CS 258: Quantum Cryptography (Fall 2025)
Homework 4 (100 points)

Recall the definition of a collapsing hash function:

Definition 1. A hash function H is collapsing if, for all QPT adversaries A, there exists a negligible function
€ such that | Pr[Wo(A)] — PriWi(N)]] < e(N\), where Wy(\) is the event that A outputs 1 in the following:

A produces a state }, oy .|z, z)

If b = 1, measure x; if b = 0, measure H(x). Recall that “measuring H(x)” means to apply Uy to
write H(x) into a new register, which is then measured and discarded.

Return the resulting state back to A.

A outputs a guess b'.

1 Problem 1 (20 points)

Show that a hash function that is collapsing is also collision resistant. [Hint: suppose toward contradiction
that it is not collision-resistant. How can you take a collision and build a state that allows you to distinguish
whether the input or output is measured?]

2 Problem 2 (20 points)

Here, you will prove two facts that will be useful when we move to Problem 3. Recall the definition of a
2-universal hash family from Lecture 3.

Definition 2. A family H of functions h : {0,1}™ — {0,1}™ is 2-universal if, for all z, 2’ € {0,1}", z # 2/,
we have that Prpy[h(z) = h(z")] =27™.

o Part (a) 10 points. For a 2-universal hash family H with m > 3n, prove that, except with probability

at most 279 h < H is injective. [Hint: use a union bound.]

Part (b). 10 points. Let fy, f1 be two functions over the same domain, say {0, 1}"™. Suppose we have
the guarantee that, for all pairs z, 2’ € {0,1}", fo(x) = fo(2’) if and only if f1(z) = fi(2'). In other
words, the pre-image sets of fy and f; are the same, even if the images might be completely different.

Let |¢) =), , as |7, 2) be a quantum state. Consider the following two processes:
(1) Use Uy, to compute Y . ag |z, 2, fo(x)), measure fo(x), and discard the result. Let [¢)') be the
resulting state.
(2) Use Uy, to compute oy .|z, 2, f1(2)), measure fi(x), and discard the result. Let |¢)) be the

resulting state.

Show that the distributions over |¢') in (1) and (2) are exactly the same.

3 Problem 3 (40 points)

In class, we saw one way to build collapsing hash function. Here, you will explore another way using lossy
functions.

Definition 3. A lossy function is a triple of algorithms (Genlnj, GenLossy, Eval) such that:
« Genlnj(1*), GenLossy(1*) are a PPT algorithms which each sample a key k.

o Eval(k,x) is a deterministic function which takes as input a key k (from Genlnj or GenLossy) and an
x € {0,1}*. It outputs a y.

There are two correctness requirements:
« Injectivity in injective mode: for k <— Genlnj(1*), = + Eval(k,z) is injective.

o Lossiness in lossy mode: for k < GenLossy(1*), |Eval(k,-)| < 2*/3. Here, |Eval(k,-)| is the number of
possible outputs of Eval(k,x) as x ranges over {0,1}*.

Here, the “lossy mode” (k < GenLossy(1*)) means that the output of Eval(k, z) loses information about
x, since there are only 2*/2 outputs but 2* > 2*/3 inputs.

Notice that in the “injective mode” (k < Genlnj(1*), |Eval(k,-)| = 2*. Thus the injective and lossy mode
functions Eval(k, -) are very different. However, the security of lossy functions will be that the two modes
are indisitnguishable:

Definition 4. A lossy function (Genlnj, GenLossy, Eval) is secure if, for all QPT adversary A, there exists a
negligible funciton € such that

| Pr[1 < A(K) : k + Genlnj(1*)] — Pr[1 < A(k) : k < GenLossy(1%)]| < e(\)

You will explore how to construct lossy functions in the next problem. Here, you will see how to construct
a collapsing hash assuming a lossy funciton.

The construction is the following: let k < GenLossy(1*). Assume the outputs of Eval(k,) lie in {0, 1}*.
Then let h + H where H is a 2-universal hash family (for definition, see Lecture 3), such that A : {0,1}¢ —
{0,1}*~1. Then define H(x) = h(Eval(k,x)), which takes A bit inputs to A — 1 bit outputs.

Now, in the proof, we will consider 5 different experiments:

o Wy: This is the case b = 0 in the collapsing experiment, where k < GenlLossy(1*) and we measure

« Vpy: Here, we sample k < GenLossy(1*), but now we measure Eval(k, x) instead of H(z)
e Vi: Now we sample k <+ Genlnj(1?), but still measure Eval(k,).
o Va: We still sample k < Genlnj(1*), but now measure x instead of Eval(k,).

o Wi: Now we sample k <+ GenLossy(1%), but still measure . This matches the case b = 1 in the
collapsing experiment where we measure x.

o Part (a). 10 points. Show that |Pr[Wy] — Pr[Vp]| is negligible. [Hint: Use the facts proved in
Problem 2. We can think of the function h as being restricted to the set of images of Eval(k,-)]

o Part (b). 10 points. Show that | Pr[Vj] — Pr[V1]] is negligible, assuming the lossy function is secure.
o Part (c). 10 points. Show that | Pr[V;] — Pr[V3]| is negligible.
o Part (d). 10 points. Show that | Pr[V,] —Pr[IW;]| is negligible, assuming the lossy function is secure.

Putting parts (a) through (d) together shows that H is collapsing.

4 Problem 4 (20 Points)

Now we will construct a lossy function from LWE. The function is simple: the key will consist of a matrix
B e ngm for £ > m. Then we have that

Eval(B,x € {0,1}") = [B - x][4/4

Genlnj samples B uniformly, while GenLossy samples B as B = S+ A + E mod ¢, where A € Z;*™ and
S e ngn are chosen uniformly, and E € Z*™ is sampled from the discrete Gaussian of width o. In other

words, the injective mode B is a random matrix, while the lossy mode B is close to a matrix SA of rank n.

o Part (a). 10 points. Prove that the security of (Genlnj, GenLossy, Eval), assuming the LWE assump-
tion holds. To do so, prove that the distributions of B in Genlnj and GenlLossy are computational
indistinguishable. This is accomplished by defining a set of hybrid experiments where the first i rows
of B are as in GenlLossy, but the remaining ¢ — ¢ rows are chosen as in Genlnj. Show that the ¢ and
1 — 1 case are indistinguishable, by LWE.

o Part (b). 10 points. Suppose E did not exist, and GenLossy sampled B as S - A. What is an upper
bound on the size of the image of Eval(B,-)?

We've actually already seen that Genlnj is injective, for appropriately large ¢ (In Lecture 12, when we
were trying to apply Kuperberg’s algorithm to break LWE). As for showing that GenLossy is lossy, the hope
is that the rounding causes the output of Eval to depend only on S - A - x, and the rounding eliminates
the part that depends on the error E. This will be true for “most” inputs, but unfortunately is not true in
general, since some fraction of the inputs will be close to the rounding boundary, causing different outputs.
With some care, however, it is possible to extend the construction above to a full lossy function.

	Problem 1 (20 points)
	Problem 2 (20 points)
	Problem 3 (40 points)
	Problem 4 (20 Points)

