =

k determines P

How do we build symmetric encryption?

Permutations broken by numerous methods:

* Number of 1’s revealed

* |n order to keep description of P small, it has
_ extra structure, which can lead to breaks

~

/

How do we build symmetric encryption?

Substitution-Permutation Network

It works! Basis for many modern symmetric encryption schemes

Fundamental limitation of symmetric encryption:
how to Alice and Bob share k in the first place?

Asymmetric (or Public Key) Encryption

ok (sk, pk) < Gen()

@) C @

¢ <= Enc(pk, m) m < Dec(sk, ¢)

“learns nothing” about ™

How do we build public key encryption?

ElGamal (Toy Version):) typicallyas 2000

Gen (1>‘) . Choose a random \-bit prime P

Choose random generator g of Z;

Choose random a < {0,1,2,--- ,p — 2}
Let h = g® mod p
sk = (p, g,) pk = (p, g, h)

How do we build public key encryption?

ElIGamal (Toy Version):

Enc((p,g,h) ,m) :
Interpret 771 as an element of Z;;

Choose random 3 + {0,1,2,--- ,p — 2}
let w =¢° modp v=h"xmmodp

Output ¢ = (u, v)

How do we build public key encryption?

ElIGamal (Toy Version):

Dec((p,9,0) , (u,v)):
Output 1T, = ’U/’U,a mod 4,

Correctness:
v/u® = (hPm)/(g°)* = (9*°m)/g*” =m

What does it mean that an
eavesdropper should “learn
nothing” about the message?

Attempt 1: Statistical Security

Intuitive definition: view of adversary
“contains no information” about 1M

Attempt 1: Statistical Security

Problem: useful schemes cannot be statistically secure

Consider public key in ElGamal p, g, h = ga mod P

Simple algorithm to compute (:

-
Fora’=0,1,2,--- ,p—2:

If ga/ mod p = h , output Oz,
NS J

Brute-Force Search

Try all possibilities until you find the right one

Note: need to be able to tell if you got the right one

Brute-Force Search

Brute-force search always possible for PKE

Brute-force search always possible for SKE,
assuming total length of messages sent >> length of key

One-Time Pad

Enc(k,m)=k®dm
Dec(k,c) = k@ c

k® (k®m)

™m

No way to check if guessed key is
correct, if encrypting single message

Almost all cryptography can be
broken via brute-force search

What do we do?

Solution: Computational Security

Notice that a brute-force search
takes a huge about of time

ElGamal with 2000-bit prime: 92000 trjals

Every particle in visible universe replaced
.) m) -1615
with the world’s fastest supercomputer 2 years

Compare to life of universe: 234 years

Solution: Computational Security

Notice that a brute-force search
takes a huge about of time

Only ask for security against
“efficient” adversaries

What is efficient?

In practice:

Total bitcoin network:

~ 92100 operations/year

In theory:

Polynomial time

Beating Brute-Force Search

We can always make brute-force intractable by making keys long

However, brute-force may not be fastest algorithm

E.g. best attacks on ElGamal run in time 20((logp)'*(loglogp)*/®),

Beating Brute-Force Search
Rule-of-thumb:

Symmetric crypto: due to lack of mathematical
structure, best attacks typically run in time 2"

Public key crypto: Depends on underlying math, hope
to get as close to 2™ as possible

Cryptography and P vs NP

Polynomial-time adversaries = Adversary E/F{BPP

(allow adversary random coins)

Brute-force possible W Breaking scheme isin NP

Therefore, (most) cryptography can only exist if P = NP
(or even NP ¢ BPP)

Cryptography and P vs NP

As a consequence, (almost) all
cryptosystems rely on unproven
computational assumptions

Neet at least P # NP, usually much more

The Fundamental Formula of Modern Cryptography

Secure
Cryptosystem

Protocol

+

Formal Security
Model M

+

Computational
Assumption P

+

Proof that P
implies M

Usually conservative modeling
of adversary’s capabilities

Widely studied, concrete
assumptions

Breaking M at least as
hard as solving P

Example: proving the security of EIGamal

Step 1: Define Public Key Encryption

Step 1a: Define Syntax, Correctness

/Def (PKE, syntax): A public key encryption scheme is a triple of
algorithms (Gen, Enc, Dec) satisfying the following:

. Gen(1>‘) : probabilistic polynomial-time (classical) procedure
which takes as input a security parameter)\ (represented in
unary), and samples a secret/key public pair (Sk, pk)

. Enc(pk, m) . PPT procedure which takes as input the public
key pk and message 7Tl , and samples a ciphertext C

. Dec(sk, C) : Deterministic PT procedure which takes as input
the secret key sk and ciphertext C, and outputs a message TV

- Correctness: VA, (sk, pk) in support of Gen(1%), Vm € {0, 1}
Pr|Dec(sk, Enc(pk,m)) =m| =1

"

*

/

The Security Parameter

Allow for tuning security level of protocol

In practice, often only a couple
parameters standardized (e.g. 128,256)

