CS 258: Quantum Cryptography (Fall 2025)
Homework 5 (100 points)

1 Problem 1 (30 points)

Consider a distribution over quantum states, where |1;) is sampled with probability p;. Let p = 3. p;[;) (1]
be the resulting density matrix.

o Part (a). 10 points. Let U be a unitary, and consider computing |¢;) = U|v;). Taking the probability
over 4, this gives a new mixed state described by density matrix p,. Show that p, = UpUT.

o Part (b). 10 points. For any p, consider measuring in the computational basis. Show that the
probability of a measurement outcome x is given by (z|p|z).

o Part (c). 10 points. Measuring in the computational basis gives & with some probability (as
computed in Part (b)), and the post-measurement state is then |z). This gives a new probability
distribution over quantum states, which is described by a density matrix p.. Show that p. is a diagonal
matrix obtained from p by erasing all the off-diagonal entries.

2 Problem 2 (30 points)

For two classical probability distributions Dy, Dy their distance is captured by the total variational distance

A(Do,Dl) = %Zm ‘ PI‘[Z‘ — Do} — PI‘[.T — D1]|

o Part (a), 20 points. Prove the following: suppose we choose a random bit b, and then sample
x < Dy and apply some procedure P to make a guess b'. Define €(P) such that Pr[b/ = b] = <.
Prove that A(Dg, D1) is the maximum over all possible (potentially inefficient) procedures P of |e(P)].
This contains two parts: (1) show that any procedure has |e(P)| < A(Dy, D1), and show that (2) there
exists some potentially inefficient procedure such that e(P) = A(Dgy, D1). For simplicity, you may
assume the procedures are deterministic.

Thus, A(Dg, D1) = 0 means that no algorithm can do better than random guessing, while A(Dgy, D;) =1
means it is possible to perfectly distinguish the two distributions.

The way to quantify the distance between two mixed states represented by density matrices pg, p1 is
through the trace distance. The trace distance has different notations throughout the literature, but is
often denoted ||po — p1lj1. It is defined as follows: Let A1,---, A, be the eigenvalues of py — p1. Then

oo — prlle = 22 Il

o Part (b), 10 points. Consider some process for distinguishing pg from p;. For simplicity, assume the
process simply applies a unitary U, and then measures to get a string x. Call the resulting distributions
over x Dy and D, respectively. Show that there exists a unitary U such that A(Dg, D1) = ||po—p1l|1/2,
where Dy, Dy are the probabilities obtained from applying U and then measuring. [Hint: Think about
diagonalization.]

It turns out that for any unitary U, we have A(Dy, D1) < ||po — p1]l1/2 (though you do not need to show
this). Thus, trace distance is the direct quantum analog (up to a factor of two) of total variational distance,
in that it exactly captures the ability to distinguish two quantum states.



3 Problem 3 (40 points)

A pseudorandom state (PRS) is a collection of 2* states {|x)}reqo,131- Let ¢ be the number of qubits of the
|tr). The goal of a PRS is for ¢ > A, but for |¢y) for a random choice of k to look like a truly random state.
Note that the density matrix for a truly random state on ¢ qubits is %I, where I is the identity matrix of
dimension 29.

o Part (a). 20 points. Show that for ¢ > A, there is an inefficient quantum attack which distinguishes
|t) for a random k from truly random. To do so, consider the density matrix p for |¢y), and consider
the possible eigenvalues of p. How many are non-zero? What does this tell you about the trace distance
from 2—{,1‘? Thus, PRS’s require computational assumptions

o Part (b). 10 points Counsider the following commitment scheme built from a PRS. To commit to 0,
construct the superposition \/% >_zefo,134 |7)|z), and give the second register to Bob, keeping the first
register for ourselves. To commit to 1, construct the superposition \/% > kefo,13r [k)|¥r), and give the
second register to Bob, keeping the first register for ourselves.

Show that the scheme is computationally hiding, assuming the PRS is secure.
o Part (c). 10 points. Suppose Alice has committed to 0. Explain why there is no unitary she can

apply to her state that allows her to transform the joint state into a commitment to 1. This is not a
full proof of statistical binding, but gives the idea.
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