In theory, can be any natural number;
necessary for defining “polynomial time”

Represented in unary so that Gen(1%) runs in time poly()

Probabilistic algorithms

Genis probabilistic so that each run gives different keys

remember that the algorithm Gen is publicly known (Kerckhoff’s Principle)

Enc is probabilistic for security (see homework)

Dec is deterministic since it should always just output ™M

Correctness as a probability

Pr|Dec(sk, Enc(pk,m)) =m| =1

Pedantic note: need to wrap in
probability since Enc is not a function

/Def (PKE, syntax): A public key encryption scheme is a triple of
algorithms (Gen, Enc, Dec) satisfying the following:

. Gen(1>‘) : probabilistic polynomial-time (classical) procedure
which takes as input a security parameter)\ (represented in
unary), and samples a secret/key public pair (Sk, pk)

. Enc(pk, m) . PPT procedure which takes as input the public
key pk and message 7Tl , and samples a ciphertext C

. Dec(sk, C) : Deterministic PT procedure which takes as input
the secret key sk and ciphertext C, and outputs a message TV

- Correctness: VA, (sk, pk) in support of Gen(1%), Vm € {0, 1}
Pr|Dec(sk, Enc(pk,m)) =m| =1

"

*

/

Step 1b: Define Security

“Negligible”

In practice: < 27128 9256
In theory:

4 g)
Def (negligible): A function f : N — R is negligible if, for all
polynomials P, AN, € N such that forall A > N,

f(A) <1/p(N)
\A function that is not negligible is called non-negligible y

/Def (PKE, security): A PKE scheme (Gen, Enc, Dec)is A

indistinguishable under a chosen plaintext attack (IND-CPA-secure,
or just CPA-secure) if, for all PPT adversaries A , there exists a
negligible function € such that

| Pr[Wo(A)] — PriWi(A)]] < e(A)
where W5 () is the event that A outputs 1 in the following:
* Run (sk, pk) « Gen(1?) , give pk to.4
o A produces two msgs Mg, m1 € {0,1}™ of the same length
* Run ¢ < Enc(pk, mb) and give C to A

» A outputs an output guess b’ € {0, 1
N 10,1} /

CPA security Is conservative

CPA-security says that the adversary knows everything about
the message except a single bit, and must learn that bit

The adversary may even choose everything about the
message, except for the bit it is trying to learn

In real life, adversary may influence message, and may have
side information, but unlikely to be that strong

By having a conservative definition, we don’t need to worry
about exact abilities, and know we have security regardless

Restriction that 71q, 1711 have the same
length is (unfortunately) necessary, since
ciphertext length is revealed

Otherwise, “Hello” vs, say, an entire movie
would have ciphertexts of the same length

/Def (PKE, security): A PKE scheme (Gen, Enc, Dec)is A

indistinguishable under a chosen plaintext attack (IND-CPA-secure,
or just CPA-secure) if, for all PPT adversaries A , there exists a
negligible function € such that

| Pr[Wo(A)] — PriWi(A)]] < e(A)
where W5 () is the event that A outputs 1 in the following:
* Run (sk, pk) « Gen(1?) , give pk to.4
o A produces two msgs Mg, m1 € {0,1}™ of the same length
* Run ¢ < Enc(pk, mb) and give C to A

» A outputs an output guess b’ € {0, 1
N 10,1} /

Step 2: Specify Protocol

How do we build public key encryption?

Gen (1>‘) . Choose a random \-bit prime P

Choose random generator g of Z;

Choose random a < {0,1,2,--- ,p — 2}
Let h = g® mod p
sk = (p, g,) pk = (p, g, h)

How do we build public key encryption?

Enc((p,g,h) ,m) :
Interpret 771 as an element of Z;;

Choose random 3 + {0,1,2,--- ,p — 2}
let w =¢° modp v=h"xmmodp

Output Cc = (u,’U)

How do we build public key encryption?

Dec((p,9,0) , (u,v)):
Output 1T, = ’U/’U,a mod 4,

{Lemma: Toy ElIGamal is a PKE scheme J
2

(Proof: All algorithms polynomial time. Correctness:
v/u® = (h"m)/(g")* = (¢*"m)/g*’ = m

- J

Step 3: State assumptions

/ D
Assumption (Discrete Log): For any PPT algorithm A ,

there exists a negligible function € such that

PrlA(p,g,h) = af < €(N)

where:
* Pisarandom \-bit prime
* g is arandom generator of Z;

e o+ {0,1,2,---,p— 2} is random
. Y

Necessary, but not necessarily sufficient for EIGamal to be secure

-
Assumption (Decisional Diffie-Hellman): For any PPT

algorithm A , there exists a negligible function € such
that

| Pr[A(p, g, g* mod p, g° mod p, g*” mod p) = 1]
— Pr[A(p, g, g* mod p, ¢° mod p, g” mod p) = 1]| < €(A)

where:
e Disarandom A-bit prime
* g is arandom generator of Z;

\- a, 8,7+ {0,1,2,--- ,p— 2} are random

Despite decades of attempts at solving DDH, the
best algorithms are sub-exponential time. The
DDH assumption therefore is widely believed.

Step 4: Prove Security

-

KTheorem: Assuming DDH, ElIGamal is CPA-secure

-
Proof: Let A be a supposed adversary for the CPA-

security of ElIGamal.

N

.
KTheorem: Assuming DDH, ElIGamal is CPA-secure

-
Proof:

Define Wy(\) as the event that A outputs 1 in the
following:

e Run (sk, pk) « Gen(1?*), give pk to A
* A produces two msgs Mg, 111
» Run c ¢ Enc(pk, ms) and give C to A

» A outputs an output guess b’ € {0,1}
N

N

.
KTheorem: Assuming DDH, ElIGamal is CPA-secure

-
Proof:

Define Wy(\) as the event that A outputs 1 in the
following:

* Run pk = (p,g,h) and give pk to .4, where...

* A produces two msgs Mg, 111

u = ¢° mod p

v = hP X myp mod p
» A outputs an output guess b’ € {0,1}

N

¢ Give c= (u,v) to A where

N

.
KTheorem: Assuming DDH, ElIGamal is CPA-secure

-
Proof:

Define Wy(\) as the event that A outputs 1 in the
following:

* Run pk = (p,g,h) and give pk to .4, where...

e A produces two msgs MM, 7M1
v :ga’B X My mOdp

» A outputs an output guess b’ € {0,1}
N

¢ Give c= (u,v) to A where

N

-

KTheorem: Assuming DDH, ElIGamal is CPA-secure

>

Proof: Our goal is to prove that

| Pr{iWo(A)] = PriWi(A)]] < €(A)

for some negligible function €

N

-

KTheorem: Assuming DDH, ElIGamal is CPA-secure

)

4)

Proof:

Define Vb(A) as the event that A outputs 1 in the

following:

* Run pk = (p,g,h) and give pk to .4, where...

* A produces two msgs Mg, 111 p

¢ Give c = (u,v) to A where g’igw Eﬁi ?nod D

» A outputs an output guess b’ € {0,1}
N Y

.
Theorem: Assuming DDH, ElIGamal is CPA-secure

>Proof:

| Pr[Wo(N)] — Pr[Wi(N)]| < |Pr[Wo(A)] — Pr[Vo(A)]]
Pr{Vo(A)] — Pr[Vi(A)]|
Pr[Vi(A)] — Pr[Wi (M)

=S

Now we will bound each term separately

N

N

.
KTheorem: Assuming DDH, ElIGamal is CPA-secure

N

Proof: | Pr[Wo(A)] — Pr[Vp(A)]] -

Let B(p, 9, A, B,C) be the following DDH adversary:
e Givepk = (p,g,h=A) to A

* When A produces two messages 1M, 11, reply
with ¢ = (u = B,v = C' X mg mod p)

e Qutput whatever A outputs

.
KTheorem: Assuming DDH, ElIGamal is CPA-secure

Proof: | Pr[Wo(A)] — Pr[Vp(A)]] -

Observe that \PT[WO(A)] — Pr[VO()\)]\ —
| Pr[B(p, g,g* mod p, g° mod p, g*” mod p) = 1]
— | Pr[B(p, g,g* mod p, g° mod p, g” mod p) = 1]

which by DDH must be at most a negligible €o(\)

N

AN

.
KTheorem: Assuming DDH, ElIGamal is CPA-secure

Proof: | Pr[Vy(\)] — Pr[Vi(\)]| -

Only difference:
v=¢g" Xmomodp vs v=¢g7 X m; modp

g’ X mg mod p
7 [} [] L] * e

is uniform in m) m
g Zp g? X 1y mod p are unifor

mp Pr[Vo(N)] = Pr[Vi(A)]

N

-

KTheorem: Assuming DDH, ElIGamal is CPA-secure

>

Proof: | Pr[V1 ()] — Pr[Wi(A)]] :

By analogous arguments,
| Pr{Vi(A)] = Privi(A)]] < e1(A)

for some negligible €1

N

CTheorem: Assuming DDH, ElIGamal is CPA-secure j

s <

Proof:

| Pr[Wo(A)] — PriWi(A)]] < | Pr[Wo(A)] — Pr[Vo(A)]
Pr[Vo(A)] = Pr[Vi(A)]
Pr[Vi(A)] — Pr[Wi(A)]
< 60()\) + 61()\)
_Sum of negligible funcs is negligible I/

Up Next: Quantum

The Fundamental Formula of Modern Cryptography

Secure
Cryptosystem

Protocol

+

Formal Security
Model M

All of these

/fundamentally

+

Computational
Assumption P

/

+

Proof that P
implies M

assume classical
adversaries

Need to revisit
everything with
quantum
computers

